搜索
您的当前位置:首页正文

ACDC Susceptibility of the Heavy-Fermion Superconductor CePt3Si under Pressure

来源:爱go旅游网
7002 peS 6 ]onc-rpsu.tam-dnco[ 14v380.9070:viXraTypesetwithjpsj2.clsFullPaper

AC/DCSusceptibilityoftheHeavy-FermionSuperconductorCePt3SiunderPressure

YoshihiroAoki1,AkihikoSumiyama1∗,GakuMotoyama1,YasukageOda1,TakashiYasuda2,RikioSettai2

andYoshichikaOnuki

¯21

DepartmentofMaterialScience,FacultyofScience,UniversityofHyogo,Ak¯o-gun678-1297

2

GraduateSchoolofScience,OsakaUniversity,Toyonaka560-0043

(ReceivedFebruary1,2008)

Wehaveinvestigatedthepressuredependenceofacanddcsusceptibilities(χacandχdc)oftheheavy-fermionsuperconductorCePt3Si(Tc=0.75K)thatcoexistswithantiferromagnetism(TN=2.2K).Ashydrostaticpressureisincreased,Tcfirstdecreasesrapidly,thenratherslowlynearthecriticalpressurePc=0.6GPaandshowsastrongerdecreaseagainathigherpressures,wherePcisthepressureatwhichTNbecomeszero.Atransitionwidthandadifferenceinthetwotransitiontemperaturesdefinedintheformofstructuresintheout-of-phasecomponentofχacalsobecomesmallnearPc,indicatingthatadoubletransitionobservedinCePt3Siiscausedbysomeinhomogeneouspropertyinthesamplethatleadstoaspatialvariationoflocalpressure.AsuddenincreaseintheMeissnerfractionabovePcsuggeststheinfluenceofantiferromagnetismonsuperconductivity.

KEYWORDS:magneticsusceptibility,pressure,CePt3Si,heavy-fermionsuperconductor,Meissnereffect

1.Introduction

Eversincethediscoveryofheavy-fermionsupercon-ductivityinCePt3Si,1)manystudieshavebeenmadetoclarifyitsunconventionalsuperconductivity.Thetem-peraturedependenceofvariousphysicalproperties,suchasthermalconductivity2)andmagneticpenetrationdepth,3)suggestsagapfunctionvanishingontheFermisurface.Thelargeuppercriticalfield1)andNMRKnightshift4)suggestitsspintripletsuperconductivity,whilethenuclearspin-latticerelaxationratehasacoherenceHebel-SlichterpeakatTc,5)indicatingconventionalsu-perconductivity.Thepossibilityofamixedspinsingletandtripletstatethatisallowedowingtothelackofthecenterofinversionsymmetryinthecrystalstructurehasbeenproposedtoexplaintheseresults.6,7)

Besidesunconventionalsuperconductivity,CePt3Sipossessesacomplexpressure-temperature(P-T)phasediagram.Antiferromagnetism(TN=2.2K)andsuper-conductivity(Tc=0.75K)coexistsatambientpres-sure,1)andbothT8)NandTcdecreasewithanincreaseinpressure.AntiferromagnetismdisappearsabovePc=0.6GPa,whilesuperconductivityisobservedupto1.5GPa.Inaddition,thesuperconductingtransitional-waysshowsalargetransitionwidthat∼0.2K,9,10)andsomesamplesevenshowadoublepeakinspe-cificheatmeasurements.11–13)Althoughthepossibilitythatthesecondtransitionisduetoatraceofantifer-romagneticphase12)orunconventionalsuperconductiv-ity11)hasbeenproposed,ourrecentinvestigationsug-geststhatCePt3SicontainstwosuperconductingphaseswithdifferentTc’s.13)

Inthiswork,weinvestigatethepressuredependenceofthedoublesuperconductingtransitionbymagneticsus-ceptibilitymeasurementsandelucidatewhatcausesthedifferenceinTcinsideCePt3Si.WealsoreportthechangeintheMeissnereffectbelowandabovePc.

2J.Phys.Soc.Jpn.FullPaperAuthorName

01.191.030.300.120 GPa\"χπ4−0.50.800.65CePt3Si−1Single Crystal0.081.030.800.650.300.120 GPa\"χπ40.041.19000.20.40.60.8Temperature ( K )

Fig.1.Temperaturedependenceofacmagneticsusceptibility(χac=χ′+iχ′′)ofaCePt3Sicrystalunderdifferentpressures.χacwasmeasuredwithanacfieldofHac=1.2mOeat160Hz.Thearrowsindicateadditionalshoulder-likestructuresinχ′′.

