您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页sandvik-saf-2507

sandvik-saf-2507

来源:爱go旅游网
Sandvik SAF 2507 (Tube and pipe, seamless)Datasheet updated 2011-12-08 15:20:45 (supersedes all previous editions)Sandvik SAF 2507 is a super-duplex (austenitic-ferritic) stainless steel for service in highly corrosive conditions. The grade ischaracterized by:Excellent resistance to stress corrosion cracking (SCC) in chloride-bearing environmentsExcellent resistance to pitting and crevice corrosionHigh resistance to general corrosionVery high mechanical strengthPhysical properties that offer design advantagesHigh resistance to erosion corrosion and corrosion fatigueGood weldabilityStandardsUNS S32750EN steel no. 1.4410EN steel name X 2 CrNiMoN 25-7-4SS 2328Product standardsSeamless tube and pipe: EN 10216-5Seamless and welded tube and pipe: ASTM A7; A790Flanges: ASTM A182Fittings: ASTM A182; (ASTM A815 applied for)Plate, sheet and strip: ASTM A240, EN 10088-2Bar steel: ASTM A479, EN 10088-3Forged billets: EN 10088-3ApprovalsApproved by the American Society of Mechanical Engineers (ASME) for use in accordance with ASME Boiler and Pressure VesselCode, Section VIII, div. 1. There is no approval for UNS S32750 in the form of plate. However, according to the ASME paragraphUG-15 it is allowed to use the design values for seamless tube according to ASME Section VIII, div. 1 also for plate.ASME B31.3 Chemical Plant and Petroleum Refinery piping.VdTÜV­Werkstoffblatt 508ISO 15156-3/NACE MR 0175 (Sulphide stress cracking resistant material for oil field equipment), (applies to liquid quenchedtubes).NGS 1609 Nordic rules for application of the non-standard steel SAF 2507 manufactured by AB Sandvik Steel.Chemical composition (nominal) %Cmax0.030Simax0.8Mnmax1.2Pmax0.035Smax0.0152574N=0.3CrNiMoOthersForms of supplySeamless tube and pipe– finishes and dimensionsSeamless tube and pipe in Sandvik SAF 2507 is supplied in dimensions up to 260 mm outside diameter. The delivery condition issolution annealed and either white pickled, or bright annealed.Other forms of supply:Welded tube and pipeFittings and flangesWire electrodes and filler wire/rodsCovered electrodesPlate, sheet and wide stripBar steelForged productsCast productsMechanical propertiesThe following figures apply to material in the solution annealed condition. Tube and pipe with wall thickness above 20 mm (0.787in.) may have slightly lower values. For seamless tubes with a wall thickness <4 mm we guarantee proof strength (Rp0.2) ) valuesthat are 50 MPa higher than those listed below at 20 °C (68 °F) as well as those listed at higher temperatures. More detailedinformation can be supplied on request.At 20°C (68°F)Tube and pipe with wall thickness max. 20 mm (0.79 in.).Metric unitsProof strengthRp0.2MPamin.550Imperial unitsProof strengthRp0.2ksimin.801 MPa = 1 N/mm2a) Rp0.2 and Rp1.0 correspond to 0.2% offset and 1.0% offset yield strength, respectively.b) Based on L0 = 5.65 √S0 where L0 is the original gauge length and S0 the original cross-section area.aaTensile strengthRp1.0MPamin.0800-1000aElong.AbHardnessA2\"%min.15max.32HRCRmMPa%min.25Tensile strengthRp1.0ksimin.93116-145aElong.AbHardnessA2\"%min.15max.32HRCRmksi%min.25Figure 1. Comparison of minimum proof strength, 0.2% offset, of SAF 2507 and high alloy austenitic grades, for material in thesolution annealed condition.At high temperaturesIf Sandvik SAF 2507 is exposed to temperatures exceeding 250°C (480°F), for prolonged