给定一棵有n个点的树,有以下两种操作:
边权有两种解决方案,一种把边看做一个新点,从边的两个端点像这个新点连边,然后就跟点权一样了,另一种是把边权给深度的较深的儿子,但是这样不能换根,也就是不能进行树的分离和合并。所以一般用第一种
#include <bits/stdc++.h>
using namespace std;
const int N = 20000 + 10, INF = 0x3f3f3f3f;
struct edge
{
int to, next;
}g[N*5];
int cnt, head[N];
int son[N][2], fat[N], key[N], rev[N], maxval[N];
int top, stk[N];
int val[N];
void add_edge(int v, int u)
{
g[cnt].to = u, g[cnt].next = head[v], head[v] = cnt++;
}
void dfs(int v, int fa)
{
fat[v] = fa;
key[v] = maxval[v] = val[v];
for(int i = head[v]; ~i; i = g[i].next)
{
int u = g[i].to;
if(u == fa) continue;
dfs(u, v);
}
}
bool is_root(int x)
{
return son[fat[x]][0] != x && son[fat[x]][1] != x;
}
void push_up(int x)
{
maxval[x] = max(key[x], max(maxval[son[x][0]], maxval[son[x][1]]));
}
void push_down(int x)
{
if(rev[x])
{
swap(son[x][0], son[x][1]);
rev[son[x][0]] ^= 1, rev[son[x][1]] ^= 1;
rev[x] ^= 1;
}
}
void Rotate(int x)
{
int y = fat[x], p = son[y][0] == x;
son[y][!p] = son[x][p], fat[son[x][p]] = y;
if(! is_root(y)) son[fat[y]][son[fat[y]][1]==y] = x;
fat[x] = fat[y];
son[x][p] = y, fat[y] = x;
push_up(y);
}
void splay(int x)
{
top = 0;
stk[++top] = x;
for(int i = x; !is_root(i); i = fat[i]) stk[++top] = fat[i];
for(int i = top; i >= 1; i--) push_down(stk[i]);
while(! is_root(x))
{
int y = fat[x], z = fat[y];
if(is_root(y)) Rotate(x);
else
{
if((x == son[y][0]) ^ (y == son[z][0])) Rotate(x), Rotate(x);
else Rotate(y), Rotate(x);
}
}
push_up(x);
}
void access(int x)
{
int y = 0;
while(x)
{
splay(x);
son[x][1] = y;
push_up(x);
y = x, x = fat[x];
}
}
void make_root(int x)
{
access(x); splay(x);
rev[x] ^= 1;
}
int find_root(int x)
{
push_down(x);
while(son[x][0]) x = son[x][0], push_down(x);
return x;
}
void update(int x, int v)
{
splay(x);
key[x] = v;
push_up(x);
//splay(x);
}
int query(int x, int y)
{
make_root(x);
access(y); splay(y);
return maxval[y];
}
//注释掉的查询:先查询出在原树中的lca,然后查询这两点到lca的两条链上的最值
//调用后x是原来x和y的lca,y和son[x][1]分别存着lca的2个儿子, 即原来x和y所在的2颗子树的根
//void Lca(int &x, int &y)
//{
// access(y); y = 0;
// while(x)
// {
// splay(x);
// if(! fat[x]) break;
// son[x][1] = y;
// push_up(x);
// y = x, x = fat[x];
// }
//}
//int query(int x, int y)
//{
// Lca(x, y);
// //cout << x << " " << y << " " << son[x][1] << endl;
// return max(key[x], max(maxval[y], maxval[son[x][1]]));
//}
void init()
{
cnt = 0;
memset(head, -1, sizeof head);
memset(fat, 0, sizeof fat);
memset(son, 0, sizeof son);
memset(rev, 0, sizeof rev);
memset(val, 0, sizeof val);
memset(key, 0, sizeof key);
}
int main()
{
int t, n;
scanf("%d", &t);
while(t--)
{
init();
scanf("%d", &n);
int a, b, c;
for(int i = 1; i <= n-1; i++)
{
scanf("%d%d%d", &a, &b, &c);
add_edge(a, n + i); add_edge(n + i, a);
add_edge(b, n + i); add_edge(n + i, b);
val[n+i] = c;
}
dfs(1, 0);
char opt[15];
while(scanf("%s", opt), opt[0] != 'D')
{
scanf("%d%d", &a, &b);
if(opt[0] == 'C') update(a+n, b);
else printf("%d\n", query(a, b));
}
}
return 0;
}
第二种方法:
#include <bits/stdc++.h>
using namespace std;
const int N = 10000 + 10;
struct edge
{
int to, cost, next;
int idx;
}g[N*2];
int cnt, head[N];
int son[N][2], fat[N], key[N], maxval[N];
int id[N];
void init()
{
cnt = 0;
memset(head, -1, sizeof head);
memset(son, 0, sizeof son);
memset(fat, 0, sizeof fat);
memset(key, 0, sizeof key);
memset(maxval, 0, sizeof maxval);
}
void add_edge(int v, int u, int cost, int idx)
{
g[cnt].to = u, g[cnt].cost = cost, g[cnt].idx = idx, g[cnt].next = head[v], head[v] = cnt++;
}
void dfs(int v, int fa)
{
fat[v] = fa;
for(int i = head[v]; ~i; i = g[i].next)
{
int u = g[i].to;
if(u == fa) continue;
id[g[i].idx] = u;
key[u] = g[i].cost;
dfs(u, v);
}
}
void push_up(int x)
{
maxval[x] = max(key[x], max(maxval[son[x][0]], maxval[son[x][1]]));
}
bool is_root(int x)
{
return son[fat[x]][0] != x && son[fat[x]][1] != x;
}
void Rotate(int x)
{
int y = fat[x], p = son[y][0] == x;
son[y][!p] = son[x][p], fat[son[x][p]] = y;
if(! is_root(y)) son[fat[y]][son[fat[y]][1]==y] = x;
fat[x] = fat[y];
son[x][p] = y, fat[y] = x;
push_up(y);
}
void splay(int x)
{
while(! is_root(x))
{
int y = fat[x], z = fat[y];
if(is_root(y)) Rotate(x);
else
{
if((x == son[y][0]) ^ (y == son[z][0])) Rotate(x), Rotate(x);
else Rotate(y), Rotate(x);
}
}
push_up(x);
}
void access(int x)
{
int y = 0;
while(x)
{
splay(x);
son[x][1] = y;
push_up(x);
y = x, x = fat[x];
}
}
void lca(int &x, int &y)
{
access(y);
y = 0;
while(x)
{
splay(x);
if(! fat[x]) return;
son[x][1] = y;
push_up(x);
y = x, x = fat[x];
}
}
void update(int x, int v)
{
access(x);
key[x] = v;
push_up(x);
}
int query(int x, int y)
{
lca(x, y);
return max(maxval[y], maxval[son[x][1]]);
//这里不能取key[x]的值,因为x虽然是两点的lca,但权值却不属于两点到lca的路径上
}
int main()
{
int t, n;
char opt[20];
scanf("%d", &t);
while(t--)
{
init();
scanf("%d", &n);
int a, b, c;
for(int i = 1; i <= n-1; i++)
{
scanf("%d%d%d", &a, &b, &c);
add_edge(a, b, c, i); add_edge(b, a, c, i);
}
dfs(1, 0);
while(scanf("%s", opt), opt[0] != 'D')
{
scanf("%d%d", &a, &b);
if(opt[0] == 'C') update(id[a], b);
else printf("%d\n", query(a, b));
}
}
return 0;
}
因篇幅问题不能全部显示,请点此查看更多更全内容