0.8) CePtK3Si (Single Crystal) ( %0.6T+c+01TT−Tcχ\"c ,%T90%00.4T−9TTc10% ,−cT 0.2,+cT000.40.81.2Pressure ( GPa )

Fig.2.PressuredependenceoffourTc+characteristictemperatures:

,Tc−,T90%,andT10%.T90%andT10%arethetemperatureswheretheCePt3Sicrystalshows90%and10%offulldiamag-netism,respectively.Asindicated+

andTc−

schematicallyintheinset,Tc

arethetemperatureswhereχ′′reachesamaximumandhasalocalmaximumorashoulder,respectively.Thesolidlinesthroughthedatapointsareguidestotheeye.

transitionisnottherecentlyproposedsecondtransitionthatisfromthedxz-wavetothedxz±idyz-wavestate,sincethelattertransitionshouldbeobservedonlybelowPc.16)

Inordertodemonstratethepressuredependenceofsuperconductingtransitionmoreclearly,wedefinefour

characteristictemperaturesT90%,T10%,T+−

follows:χ′′hasamaximumatT+c,andT+

cas

alocalmaximumorashouldercandbelowTatTcitshows

thetemperatureswhereχc,whileT90%and

T10%are′

is90%and10%offulldiamagnetism,respectively.TheresultsareshowninFig.2.Asthepressureisincreased,thefourtemper-aturesfirstdecreasesteeplyuptoP=0.3GPa,thenchangeslowly,andbeginastrongerdecreaseaboveP=0.65GPa.Asimilarbehaviorhasalreadybeenreportedinspecificheatmeasurementsofasinglecrystal.8)TheslowdecreaseinTcprobablyreflectsthevanishingofan-tiferromagnetismatPc=0.6GPa.

Inourpreviouspaper,13)wehavereportedAC/DCsusceptibilityofthepresentcrystalandacrystalthat

showstwopeaksatTc+andTc−

inthespecificheat;dia-

magneticsusceptibilityandtheMeissnereffectofthelat-tersampleislargerthanthatofthepresentsamplenear

Tsuggestsc

+,andyetnoanomaliesisobservedatTthatthedoublepeaksinthespecificc−.Thisresultheatisas-cribedtothecoexistenceofsuperconductingphaseswithdifferentTc’sratherthanthesuccessivechangeofasu-perconductingphaseintoanotherstateatT−

peakscontainsagreateramountc;thecrystalwiththedoubleofthe

superconductingphasewithT+

thethesuperconductingphasecandasmalleramountof

withTwiththepresentcrystalthatshowsasinglec−

incomparison

peakatT−

inthespecificheat.However,theoriginofthedifferencecinTcwasstillunclear.

InFig.2,thedifferencebetweenT+−

width∆T=TcandTcaswellasthetransition90%−T10%becomessmallatpressuresbetween0.30GPaand0.65GPawhereTcdependslittleonpressure.Thisresultsuggeststhatsomeinhomogeneousproperty,suchasthestrainfieldaroundcrystallographicdefectsandadeviationfromthestoichiometriccomposition,causesavariationinlocalpressureandtheresultantTcdifferenceaccordingtotheP−Tccharacteristics.Evenifsuchapressurevariationexists,thedifferenceinlocalTcbecomessmallandthetransitionbecomessharp,whentheappliedpressureisnearPcandTcdependslittleonpressure.SinceTcde-terminedbyspecificheatmeasurementscorrespondstoTc−inthissinglecrystal,alargepartofthesamplehasTc−andasmallparthasTc+probablybecauseoflowerlocalpressures.Onepossibleexplanationforsuchalocalreductioninpressureisanegativepressurecausedbylatticedefectsorpartialreplacementofelements.

Theresultthatanincreaseinpressurereducesthetransitionwidth∆T=T90%−T10%atleastbelow0.3GPacontrastswithwhatisobservedinresistivitymea-surements;theonsettemperaturechangeslittle,andthetransitionbecomesbroader15)orshowsacomplexbehav-ior9)withincreasingpressure.Sinceonlyasmallamountofsuperconductingphasecancauseadropinresistivity,atraceoflowpressureregion(P∼0GPa)thatisonlydetectableinresistivitymeasurementsmaystillremainunderpressure.