periods, the microstructure changes, whichresults in a reduction in impact strength. This does not necessarily affect the behavior of the material at the operating temperature.For example, heat exchanger tubes can be used at higher temperatures without any problems. Please contact Sandvik for moreinformation. For pressure vessel applications, 250°C (480°F) is required as a maximum, according to VdTÜV­Wb 508 and NGS1609.Tube and pipe with wall thickness max. 20 mm (0.79 in.)Metric unitsTemperatureProof strengthRp0.2°CMPamin50100150200250300Imperial unitsTemperatureProof strengthRp0.2°Fksimin12020030040050060077.070.5.561.058.557.05304804420405395Impact strengthSandvik SAF 2507 possesses good impact strength. The ductile brittle transition temperature is below ­50°C (­58°F). The impactstrength of welded Sandvik SAF 2507 is also good, although the values are lower than the base metal. The impact strength, if gasshielded arc weldments, is a minimum of 27 J (20 ft lb) at a temperature of ­50°C (­58°F).Figure 2. Typical impact energy curves for SAF 2507 using standard Charpy V specimens (average of 3 at each temp.). Parent metalsamples taken in the longitudinal direction from 260x12 mm hot extruded and solution annealed (1075°C, 1965°F) tube. All weldmetal samples from Sandvik 25.10.4.L TIG wire.According to ASME B31.3 the following design values are recommended for UNS S32750 (SAF 2507):Temperature°F100200300400500600°C33149204260316Stressksi38.735.033.131.931.431.2MPa265240230220215215Physical propertiesDensity: 7.8 g/cm3, 0.28 lb/in3Specific heat capacityMetric units Imperial unitsTemperature, °C20100200300400J/(kg °C)490505520550585Temperature, °F68200400600800Btu/(lb °F)0.120.120.120.130.14Thermal conductivityMetric units, W/(m °C)Temperature, °CSAF 2507AISI 316L2014141001515200171730018184002020Imperial units, Btu/(ft h °F)Temperature, °FSAF 2507AISI 316L688820099400101060011108001212Thermal expansionSandvik SAF 2507 has a coefficient of thermal expansion close to that of carbon steel. This gives Sandvik SAF 2507 definite designadvantages over austenitic stainless steels in equipment comprising of both carbon steel and stainless steel. The values given beloware average values in the temperature ranges.-6Metricunits, x10/°CTemperature, °CSAF 2507Carbon SteelAISI 316L30-10013.512.516.530-20014.013.017.030-30014.013.517.530-40014.514.018Imperial units, x10/°F-6Temperature, °FSAF 2507Carbon SteelAISI 316L86-2007.56..086-4007.57.09.586-6008.07.510.086-8008.07.810.0Figure 3. Thermal expansion, per°C (30­100°C, 86­210°F).ResistivityTemperature, °C20100200300400μΩm0.830.0.961.031.08Temperature, °F68200400600800μΩin.32.734.937.940.743.2Modulus of elasticity, (x10)Metric units Imperial unitsTemperature, °C20100200300MPa200194186180Temperature, °F68200400600ksi29.028.227.026.23Corrosion resistanceGeneral corrosionSandvik SAF 2507 is highly resistant to corrosion by organic acids, e.g. experience less than 0.05 mm/year in 10% formic and 50%acetic acid where ASTM 316L has corrosion rate higher than 0.2 mm/year. Pure formic acid see Figure 4. Also in contaminated acidSandvik SAF 2507 remains resistant.Figure 5 and Figure 6 show results from tests of Sandvik SAF 2507 and various stainless steels and nickel alloys in acetic acidcontaminated with chlorides which in practise are frequently present in processes.Figure 4. Isocorrosion diagram in formic acid. The curves represent a corrosion rate of 0.1 mm/year (4 mpy) in stagnant testsolution.

