www.fuelfirst.com
Astudyonthecarbondioxiderecoveryfrom2ton-CO2/day
pilotplantatLNGbasedpowerplant
SeungmoonLeea,SanjeevMakena,b,Jin-WonParka,*,Ho-JunSonga,JongJinParka,
Jae-GooShimc,Jun-HanKimc,Hee-MoonEumcbDepartmentofChemicalEngineering,YonseiUniversity,134Sinchon-dong,Seodaemoon-ku,Seoul120-749,RepublicofKoreaDepartmentofAppliedSciences,DeenbandhuChhotuRamUniversityofScienceandTechnology,Murthal-131039,Haryana,India
cEnvironmentandAssessmentGroup,KoreaElectricPowerResearchInstitute,Daejeon305-380,RepublicofKorea
Received19August2006;receivedinrevisedform16June2007;accepted25July2007
Availableonline17August2007
aAbstract
Apilotplantof2ton-CO2/dayforCO2recoveryfromfluegasemittedfrom250MWLNGbasedpowerplantwastestedwithaque-ousabsorbents.Theabsorbenttestedwereofdifferentnaturesuchasprimaryamine(MEA),blendofprimary,secondary,tertiaryandstericallyhinderedaminesuchasMDEA+HMDA,AEPD+DPTA,andTIPA+DPTA.WehavestudiedtheCO2recoveryasfunc-tionoftemperature,concentration,andflowrateofabsorbent,pressureandtemperatureofstripper,andflowrateandtemperatureoffluegas.ItwasobservedthatwhileCO2recoveryincreaseswithincreaseinflowrateandconcentrationofabsorbent,itdecreaseswithincreaseintemperatureandflowrateoffluegas.TheCO2recoveryratioincreaseswithincreaseinstrippertemperatureanddecreaseinstripperpressure.CO2loading(molCO2/molamine)alsodecreaseswithincreaseinstrippertemperature.
Fortheabsorbentflowrategreaterthan2.4Nm3/h,thecarbondioxiderecoveryratiofollowsthesequence:MEA>MDEA+HMDA>AEPD+DPTA>TIPA+DPTA.Ó2007ElsevierLtd.Allrightsreserved.
Keywords:Carbondioxiderecovery;Pilotplant;Chemicalsolubility;Monoethanolamine;Blendedabsorbent
1.Introduction
AftertheKyotoprotocol,CO2captureisreceivinggreatattentionofscientistsoverworldwide[1,2].TheincreasinganthropogenicCO2emissionandglobalwarming[3,4]havechallengedtheresearcherstofindnewandbetterwaystomeettheworld’sincreasingneedsforenergywhilemitigat-ingtheglobalwarmingeffectbycurtailingtheincreaseinconcentrationofthemajorgreenhousegasCO2intheatmospheremainlyduetoitsemissionfromcombustionoffossilfuels[5].AnothergoalofCO2separationandcap-tureistoisolateCO2fromitslargepointsourcessuchaspowerplants,oilrefineries,petrochemicalfacilities,fertil-
*Correspondingauthor.Tel.:+8223641807;fax:+8223126401.E-mailaddress:ecokids@yonsei.ac.kr(J.-W.Park).
izerandgas-processingplants,steelworksandpulpandpapermillsanditsfurtherutilizationinmanytechnologicalapplicationsincludingcoalconversion,organicsynthesis,destructiveoxidationofhazardouswastes,enhancedoilrecovery,andactivatedcarbonregeneration[6–13].TheCO2separationandcapturecanbeachievedthroughchemicalabsorption,physicalandchemicaladsorption,gas-separationmembranes,mineralization/biomineraliza-tion,andvegetation[14–19].Fossil-fueledpowerstationscurrentlyaccountforaboutonethirdofglobalCO2emissions.
