在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。要排出这样巧妙的数阵图,可不是一件容易的事情。我们还是先从几个简单的例子开始。
例1 把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
例2 把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
例3 把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等。
例4 将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。
例5 将 10~20填入左下图的○内,其中15已填好,使得每条边上的三个数字之和都相等。
例6 将1~8这八个数分别填入右图的○中,使两个大圆上的五个数之和都等于21。
例7 将1~6这六个自然数分别填入右图的六个○内,使得三角形每条边上的三个数之和都等于11。
例8 将1~6这六个自然数分别填入上图的六个○中,使得三角形每条边上的三个数之和都相等。
例9将2~9这八个数分别填入右图的○里,使每条边上的三个数之和都等于18。
例10把1~7分别填入左下图中的七个空块里,使每个圆圈里的四个数之和都等于13。
练习九
1. 将1~7这七个数分别填入左下图中的○里,使每条直线上的三个数之和都等于12。
如果每条直线上的三个数之和等于10,那么又该如何填?
2.将1~9这九个数分别填入右上图中的○里(其中9已填好),使每条直线上的三个数之和都相等。
如果中心数是5,那么又该如何填?
3.将1~9这九个数分别填入右图的小方格里,使横行和竖列上五个数之和相等。(至少找出两种本质上不同的填法)
4.将3~9这七个数分别填入左下图的○里,使每条直线上的三个数之和等于20。
5.将1~11这十一个数分别填入右上图的○里,使每条直线上的三个数之和相等,并且尽可能大。
6.将1~7这七个数分别填入下图的○里,使得每条直线上三个数之和与每个圆圈上的三个数之和都相等。
7.把1~8填入下页左上图的八个○里,使每个圆圈上的五个数之和都等于20。
8.把1~6这六个数填入右上图的○里,使每个圆圈上的四个数之和都相等。
9.将1~8填入左下图的八个○中,使得每条边上的三个数之和都等于15。
10.将1~8填入右上图的八个○中,使得每条直线上的四个数之和与每个圆周上的四个数之和都相等。
11.将1~7填入右图的七个○,使得每条直线上的各数之和都相等。
12.把1,3,5,7,9,11,13分别填入左图中的七个空块中,使得每个圆内的四个数之和都等于34。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务