Figure 5. Corrosion rate of various alloys in 80% acetic acid with 2000 ppm chloride ions at 90°C.

Figure 6. Corrosion rate of various alloys in concentrated acetic acid with 200 ppm chloride ions.

Practical experience with Sandvik SAF 2507 in organic acids, e.g. in teraphthalic acid plants, has shown that this alloy is highlyresistant to this type of environment. The alloy is therefore a competitive alternative to high alloyed austenitics and nickel alloys inapplications where standard austenitic stainless steels corrode at a high rate.

Resistance to inorganic acids is comparable to, or even better than that of high alloy austenitic stainless steels in certain

concentration ranges. Figures 7 to 9 show isocorrosion diagrams for sulphuric acid, sulphuric acid contaminated with 2000 ppmchloride ions, and hydrochloric acid, respectively.

Figure 7. Isocorrosion diagram in naturally aerated sulphuric acid. The curves represent a corrosion rate of 0.1 mm/year (4 mpy) ina stagnant test solution.

Figure 8. Isocorrosion diagram, 0.1 mm/year (4 mpy) in a naturally aerated sulphuric acid containing 2000 ppm chloride ions.

Figure 9. Isocorrosion diagram in a hydrochloric acid. The curves represent acorrosion rate of 0.1 mm/year (4 mpy) in stagnant testsolution.

Pitting and crevice corrosion

The pitting and crevice corrosion resistance of stainless steel is primarily determined by the content of chromium, molybdenum andnitrogen. The manufacturing and fabrication practice, e.g. welding, are also of vital importance for the actual performance inservice.

A parameter for comparing the resistance to pitting in chloride environments is the PRE number (Pitting Resistance Equivalent).The PRE is defined as, in weight-%PRE = %Cr + 3.3 x %Mo + 16 x %NFor duplex stainless steels the pitting corrosion resistance is dependent on the PRE value in both the ferrite phase and the austenitephase, so that the phase with the lowest PRE value will be limiting for the actual pitting corrosion resistance. In Sandvik SAF 2507the PRE value is equal in both phases, which has been achieved by a careful balance of the elements.The minimum PRE value for Sandvik SAF 2507 seamless tubes is 42.5. This is significantly higher than e.g. the PRE values for otherduplex stainless steels of the 25Cr type which are not super-duplex. As an example UNS S31260 25Cr3Mo0.2N has a minimumPRE-value of 33.One of the most severe pitting and crevice corrosion tests applied to stainless steel is ASTM G48, i.e. exposure to 6% FeCI3 with andwithout crevices (method A and B respectively). In a modified version of the ASTM G48 A test, the sample is exposed for periods of24 hours. When pits are detected together with a substantial weight loss (>5 mg), the test is interrupted. Otherwise the temperatureis increased by 5 °C (9 °F) and the test is continued with the same sample. Figure 11 shows critical pitting and crevice temperatures(CPT and CCT) from the test.Potentiostatic tests in solutions with different chloride contents are presented in Figure 11. Figure 12 shows the effect of increasedacidity. In both cases the applied potential is 600 mV vs SCE, a very high value compared with that normally associated withnatural unchlorinated seawater, thus resulting in lower critical temperatures compared with most practical service conditions.Figure 10. Critical pitting and crevice temperatures in 6% FeCl3, 24h (similar to ASTM G48).The scatter band for Sandvik SAF 2507 and 6Mo+N illustrates the fact that both alloys have similar resistance to pitting, and CPT-values are within the range shown in the figure.Tests were performed in natural seawater to determine the critical crevice corrosion temperature of samples with an appliedopotential of 150 mV vs SCE. The temperature was raised by 4°C (7F) steps every 24 hours until crevice corrosion occurred. Theresults are shown in the table below.AlloySandvik SAF 25076Mo+NCCT (°C)61In these tests the propagation rates of initiated crevice corrosion attacks, at 15­50°C (59­122°F) and an applied potential of 150 mVvs SCE were also determined. These were found to be around ten times lower for Sandvik SAF 2507 than for the 6Mo+N alloy.Figure 11. Critical pitting temperatures (CPT) at varying concentrations of sodium chloride, from 3 to 25% (potentiostaticdetermination at +600 mV SCE with surface ground with 600 grit paper).Figure 12. Critical pitting temperatures (CPT) in 3% NaCl with varying pH (potentiostatic determination at +600 mV SCE withsurface ground with 600 grit paper).The corrosion resistance of Sandvik SAF 2507 in oxidising chloride solutions is illustrated by critical pitting temperatures (CPT)determined in a 'Green death' -solution (1% FeCI3 + 1% CuCl2 +11% H2SO4 + 1.2% HCI) and in a 'Yellow death' -solution (0.1 %Fe2(SO4)3 + 4% NaCl + 0.01 M HCI). The table below shows CPT-values for different alloys in these solutions. It is clear that thevalues for Sandvik SAF 2507 are on the same level as those for the nickel alloy UNS N06625. The tests demonstrate a goodcorrelation with the ranking of alloys for use as reheater tubes in flue gas desulphurisation systems.Critical pitting temperature (CPT) determined in different test solutions.AlloyCritical pitting temperature (CPT), °C'Green death'Sandvik SAF 25076Mo+NUNS N06625ASTM 31672.57067.5<25>90>90>9020'Yellow death'Stress corrosion crackingSandvik SAF 2507 has excellent resistance to chloride induced stress corrosion cracking (SCC).