ThemostcommonoptionforseparatingCO2fromfluegasesorothergasstreamsisscrubbingthegasstreamusinganaminesolution.Oncetheaminesolutionleavesthescrubber,itisheatedtoreleasehigh-purityCO2andtheCO2-freeaminethatisthenreused[20–25].Amongthealk-anolamines,monoethanolamine(MEA),diethanolamine
0016-2361/$-seefrontmatterÓ2007ElsevierLtd.Allrightsreserved.doi:10.1016/j.fuel.2007.07.027
S.Leeetal./Fuel87(2008)1734–17391735
(DEA),N-methyldiethanolamine(MDEA)anddi-isopro-panolamine(DIPA)and2-amino-2-methyl-1-propanol(AMP)havebeenwidelyusedaschemicalabsorbents,forremovalofacidgases(CO2,H2S)[23–27].Especially,aque-ousMEAsolutionhasbeenusedasanindustriallyimpor-tantabsorbentbecauseofrapidreactionrate,lowcostofthesolvent,thermalstabilityandlowsolubilityofhydrocar-bons,aswellashighalkalinity.Ithasalsosomedisadvan-tagessuchascorrosion,highregenerationenergy,andsolventdegradation.TertiaryaminessuchasMDEAandtriisopropanolamine(TIPA)donotformcarbamateduetotheabsenceofN–Hbond.Theyonlyactasbases,con-tributingtotheformationofbicarbonate.Theadvantageoftertiaryaminesisthattheequilibriumismoreeasilyreversedinthestripper.Theuseofblendedaminesolventsinacidgastreatmentprocessesisreceivingtheconsiderableattentionoftheresearchers[26–29].Blendingofprimary,secondaryandtertiaryaminesprovideboth,thehigherequilibriumcapacityofthetertiaryamineandthehigherreactionrateoftheprimaryorsecondaryamineinonesol-vent.PresenceofbulkygroupsaroundamineinstericallyhinderedaminessuchasAMP,2-amino-2-methyl-1,3-prop-andiol(AMPD),2-amino-2-ethyl-1,3-propandiol(AEPD)and2-piperidineethanol(PE)resultsintheformationofunstablecarbamatewhichleadstothehighloadingcapacity[29–31].ThusblendingofstericallyhinderedamineswithprimaryorsecondaryamineswouldbeexpectedtoenhancetheloadingcapacityandabsorptionrateofCO2.
TheaimofthispaperistostudytheCO2recoveryfromanewlyconstructedpilotplantof2ton/daycapacity.Thispilotplantwasconstructedneara250MWLNGbasedpowerplant.TheabsorbenttestedwereMEAandblendedabsorbentscontainingprimary,secondary,tertiaryandste-ricallyhinderedaminesuchasMDEA+hexamethylenedi-amine(HMDA),AEPD+dipropylenetriamine(DPTA),andTIPA+DPTA.2.Experimental
Thechemicalabsorbents(MEA,MDEA,AEPD,DPTA,TIPA,HMDA)usedinthisstudywereobtainedfromSigma–Aldrichwithamasspurityof>99%andusedwithoutfurtherpurification.Theiraqueoussolutionswerepreparedfromthedistilledwater.
ThepilotplantforcarbondioxiderecoveryisshownschematicallyinFig.1.ThispilotplantforcarbondioxiderecoverywassetuparoundLNGfiredSeoulThermalPowerPlant#5(capacity250MW).Also,removalcapacityofpilotplantwas2ton-CO2/day.Thepilotplantconsistsofachem-icalabsorptionbasedabsorber(diameter=0.46m,height=18.8m)andastripperorregenerator(diame-ter=0.35m,height=16.7m)toregeneratetheabsorbentalongwithotherequipmentssuchasreboiler,reclaimer,pump,condenser,andlean/richamineexchanger.Eachtower(absorberandstripper)waspackedwithring-shaped(2cmdiameter)stainlesssteelpackingmaterial(IMTP-#25packing,NortonCo.USA)forincreasingretention
Fig.1.Processflowdiagramofdemopilotplantforcarbondioxideseparation.timeandsurfaceareaforeffectivecontactbetweencarbondioxideandabsorbentinsidetower.Thefluegaswascooledtoabout40°Cinordertodecreaseitsmoisturecontentpriortointroductionintotheabsorber.Theexhaustgaswascon-tactedcountercurrentlywithleansolventinanabsorbertower.Intheabsorber,CO2waschemicallybondedtotheamineatlowtemperaturesbetween40and50°Candwasthusremovedfromthefluegasstream.Thisabsorptionwasbasedonthereactionbetweenweekbaseandweakacidthatresultedintheformationofwatersolublesalt.Thisreactionwasreversibleandtemperaturedependent.Theremaininggasexitsfromthetopofabsorber.