Althoughacdiamagneticsusceptibilityreflectsbulksuperconductivityincomparisonwithzeroresistivityinthesensethattheshieldingcurrentonthewholesurfaceisdetected,dcsusceptibilitymeasurementsthatdetecttheMeissnereffectgivesmoreinformationaboutbulkproperties,asshowninFig.3.Themeasuringprocedureisasfollows.ThesamplewasfirstcooleddowntothelowesttemperatureinzeromagneticfieldandthenHdcwasapplied.Thediamagneticsusceptibilityduetotheshieldingcurrentwasmeasuredduringthewarmingpro-cessuptotemperatureswellaboveTc(ZFC:zero-fieldcooled).Inthesamefield,theMeissnereffectwasmea-suredduringthecoolingprocess(FC:fieldcooled).

ApartfromaslightdecreaseinTcduetoalargerap-pliedfield,theZFCsusceptibilityshowsabehaviorsimi-lartotheacsusceptibilityχ′inFig.1.TheFCsuscepti-bility,ontheotherhand,showsacomplicatedbehavior.Atambientpressure,theincreasingrateoftheMeiss-nereffectwithdecreasingtemperatureslightlychangesatabout0.5K,indicatingthesecondtransition.When

J.Phys.Soc.Jpn.

FullPaperAuthorName3

01.19Zero−Field Cooled1.03cdχ0.800.120 GPaπ4−0.50.650.30CePt3Si−1Single Crystal0.051.19Field Cooled1.03c00.30dχ0.80π40.120 GPa−0.050.65−0.100.20.40.60.8Temperature ( K )

Fig.3.TemperaturedependenceofχdcunderdifferentpressuresfortheCePt3Sicrystal,asobtainedbythefield-cooledandthezero-fieldcooledmethods.Theappliedfieldsis0.12Oe.

0

Zero−Field Cooled

c0.83

0.60

0.310 GPa

dχπ4−0.5

CePtPolycrystal3Si−1Field Cooled

0

cdχπ4−0.020.830.600.310 GPa−0.04

0

0.2

0.40.60.8

Temperature ( K )

Fig.4.TemperaturedependenceofχdcunderdifferentpressuresforaCePt3Sipolycrystal,asobtainedbythefield-cooledandthezero-fieldcooledmethods.Theappliedfieldis0.12Oe.

pressureisapplied,thesecondtransitionisdifficulttoobserveinFCsusceptibilitymeasurementsprobablybe-causethesuperconductingtransitionbecomessharp.Inaddition,aparamagneticsignalappearsbelow0.6Katpressuresabove0.3GPa,whichiscanceledoutbyadia-magnetic(Meissner)signalbelowTc.Themagnitudeandthetemperaturewheretheparamagneticsignalappearsdependslittleonpressure.

InordertotestwhethertheobservedparamagneticanomalyisascribedtobulkCePt3Siorsomeimpurityphase,wehavemeasureddcsusceptibilityofapolycrys-tallinesample,asshowninFig.4.Theparamagneticsig-nalthatappearsunderhighpressuresinFig.3hasnotbeenobservedforthepolycrystallinesample,indicatingthatitisasample-dependentproperty.Theparamag-neticsignalforthesinglecrystalisremarkableonlyintheFCsusceptibilityandresemblestheferromagneticanomalythatisobservedat3KforsampleswithsmallvariationsinthecompositionofCe1+xPt3+ySi1+z.14)

01.19Field Cooledrenss0 GPai1.030.12eMχπ−0.05c0.04FC1.19 GPa4d0.80χπ40.02−0.10.300ZFC0.6500.4T ( K )0.800.20.40.60.8Temperature ( K )

Fig.5.TemperaturedependenceofχMeissnerfortheCePt3Sicrystal,whereχMeissnervaluesatP=0and0.12GPaarethesameasFC(FieldCooled)χdcinFig.3.AtP≥0.30GPa,FCχdcatP=1.19GPa,whichisshownintheinset,issubtractedfromFCχdcbelow0.6Kinordertoremovetheparamagneticcontribution.

ConsideringalsothecomplexityoftheCe-Pt-Siternaryphasediagram,17)atraceofsomesecondphasemaycausetheparamagneticanomalyobservedonlyforthesinglecrystal.Otherdifferencesbetweenthetwosam-pleswillbediscussedlater.