The SCC resistance of Sandvik SAF 2507 in chloride solutions at high temperatures is illustrated in Figure 13. There were no signs of

--SCC up to 1000 ppm Cl/300°C and 10000 ppm Cl/250°C.

Sandvik SAF 2507 U­bend specimens exposed for 1000 hours in hot brine (108°C, 226°F, 25% NaCl) showed no cracking.

The threshold stress for Sandvik SAF 2507 in 40% CaCl2 at 100 °C (210 °F) and pH = 6.5 is above 90% of the tensile strength forboth parent metal and welded joints (TIG-welded with Sandvik 25.10.4.L or MMA-welded with Sandvik 25.10.4.LR).

Figure 14 shows the result of testing in 40% CaCl2 at 100 °C (210 °F) acidified to pH = 1.5. Acidifying of the standard test solution topH = 1.5 lowers the threshold stress for Sandvik SAF 2205, but not for Sandvik SAF 2507. This applies to both parent metal andwelded joints.

The threshold stress for both parent metal and welded joints of Sandvik SAF 2507 in boiling 45% MgCl2 , 155°C (311°F) (ASTMG36), is approximately 50% of the proof strength.

Figure 13. SCC resistance in oxygen-bearing (abt. 8 ppm) neutral chloride solutions. Testing time 1000 hours. Applied stress equal toproof strength at testing temperature.

Figure 14. Results of SCC tests with constant load in 40% CaCl2, pH=1.5, at 100 °C (210°F) with aerated test solution.

Figure 15. Constant load SCC tests in NACE solution at room temperature (NACE TM 0177).

Figure 15 shows the results of SCC tests at room temperature in NACE TM0177 Test solution A (5% sodium chloride and 0.5% aceticacid saturated with hydrogen sulphide). No cracking occurred on Sandvik SAF 2507, irrespective of the applied stress.

In aqueous solutions containing hydrogen sulphide and chlorides, stress corrosion cracking can also occur on stainless steels at

temperatures below 60 °C (140 °F). The corrosivity of such solutions is affected by acidity and chloride content. In direct contrast tothe case with ordinary chloride-induced stress corrosion cracking, ferritic stainless steels are more sensitive to this type of stresscorrosion cracking than austenitic steels.

In accordance with ISO 15156/NACE MR 0175 solution annealed and liquid quenched wrought Sandvik SAF 2507 is suitable for useat temperatures up to 450 °F (232 °C) in sour environments in oil and gas production, if the partial pressure of hydrogen sulphidedoes not exceed 3 psi (0.20 bar).

Sandvik SAF 2507, with a maximum hardness of 32 HRC, solution annealed and rapidly cooled, according to NACE MR0103, issuitable for use in sour petroleum refining.Intergranular corrosion

Sandvik SAF 2507 is a member of the family of modern duplex stainless steels whose chemical composition is balanced to give quickreformation of austenite in the high temperature heat affected zone of a weld. This results in a microstructure that provides thematerial with good resistance to intergranular corrosion. Sandvik SAF 2507 passes testing to ASTM A262 Practice E (Strauss test)without reservation.Erosion corrosion

The mechanical properties combined with corrosion resistance give Sandvik SAF 2507 a good resistance to erosion corrosion. Testingin sand containing media has shown that Sandvik SAF 2507 has an erosion corrosion resistance better than corresponding austeniticstainless steels. Figure 16 below shows the relative mass loss rate of the duplex Sandvik SAF 2507, Sandvik SAF 2205 and an

austenitic 6Mo+N type steel after exposure to synthetic seawater (ASTM D-1141) containing 0.025-0.25% silica sand at a velocity of8.9-29.3 m/s (average of all tests is shown).