TheCO2-richaminewasthenextractedfromthebottomoftheabsorberandtransferredtotheregeneratorthroughaheatexchangerinwhichthesolutiontemperaturewasraisedtobetween100°Cand110°C.Intheregenerator,theCO2-richsolutioncontactedwithsteamsuppliedfromthereboilerandCO2wasstrippedoffthesolution.ThemixtureofsteamandCO2exitsfromthetopoftheregen-eratorandiscooledinthecondensertoseparatetheCO2.Thewatervaporwassentbacktothestripperafterreflux-ing.ThepurityoftherecoveredCO2wasupto99%.TheregeneratedCO2-leanaminesolutionwasthencooledandrecycledbacktotheabsorberforfurtherCO2removalfromfluegas.
Thecompositionsoffluegasesfromtheplant#5areshowninTable1.Thelean/richaminesamplesinliquidphasewereextractedfromtheabsorbertowerandstripperandCO2wasmeasuredbytitrationmethod.Eachsample
Table1
Exhaustgascomposition
125MW187.5MW250MW(50%load)
(75%load)(100%load)CO2(vol%)8.19.710.2O2(vol%)6.43.62.8N2(vol%)
85.5
86.7
87.0
1736S.Leeetal./Fuel87(2008)1734–1739
wasanalyzedthreetimesandtheexperimentalerrorintheloadingofCO2wasestimatedtobeabout±3%.Thepro-cedurefordeterminingabsorbentcontentincarbondiox-iderecoveryfacilitysampleassumesthatallthealkalinityintheplantsolutionsisduetothepresenceoffreeabsorbents.
3.Resultsanddiscussion
TheCO2recoveryinthedemopilotplantwerestudiedinaqueoussolutionsofpureandblendedabsorbentssuchasMEA(1.637,2.456and4.039mol/m3),MDEA(2.182mol/m3)+HMDA(1.635mol/m3),TIPA
(0.784mol/m3)+DPTA(0.381mol/m3),andAEPD(1.423mol/m3)+DPTA(0.381mol/m3)atthevariousabsorbenttemperature,fluegastemperature,absorbentflowrate,strippertemperatureandstripperpressure.3.1.Theeffectofabsorbent(MEA)concentrationandtemperature
TheeffectofabsorbentflowrateonCO2recoveryratiofordifferentconcentrationsandtemperatureofMEAisshownFig.2.TheconcentrationofaqueousMEAsolu-tionswere1.637,2.456,and4.039mol/m3andflowrateofabsorbentwasvariedfrom2to3.5Nm3/h.Theinputtemperatureandflowrateoffluegaswere40°Cand574Nm3/h,respectively.Thetemperatureofabsorbentinabsorberandstripperwere40and113°C,respectively.Itwasfoundthatcarbondioxiderecoveryratioincreaseswithincreaseinabsorbentflowrateaswellaswithincreaseinconcentrationofmonoethanolamine.Thecarbondiox-iderecoveryratioatabsorbentflowrate3.0Nm3/hin4.039mol/m3MEAisabout22%higherthanthatin
100)%( 90oitaR yr80evoceR 702OC60502.02.22.42.62.83.03.23.4Absorbent Flow Rate (Nm3/h)Fig.2.TheeffectsofabsorbentflowrateonCO2recoveryratioinMEAatdifferentconcentrationanddifferentabsorbenttemperature:(d)MEA(1.637mol/m3),(m)MEA(2.456mol/m3),(j)MEA(4.039mol/m3),absorbenttemperature=40°C,fluegastemperature=40°C,fluegasflowrate=574Nm3/h;(s)MEA(45°C),(4)MEA(50°C),absorbentconcentration=2.456mol/m3,fluegastemperature=40°C;(h)MEA,(55°C),fluegasflowrate=574Nm3/h.1.637and2.456mol/m3MEA.Butthisincreasereducestoabout3%atthehighestflowrateofabsorbentof3.5Nm3/h.
