搜索
您的当前位置:首页正文

Python 画混淆矩阵

来源:爱go旅游网
from sklearn.metrics import confusion_matrix
import warnings
import numpy as np
import matplotlib.pyplot as plt
import itertools

warnings.filterwarnings('ignore')


def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    """
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')

    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)

    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')


def main():
    val_y = np.array(
        [
            0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3,
        ]
    )

    val_pred = np.array(
        [
            0, 0, 0, 2, 1, 1, 2, 2, 3, 3, 3, 0,
        ]
    )

    cnf_matrix = confusion_matrix(val_y, val_pred)
    np.set_printoptions(precision=2)
    plt.figure(figsize=(10, 10))
    plot_confusion_matrix(cnf_matrix, classes=['0', '1', '2', '3', ], normalize=True,
                          title='Confusion matrix, with normalization')
    plt.savefig('confusion_matrix.png', bbox_inches='tight')
    plt.show()


if __name__ == '__main__':
    main()

 

 

因篇幅问题不能全部显示,请点此查看更多更全内容

Top