Figure 16. Relative mass loss rate after testing of the resistance aginst erosion corrosion.Corrosion fatigue

Duplex stainless steels which have a high tensile strength usually have a high fatigue limit and high resistance to both fatigue andcorrosion fatigue.

The high fatigue strength of Sandvik SAF 2507 can be explained by its good mechanical properties, while its high resistance tocorrosion fatigue has been proven by fatigue testing in corrosive media.

Heat treatment

The tubes are normally delivered in heat treated condition. If additional heat treatment is needed due to further processing thefollowing is recommended.Solution annealing

1050­1125°C (1920­2060°F), rapid cooling in air or water.

Welding

The weldability of Sandvik SAF 2507 is good. Suitable welding methods are manual metal-arc welding with covered electrodes orgasshielded arc welding. Welding should be undertaken within the heat input range of 0.2-1.5 kJ/mm and with an interpasstemperature of 150°C (300°F) maximum.

Preheating or post-weld heat treatment is not necessary.

Matching filler metals are recommended in order to obtain a weld metal with optimum corrosion resistance and mechanicalproperties. For gas-shielded arc welding use Sandvik 25.10.4.L, and for manual metal-arc welding the covered electrode Sandvik25.10.4.LR.

Fabrication

Bending

The starting force needed for bending is slightly higher for Sandvik SAF 2507 than for standard austenitic stainless steels (AISI 304Land 316L).

If the service conditions are on the limit of the stress corrosion resistance of Sandvik SAF 2507 heat treatment is recommended aftercold bending. For pressure vessel applications in Germany and the Nordic countries heat treatment may be required after colddeformation in accordance with VdTÜV­Wb 508 and NGS 1609. Heat treatment should be carried out by solution annealing (Seeunder Hest treatment) or resistance annealing.

Hot bending is carried out at 1125­1025 °C (2060­1880°F) and should be followed by solution annealing.Expanding

Compared to austenitic stainless steels, Sandvik SAF 2507 has a higher proof and tensile strength. This must be kept in mind whenexpanding tubes into tubesheets. Normal expanding methods can be used, but the expansion requires higher initial force and shouldbe undertaken in one operation. As a general rule, tube to tubesheet joints should be welded if the service conditions include a highchloride concentration, thus limiting the risk of crevice corrosion.Machining

Being a two-phase material (austenitic-ferritic) Sandvik SAF 2507 will present a different tool wear profile from that of single-phasesteels of type AISI 304L. The cutting speed must therefore be lower than that recommended for AISI 304L. It is recommended thata tougher insert grade is used than when machining austenitic stainless steels, e.g. AISI 304L.

Applications

Sandvik SAF 2507 is a duplex stainless steel especially designed for service in aggressive chloride-containing environments. Typicalapplications are:

Typical applications: Sandvik SAF2507Oil and gas industryChloride-containing environments such as seawater handling and process systems. Hydraulic and process fluid tubes inumbilicalsSeawater coolingTubing for heat exchangers in refineries, chemical industries, process industries and other industries using seawater orchlorinated seawater as coolantSalt evaporation industryDesalination plantsGeothermal wellsEvaporator tubing for production of corrosive salts, e.g. chlorides, sulphates and carbonatesPressure vessels for reverse osmosis units, tube and pipe for seawater transport, heat exchanger tubingHeat exchangers in geothermal exploitation units, systems exposed to geothermal or high salinity brines, tubing andcasing for productionRefineries andpetrochemical plantsPulp and paper industryChemical industryMechanical componentsrequiring high strengthDesulphurisation unitsTubes and pipes where the process environment contains a high amount of chlorides, or is contaminated withhydrochloric acidMaterial for chloride-containing bleaching environmentsOrganic acid plants, also when process solutions are contaminated with e.g. chloridesPropeller shafts and other products subjected to high mechanical load in seawater and other chloride-containingenvironmentsAs reheater tubes in flue gas desulphurisation systems. The good mechanical and corrosion properties make SandvikSAF 2507 an economical choice in many applications by reducing the life cycle cost of equipment.Disclaimer: Recommendations are for guidance only, and the suitability of a material for a specific application can be confirmed only when we know the actual service conditions.Continuous development may necessitate changes in technical data without notice. This datasheet is only valid for Sandvik materials.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务