数学(理)试题
2012.1
本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第I卷1-2页,第II卷3-4页.满分150分,考试时间120分钟.
第I卷(选择题 共60分)
注意事项:
1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型用2B铅笔涂写在答题卡上.
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上.
3.考试结束后,监考人员将答题卡和第II卷的答题纸一并收回.
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知全集U=R,则正确表示集合M0,1和Nxx2x0关系的韦恩(Venn)图是
2.命题“存在x0R,2x00”的否定是 A.不存在x0R,2x0<0 C.对任意的xR,20
x
B.存在x0R,2x0<0 D.对任意的xR,2<0
x3.在四边形ABCD中,若ACABAD,ACBDACBD,则四边形ABCD是 A.平行四边行 4.函数yA.0,
B.矩形
C.正方形
D.菱形
42x的值域是
B.0,2
C.0,2
D.(0,2)
5.设a>0,b>0.若2是2与2的等比中项,则A.8
B.4
C.1
D.
ab11的最小值为 ab1 4D.6
6.若一个底面是正三角形的三棱柱的正视图如图所示,则其体积等于 A.2
B.3
C.23
7.函数fxAsinxA>0,>0,<象如图所示,则,的值分别为 A.2,的部分图23
B.3,6
C.3,3
D.2,6
8.直线txyt10tR与圆x2y22x4y40的位置关系为 A.相交
B.相切
C.相离
D.以上都有可能
9.设a,b为两条不重合的直线,,为两个不重合的平面,下列命题中为真命题的是 A.若a//,b,则a//b
B.若a//,b//,//,则a//b
C.若a,b,,则ab D.若a,b,a//,则// 10.设23m,且A.6
B.6
ab112 ,则m ab
C.12
D.36
x2y211.已知双曲线221的一个焦点与抛物线y24x的焦点重合,且该双曲线的离心率
ab为5,则该双曲线的渐近线方程为
A.y1x2 2B.y2x4
C.y2x D.y2x 212.数列an中a1a,a2b,且满足an1anan2,则a2012的值为 A.b
B.b—a
C.—b
D.—a
>0,
第II卷(非选择题 共90分)
说明:
1.第II卷3—4页;2.第II卷的答案必须用0.5mm黑色签字笔答在答题纸的指定位置. 二、填空题:本大题共4小题,每小题4分,共16分.
13.若平面向量a,b,c两两所成的角相等,ab1,c3,则abc_______.
xy1,14.设x,y满足约束条件xy1, 则zx2y的最小值是_______.
x1,15.设偶函数fx满足fx2x4x0,则不等式fx>0的解集为_____.
16.在平面内有n条直线,其中任何两条直线不平行,任何三条直线都不相交于同一点,则这n条直线把平面分成________部分.
三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分12分)
设数列an满足a12a22a322n1nan,nN*.
2(1)求数列an的通项公式;
(2)设bnbnbn11,cn,记Snc1c2cn,证明:Sn<1.
log1ann1n218.(本题满分12分)
在△ABC中,角A,B,C的对边分别是a,b,c,已知2acosAccosBbcosC. (1)求cosA的值; (2)若a1,cosBcosC3,求边c的值. 2
19.(本题满分12分)
如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,BAD=60°.
(1)证明:面PBD⊥面PAC;
(2)求锐二面角A—PC—B的余弦值.
20.(本题满分12分) 观察下表: 1, 2,3,
4,5,6,7,
8,9,10,11,12,13,14,15, „„ 问:(1)此表第n行的第一个数与最后一个数分别是多少? (2)此表第n行的各个数之和是多少? (3)2012是第几行的第几个数?
21.(本题满分12分) 已知函数fxxlnx. (1)求函数fx的极值点;
(2)若直线l过点(0,—1),并且与曲线yfx相切,求直线l的方程;
(3)设函数gxfxax1,其中aR,求函数gx在1,e上的最小值.(其中e为自然对数的底数)
22.(本题满分14分)
y2x22已知椭圆C:221a>b>0的离心率为,且椭圆上一点到两个焦点的距离之和
ab2为22.斜率为kk0的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(1)求椭圆的标准方程; (2)求m的取值范围.
(3)试用m表示△MPQ的面积S,并求面积S的最大值.
二○一二届高三第一学期期末检测 数学(理科)参及评分标准
一、选择题:本大题共12小题,每小题5分,共60分. ADDC BBDA CACA
二、填空题:本大题共4个小题,每小题4分,共16分 13.2或5
14.—3
15.,22,
n2n216.
2n, 2三、解答题:本大题共6小题,共74分. 17.解(1)由题意,a12a22a32当n2 时,a12a22a32两式相减,得2n12n22n2an12n1ann1. 2an1nn11. 2221所以,当n2时,ann.„„„„„„„„„„„„„„„„„„„„„„„„4分
211*当n=1时,a1也满足上式,所求通项公式annnN.„„„„„„„„6分
22an(2)bn1log1an21.„„„„„„„„„„„„„„„„„„„„8分 nn1log1221cnn1n11„„„„„„„„„„„„„„„„„„„„„10分 nn1nn11111111Snc1c2cn1 22334n1n1<1.„„„„„„„„„„„„„„„„„„„„12分 n118.解:(1)由2acosAccosBbcosC及正弦定理得
1 2sinAcosAsinCcosBsinBcosC,即2sinAcosAsinBC.4分 又BCA,所以有2sinAcosAsinA,即2sinAcosAsinA. 而sinA0,所以cosA(2)由cosA1.„„„„„„„„„„„„„„„„„„6分 21及0<A<,得A=. 232. 因此BCA3 由cosBcosC332,得cosBcosB, 232 即cosB1333,即得sinBcosBsinB.„„„„„„8分
22262 由A3,知B5,6662. .于是B,或B6363所以B6,或B.„„„„„„„„„„„„„„„„„„„„„„10分 2若B6,则C123.在直角△ABC中,sin ,解得c; 23c3若B2,在直角△ABC中,tan13,解得c.„„„„„„„„12分 3c319.(1)因为四边形ABCD是菱形,
所以ACBD.