Theeffectofabsorbenttemperatureandfluegastemper-atureonCO2recoveryratioforsameconcentrationofMEA(2.456mol/m3)isalsoshowninFig.2.TheCO2recoveryratiodecreaseswithincreaseinabsorbenttemper-aturefrom40to55°C.Theeffectoftemperaturedecreaseswithincreaseinabsorbentflowrate.Thecarbondioxiderecoveryratiodecreaseswithincreaseinfluegastempera-tureandatthemaximumabsorbentflowrateof3.5Nm3/h,itisabout27.4%higherat40°Cthanthatat55°C.
3.2.Theeffectofflowrateofabsorbentandfluegasindifferentabsorbent
VariationinCO2recoveryratiowithabsorbentflowrateforMEAandblendedabsorbentssuchasMDEA+HMDA,TIPA+DPTA,andAEPD+DPTAat40°CareshowninFig.3.Thecarbondioxideremovalratioincreaseswithincreaseinabsorbentflowrateinalltheabsorbentsstudied.Fortheabsorbentflowratemorethan2.4Nm3/h,thecarbondioxiderecoveryratiovaryinthefollowingorder
MEA>MDEA+HMDA>AEPD+DPTA>TIPA+DPTA.
ThecarbondioxiderecoveryratioforMEA,MDEA+HMDA,AEPD+DPTA,andTIPA+DPTAatthemaximumabsorbentflowrate(3.5Nm3/h)wereabout98%,93.5%,92.5%and84%,respectively.TherichamineCO2loadingwasdeterminedbytitrationmethodfortheseabsorbentsandshowninFig.4.ItalsoincreaseswithabsorbentflowrateandfoundtobemaximumforMEAandminimumforTIPA+DPTA.
10095)%( oitaR90 yrevoce85R 2OC80752.02.22.42.62.83.03.23.4Absorbent Flow Rate (Nm3/h)Fig.3.TheeffectsofabsorbentflowrateonCO2recoveryratio:absorbentandfluegastemperature=40°C,fluegasflowrate=574Nm3/h,stripperpressure=0.45kg/cm2,strippertemperature=113°C;(d)MEA(2.456mol/m3);(s)MDEA+HMDA;(m)TIPA+DPTA;(4)AEPD+DPTA.S.Leeetal./Fuel87(2008)1734–1739
1737
0.7 )lom/lo0.6m( gnid0.5aoL 2OC 0.4enimA h0.3ciR0.22.02.22.42.62.83.03.23.4Absorbent flow rate (Nm3/h)Fig.4.Theeffectsofstrippertemperaturewithrichaminecarbondioxideloading:MEA(2.456mol/m3);(s)MDEA+HMDA;(m)TIPA+DPTA;(4)AEPD+DPTA,absorbenttemperature=40°C,fluegastemperature=40°C,fluegasflowrate=574Nm3/h,absorbentflowrate=2.5Nm3/h.Theinfluenceofflowrateoffluegasintheseabsorbents(MEA,MDEA+HMDA,AEPD+DPTA,andTIPA+DPTA)at40°ConCO2recoveryratioisshownFig.5.Theflowrateofabsorbentsandstripperpressurewerekeptconstantat3.0Nm3/hand0.45kg/cm2,respec-tively,whileflowrateofgaseswasvariedfrom574to697Nm3/h.AsshowninFig.5,thecarbondioxideremovalratiodecreaseswithincreaseinflowrateoffluegas.Thecarbondioxiderecoveryratiosfortheseabsor-bentsfollowtheorder
MEA>MDEA+HMDA>AEPD+DPTA>TIPA+DPTA.