Inthefield-coolingprocessinFig.3,theparamag-neticsignalthatappearsabove0.30GPashowsalmostthesametemperaturedependenceuntilthesupercon-ductingtransitionstarts.SinceatP=1.19GPaonlyaslightchangeduetosuperconductivityisobservedbelow0.12K,weregardFCχdcatP=1.19GPabelow0.6KastheunderlyingparamagneticcontributionandsubtractitfromFCχdcatP≥0.30GPatoextracttheMeissnereffect.TheresultisshowninFig.5.ItisobviousthattheparamagneticcontributionisoverestimatedforχdcatP=0.30GPaandtheMeissnerfraction−4πχMeissnershouldbealittlesmaller.TheresultthattheMeissnerfractionatthelowesttemperaturesisalmostthesamebetweenP=0.12and0.30GPasuggeststhattheemer-genceoftheparamagneticsignaldoesnotchangethemagnitudeoftheMeissnereffect.Incontrast,theabruptincreaseintheMeissnereffectbetweenP=0.30and0.65GPaisclearlyseen,indicatingthatitoriginatesfromthedisappearanceofantiferromagnetismatPc=0.6GPa.Evenifthewholevolumeissuperconducting,theMeissnerfractioninrealsamplesoftype-IIsupercon-ductorsisusuallymuchsmallerthan1becauseofvortexpinning.TheresultthattheMeissnerfractionatambientpressurehasnotchangedbeforeandaftertheapplica-tionofpressuresuggeststhattheabruptincreaseabovePccannotbeattributedtopressure-inducedirreversiblechangeofthelatticethatactsasapinningsite.Sincevortexpinningoccursbythelocalvariationofthefreeenergyofafluxlinethatdependsoncoherencelengthξ,penetrationdepthλandcriticalfieldHc,thedisappear-anceofantiferromagnetismmaycauseanabruptchangeinthesesuperconductingproperties.Onepossibleexpla-nationforsuchachangeisthatsomeofthenodesintheenergygapofCePt3Sivanishwhenantiferromagnetismdisappears.16)

InFig.4,thepolycrystallineCePt3Siunderpressureshowsalessdecreaseintheonsettemperatureandconse-quentlyabroadertransitionwidththanthesinglecrys-tal,suggestingthatthepolycrystallinesampleislessho-

4J.Phys.Soc.Jpn.FullPaperAuthorName

mogeneouswithrespecttolocalpressurethanthesinglecrystal.Apartialtransitionat0.3KmaybeexplainedbytheP−TcharacteristicsinFig.2;thepressurerangeinwhichTciscloseto0.3Kisrelativelywide,sothatmanypartstendtohavelocalpressurevaluesinthisrangeandthetransitionat0.3Koccurs.Thismayalsoexplainthedropoftheonsettemperaturefrom0.8Kto0.3Kob-servedinresistivitymeasurementsunderpressure.9)

andantiferromagnetism.Acknowledgments

ThisstudywaspartlysupportedbyaGrant-in-AidfromtheMinistryofEducation,Culture,Sports,Sci-¯enceandTechnology(MEXT),Japan.Oneofus(Y.O.)

wasfinanciallysupportedbytheGrant-in-AidforCOEResearch(10CE2004)oftheMEXT,Japan.

Sincethegrainboundariesinapolycrystalactasad-ditionalpinningsites,theMeissnerfractiontendstobesmallerthanthatofasinglecrystal,asseeninFigs.4and5.TheymayalsopreventtheincreaseintheMeiss-nerfractionabovePc;evenifmoremagneticfluxesareexpelledfromthecrystalgrainsbytheabsenceofanti-ferromagneticorder,thegrainboundariesprobablytrapatleastapartofthem.ThecomparisonofFCχdcwellabovePcindicatesthattheMeissnerfractionatP=0.80GPaislargerthanthatbelowPcatthelowesttemper-aturesforthesinglecrystal,whiletheMeissnerfractionatP=0.83GPaissmallerthanthatbelowPcforthepolycrystal,althoughbothsamplesshowabout90%offulldiamagnetisminZFCχdc.Moreover.theonsetofsuperconductivityinZFCχdcis0.3Kforthepolycrys-tal,indicatingacertainamountofthesuperconductingphasemaystillcoexistwithantiferromagnetism.Thein-homogeneousdistributionoflocalpressuretogetherwiththevortexpinningatthegrainboundariesinthepoly-crystalmakesitdifficulttoobservetheanomaliesnearPcthatappearedforthesinglecrystal:thedecreaseinthetransitionwidthandthechangeintheMeissnerfraction.4.Conclution

