from sklearn.metrics import confusion_matrix
import warnings
import numpy as np
import matplotlib.pyplot as plt
import itertools
warnings.filterwarnings('ignore')
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
def main():
val_y = np.array(
[
0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3,
]
)
val_pred = np.array(
[
0, 0, 0, 2, 1, 1, 2, 2, 3, 3, 3, 0,
]
)
cnf_matrix = confusion_matrix(val_y, val_pred)
np.set_printoptions(precision=2)
plt.figure(figsize=(10, 10))
plot_confusion_matrix(cnf_matrix, classes=['0', '1', '2', '3', ], normalize=True,
title='Confusion matrix, with normalization')
plt.savefig('confusion_matrix.png', bbox_inches='tight')
plt.show()
if __name__ == '__main__':
main()
因篇幅问题不能全部显示,请点此查看更多更全内容