3.3.TheeffectofstripperpressureandstrippertemperatureTheeffectofstripperpressureonCO2recoveryratiofordifferentabsorbent(MEA,MDEA+HMDA,AEPD+
10095)%( oit90aR yrev85oceR 280OC7570580600620640660680700Flow Rate of Gases (Nm3/h)Fig.5.TheeffectsfluegasinflowamountonCO2recoveryratio:(d)MEA(2.456mol/m3);(s)MDEA+HMDA;(m)TIPA+DPTA;(4)AEPD+DPTA,absorbentflowrate=3.0Nm3/h,absorbenttempera-ture=40°C,strippertemperature=113°C,stripperpressure=0.45kg/cm2.100)95%( oitaR 90yrevoceR85 2OC80750.460.480.500.520.54Stripper Pressure (Kg/cm2)Fig.6.TheeffectsofstripperpressureonCO2recoveryratio:(d)MEA(2.456mol/m3);(s)MDEA+HMDA;(m)TIPA+DPTA;(4)AEPD+DPTA,absorbentflowrate=3.0Nm3/h,absorbenttempera-ture=40°C,strippertemperature=113°C.DPTA,andTIPA+DPTA)isshownFig.6.Theflowrateoffluegas,inputtemperatureofabsorbents,andinsidetemperatureofstripperwere3.0Nm3/h,40°C,and113°C,respectively.Fig.6showsthatcarbondioxiderecoveryratiodecreaseswithincreaseinstripperpressure.ThecarbondioxideiscompletelyrecoveredinMEA(2.456mol/m3)ataboutstripperpressure0.45kg/cm2.Incaseofblendedabsorbent,carbondioxideremovalratiovaryintheorder
MDEA+HMDA>TIPA+DPTA>AEPD+DPTA.Atstripperpressure0.45kg/cm2,CO2recoveryratioforMEA,MDEA+HMDA,TIPA+DPTA,andAEPD+DPTAwereabout100%,93%,90%and83%,respectively.
Fig.7showstheeffectsofstrippertemperatureoncar-bondioxiderecoveryratioinaqueousMEAandblended
10095)%( oi90taR yrev85oceR 280OC7570110.0110.5111.0111.5112.0112.5113.0Stripper Temperature (oC) Fig.7.TheeffectsofstrippertemperatureonCO2recoveryratio:(d)MEA(2.456mol/m3);(s)MDEA+HMDA;(m)TIPA+DPTA;(4)AEPD+DPTA,fluegasflowrate=574Nm3/h,absorbentflowrate=3.0Nm3/h,absorbenttemperature=40°C,stripperpres-sure=0.45kg/cm2.1738S.Leeetal./Fuel87(2008)1734–1739
)0.35lom/lo0.30m( gn0.25idaoL0.20 2OC 0.15enimA0.10 naeL0.05 0.00110.0110.5111.0111.5112.0112.5113.0Stripper Temperature (oC) Fig.8.Theeffectsofstrippertemperatureonleanaminecarbondioxideloading;(d)MEA(2.456mol/m3);(s)MDEA+HMDA;(m)TIPA+DPTA;(4)AEPD+DPTA,fluegasflowrate=574Nm3/h,absorbentflowrate=3.0Nm3/h,absorbenttemperature=40°C,strip-perpressure=0.45kg/cm2.absorbentssolution.Theabsorbentflowrate,stripperpres-sure,andfluegasflowratewerekeptconstantat3.0Nm3/h,0.45kg/cm2,and574Nm3/h,respectively.Thecarbondioxiderecoveryratioincreaseswithincreaseinreboilertemperaturefrom109°Cto113°C.ThecarbondioxiderecoveryratioinMEAatreboilertemperature113°Cwasfoundtobehigherthanthoseforotherblendedabsor-bentssuchasMDEA+HMDA,TIPA+DPTA,andAEPD+DPTA.