Inconclusion,acanddcmagneticsusceptibilitymea-surementsofCePt3SiunderpressurehaverevealedthatthedecreaseintheslopeofthepressuredependenceofTcandthedecreaseinthesuperconductingtransitionwidthoccurataboutthecriticalpressurePcwhereco-existingantiferromagnetismvanishes.Thelargetransi-tionwidthandthesample-dependentsecondtransitionatambientpressurearewellexplainedontheassump-tionthataspatialvariationoflocalpressureexistsinCePt3Si.AnotheranomalynearPc,thatis,theabruptincreaseintheMeissnerfractionabovePcprovidessomeinformationontherelationbetweensuperconductivity

1)E.Bauer,G.Hilscher,H.Michor,C.Paul,E.W.Scheidt,A.

Gribanov,Yu.Seropegin,H.No¨el,M.SigristandP.Rogl:Phys.Rev.Lett.92(2004)027003.

2)K.Izawa,Y.Kasahara,Y.R.SettaiandY.Onuki:¯Matsuda,K.Behnia,T.Yasuda,

Phys.Rev.Lett.94(2005)197002.

3)I.Bonalde,W.Br¨amer-EscamillaandE.Bauer:Phys.Rev.

Lett.94(2005)207002.4)K.Ueda,K.Hamamoto,T.Kohara,G.MotoyamaandY.Oda:

PhysicaB359-361(2005)374.

5)M.Yogi,Y.Kitaoka,S.Hashimoto,T.Yasuda,R.Settai,T.

D.Matsuda,Y.Haga,Y.Onuki,¯P.RoglandE.Bauer:Phys.

Rev.Lett.93(2004)027003.

6)N.Hayashi,K.Wakabayashi,P.A.FrigeriandM.Sigrist:Phys.

RevB73(2006)092508.

7)S.Fujimoto:Phys.RevB72(2005)024515.

8)N.Tateiwa,Y.Haga,T.D.Matsuda,Takeuchi,R.SettaiandY.Onuki:¯S.Ikeda,T.Yasuda,T.

J.Phys.Soc.Jpn.74(2005)

1903.

9)T.Yasuda,H.Shishido,T.Ueda,S.Hashimoto,R.Settai,T.

Takeuchi,T.D.Matsuda,Y.HagaandY.Onuki:¯J.Phys.Soc.

Jpn.73(2004)1657.

10)T.Takeuchi,S.Hashimoto,T.Yasuda,H.Shishido,T.Ueda,

M.Yamada,Y.Obiraki,M.Shiimoto,H.Kohara,T.Ya-mamoto,K.Sugiyama,K.Kindo,T.D.Matsuda,Y.Haga,

Y.Aoki,H.Sato,R.SettaiandY.Onuki:¯J.Phys.:Condens.

Matter16(2004)L333.

11)E-W.Scheidt,F.Mayr,G.Eickerling,P.RoglandE.Bauer:

J.Phys.:Condens.Matter17(2005)L121.

12)J.S.Kim,D.J.Mixson,D.J.Burnette,T.Jones,P.Kumar,

B.Andraka,G.R.Stewart,V.Craciun,W.Acree,H.Q.Yuan,D.VanderveldeandM.B.Salamon:Phys.RevB71(2005)212505.

13)K.Nakatsuji,A.Sumiyama,Y.Oda,T.Yasuda,R.Y.Onuki:¯Settaiand

J.Phys.Soc.Jpn.75(2006)084717.

14)G.Motoyama,S.Yamamoto,H.Takezoe,Y.Oda,K.Ueda

andT.Kohara:J.Phys.Soc.Jpn.75(2006)013706.

15)M.Nicklas,G.Sparn,R.Lackner,E.BauerandF.Steglich:

PhysicaB359-361(2005)386.

16)Y.YanaseandM.Sigrist:J.Phys.Soc.Jpn.76(2007)043712.17)A.V.Gribanov,Y.D.Seropegin,A.I.Tursina,O.I.Bodak,

P.RoglandH.No¨el:J.AlloysCompd.383(2004)286.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top