TheleanamineCO2loadingratio(molCO2/molabsor-bent)inaqueousMEA(2.456mol/m3)andinotherblendsatthereboilertemperaturefrom109°Cto113°Cwasmea-suredandshowninFig.8.Itwasobservedthatloadingratiodecreaseswithanincreaseinreboilertemperature.4.Conclusion
TheCO2recoveryasafunctionoftemperature,concen-tration,andflowrateofabsorbent,pressureandtempera-tureofstripper,andflowrateandtemperatureoffluegaswerestudiedina2ton-CO2/daypilotplantinMEA,MDEA+HMDA,AEPD+DPTA,andTIPA+DPTA.ItwasobservedthatwhileCO2recoveryincreaseswithanincreaseinflowrateandconcentrationoftheabsorbent,itdecreaseswithanincreaseintemperatureandflowrateofthefluegas.TheCO2recoveryratioincreaseswithincreaseinstrippertemperatureanddecreaseinstripperpressure.Fortheabsorbentflowrategreaterthan2.4,thecarbondioxiderecoveryratiofollowsthesequence:MEA>MDEA+HMDA>AEPD+DPTA>TIPA+DPTA.
Acknowledgement
FinancialassistancefromKoreaElectricPowerResearchInstitute,Daejeonisgratefullyacknowledged.
SanjeevMakenthanksDr.R.P.Bajpai,ViceChancelor,DeenbandhuChhotuRamUniversityofScience&Tech-nology,MurthalandHaryanaGovernmentfortheawardofstudyleave.References
[1]UNFCCC,KyotoProtocoltotheUnitedNationsFrameworkConventiononClimateChange(UNFCCC).FCCC/CP/1997/L.7/Add.1,Bonn,1997.
[2]BolinB.TheKyotonegotiationsonclimatechange:ascienceperspective.Science1998;279:330–1.
[3]HoughtonJT.GlobalWarming.thirded.Cambridge:CambridgeUniversityPress;2004.
[4]KerrRA.Nodoubtaboutit,theworldiswarming.Science2006;312:825.
[5]DickensGR.Globalchange:hydrocarbon-drivenwarming.Nature2004;429:513–5.
[6]BharathR,InomataH,AdschiriT,AraiK.Phaseequilibriumstudyfortheseparationandfractionationoffattyoilcomponentsusingsupercriticalcarbondioxide.FluidPhaseEquilib1992;81:307–20.[7]SmithJrRL,InomataH,KannoM,AraiK.Energyanalysisofsupercriticalcarbondioxideextractionprocesses.JSupercritFluids1999;15:145–56.
[8]CalvoL,deLoosTW.Highpressurevapour–liquidequilibriaofthebinaryandsomeoftheternaryandmulticomponentmixturesofthecarbondioxide+aceticanhydride+a-methylbenzylalcohol+aceticacid+a-methylbenzylacetatesystem:experimentalandmodellingresults.FluidPhaseEquilib2006;244:179–87.
[9]TakehiraK,OhishiY,ShishidoT,KawabataT,TakakiK,ZhangQ,etal.BehaviorofactivesitesonCr-MCM-41catalystsduringthedehydrogenationofpropanewithCO2.JCatal2004;224:404–16.[10]MignardD,SahibzadaM,DuthieJM,WhittingtonHW.Methanol
synthesisfromfluegasCO2andrenewableelectricity:afeasibilitystudy.IntJHydrogenEnergy2003;28:455–64.
[11]StolaroffJK,LowryGV,KeithDW.UsingCaO-andMgO-rich
industrialwastestreamsforcarbonsequestration.EnergyConversManage2005;46:687–99.
[12]BertosMF,SimonsSJR,HillsCD,CareyPJ.Areviewofaccelerated
carbonationtechnologyinthetreatmentofcement-basedmaterialsandsequestrationofCO2.JHazardMater2004;112:193–205.
[13]ChrisH.Carbondioxideremovalfromcoal-firedpowerplants.The
Netherlands:KluwerAcademicPublishers;1994.
[14]MartinMH.Chemicalfixationofcarbondioxide.CRCPress;1993.[15]KosugiT,HayashiA,MatsumotoT,AkimotoK,TokimatsuK,
YoshidaH,etal.Timetorealization:evaluationofCO2capturetechnologyR&DsbyGERT(GraphicalEvaluationandReviewTechnique)analyses.Energy2004;29:1297–308.
[16]TeramotoM,KitadaS,OhnishiN,MatsuyamaH,MatsumiyaN.
SeparationandconcentrationofCO2bycapillary-typefacilitatedtransportmembranemodulewithpermeationofcarriersolution.JMembrSci2004;234:83–94.
[17]MimuraT,SimayoshiH,SudaT,IijimaM,MituokaS.Development
ofenergysavingtechnologyforfluegascarbondioxiderecoveryinpowerplantbychemicalabsorptionmethodandsteamsystem.EnergyConversManage1997;38:S57–62.
[18]ArashiN,OdaN,YamadaM,OtaH,UmedaS,TajikaM.
Evaluationoftestresultsof1000m3N/hpilotplantforCO2absorptionusinganamine-basedsolution.EnergyConversManage1997;38:S63–8.
[19]SongHJ,LeeS,MakenS,ParkJJ,ParkJW.Solubilitiesofcarbon
dioxideinaqueoussolutionsofsodiumglycinate.FluidPhaseEquilib2006;246:1–5.
[20]CullinaneJT,RochelleGT.Thermodynamicsofaqueouspotassium
arbonate,piperazine,andcarbondioxide.FluidPhaseEquilib2005;227:197–213.
S.Leeetal./Fuel87(2008)1734–1739
1739
[21]WangR,LiDF,LiangDT.ModelingofCO2capturebythreetypical
aminesolutionsinhollowfibermembranecontactors.ChemEngProcess2004;43:849–56.
[22]BenamorA,ArouaMK.ModelingofCO2solubilityandcarbamate
concentrationinDEA,MDEAandtheirmixturesusingtheDeshmukh–Mathermodel.FluidPhaseEquilib2005;231:150–62.
[23]BishnoiS,RochelleGT.Physicalandchemicalsolubilityofcarbon
dioxideinaqueousmethydiethanolamine.FluidPhaseEquilib2004;168:241–58.
[24]RinkerEB,AshourSS,SandallOC.Kineticsandmodelingofcarbon
dioxideabsorptionintoaqueoussolutionsofN-methydiethanol-amine.ChemEngSci1995;50:755–68.
[25]Ma’munS,NilsenR,SvendsenHF,JuliussenO.Solubilityofcarbon
in30mass%monoethanolamineand50mass%methydiethanolaminesolutions.JChemEngData2005;50:630–4.
[26]MandalBP,BandyopadhyaySS.Absorptionofcarbondioxideinto
aqueousblendsof2-amino-2-methyl-1-propanolandmonoethanol-amine.ChemEngSci2006;61:5440–7.
[27]MandalBP,BandyopadhyaySS.Simultaneousabsorptionofcarbon
dioxideandhydrogensulfideintoaqueousblendsof2-amino-2-methyl-1-propanolanddiethanolamine.ChemEngSci2005;60:6438–51.
[28]BoschH,VersteegGF,VanSwaaijWPM.Kineticsofthereactionof
CO2withthestericallyhinderedamine2-amino-2-methylpropanolat298K.ChemEngSci1990;45:1167–73.
[29]ChakrabortyAK,AstaritaG,BischoffKB.CO2absorptionin
aqueoussolutionsofhinderedamines.ChemEngSci1986;41:997–1003.
[30]Benitez-GarciaJ,Ruiz-IbanezG,Al-GhawasHA,SandallOC.On
theeffectofbasicityonthekineticsofCO2absorptionintertiaryamines.ChemEngSci1991;46:2927–31.
[31]DaneshvarN,MoattarMTZ,AbdiMA,AberS.Carbondioxide
equilibriumabsorptioninthemulti-componentsystemsofCO2+TIPA+MEA+H2O,CO2+TIPA+Pz+H2OandCO2+TIPA+H2OatlowCO2partialpressures:experimentalsolubilitydata,corrosionstudyandmodelingwithartificialneuralnetwork.SepPurifTechnol2004;37:135–47.
因篇幅问题不能全部显示,请点此查看更多更全内容