因为PA平面ABCD,
所有PABD.„„„„„„„„„„2分 又因为PAAC=A,
所以BD面 PAC.„„„„„„„„3分 而BD面PBD,
所以面PBD面PAC.„„„„„„„5分
(2)如图,设ACBD=O.取PC的中点Q,连接OQ.
在△APC中,AO=OC,CQ=QP,OQ为△APC的中位线,所以OQ//PA. 因为PA平面ABCD,
所以OQ平面ABCD,„„„„„„„„„„„„„„„„„„„„6分 以OA、OB、OQ所在直线分别为x轴、z轴,建立空间直角坐标系Oxyz. 则A3,0,0,B0,1,0,C3,0,0,
P3,0,2.„„„„„„„„„„„„„„„„„„„„„„„„„„„7分
因为BO面PAC,
所以平面PAC的一个法向量为OB0,1,0.„„„„„„„„„„„„„8分 设平面PBC的一个法向量为nx,y,z, 而BC3,1,0,PB3,1,2,
3xy0,nBC, 由得
3xy2x0.nPB, 令x1,则y3,z3.
所以n1,3,3为平面PBC的一个法向量.„„„„„„„„„„„10分
cos<OB,n>OBnOBn321.„„„„„„„„12分
71133n120.此表n行的第1个数为2n1,第n行共有2个数,依次构成公差为1的等差数
列.„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„4分 (1)由等差数列的通项公式,此表第n行的最后一个数是2n1221112n1;8分
2(2)由等差数列的求和公式,此表第n行的各个数之和为
22n3n12n12n122n2
22n2,或2n12n12n12n11122n222n32n2.„„„„„8分
2(3)设2012在此数表的第n行. 则2n120122n1,可得n11.
故2012在此数表的第11行.„„„„„„„„„„„„„„„„„„„„„10分 设2012是此数表的第11行的第m个数,而第11行的第1个数为210,
因此,2012是第11行的第9个数.„„„„„„„„„„„„„„„„„„12分 21. 解:(1)fxlnx1,x>0.„„„„„„„„„„„„„„„„„„„„„1分
而fx>0lnx+1>0x>,fx<0lnx1<00<x<, 所以fx在0,上单调递减,在,上单调递增.„„„„„„3分
1e1e
1e1e 所以x1是函数fx的极小值点,极大值点不存在.„„„„„„„4分 e(2)设切点坐标为x0,y0,则y0x0lnx0,切线的斜率为lnx01,
所以切线l的方程为yx0lnx0lnx01xx0.„„„„„„„„5分 又切线l过点0,1,所以有1x0lnx0lnx010x0. 解得x01,y00.
所以直线l的方程为yx1.„„„„„„„„„„„„„„„„„„7分
(3)gxxlnxax1,则gxlnx1a.
gx<0lnx1a<00<x<ea1,gx>0x>ea1,
所以gx在0,ea1上单调递减,在ea1,上单调递增.„„„„„„8分 ①当ea11,即a1时,gx在1,e上单调递增,
所以gx在1,e上的最小值为g10.„„„„„„„„„„„„„„„9分 ②当1<ea1<e,即1<a<2时,gx在1,ea1上单调递减,在ea1,e上单调递增.
gx在1,e上的最小值为gea1aea1.„„„„„„„„„„„„„„10分
③当eea1,即a2时,gx在1,e上单调递减,
所以gx在1,e上的最小值为geeaae.„„„„„„„„„„„„11分 综上,当a1时,gx的最小值为0;当1<a<2时,gx的最小值为aea1;
当a2时,gx的最小值为aeae.„„„„„„„„„„„„„„„„12分
ac21,22.解:(1)依题意可得解得a2,c1.
ac21,y2x21.„„„„„„„4分 从而a2,bac1.所求椭圆方程为22222(2)直线l的方程为ykx1.
ykx1,22由y2可得k2x2kx10. 2x1,2该方程的判别式△=4k42k2288k2>0恒成立.
设Px1,y1,Qx2,y2,则x1x2可得y1y2kx1x222k1,xx.„„„„„„5分 1222k2k24. k22设线段PQ中点为N,则点N的坐标为2k,.„„„„„„6分 22k2k2线段PQ的垂直平分线方程为y21kx. 22k2kk2
1.„„„„„„„„„„„„„„„„„„7分 2k21 又k0,所以0<m<.„„„„„„„„„„„„„„„„„„„8分
2 令x0,由题意m (3)点M0,m到直线l:ykx1的距离d22m11k21m1k2
PQ1kx1x21k2x1x224x1x2
242k 1k2 2k2k28k28 1k 2k22111m8k282于是SMPQdPQ 1k22221kk21m8k28 2.
2k2由m即S1132,k2.代入上式,得SMPQ2m1m, 可得2k2m132m1m0<m<.„„„„„„„„„„„„„„„„11分
232设fmm1m,则fm1m14m. 而fm>00<m<
111,fm<0<m<, 442所以fm在0,上单调递增,在1411,上单调递减. 42所以当m1127时,fm有最大值f.„„„„„„„„13分 44256136.„„„„„„„14分 时,△MPQ的面积S有最大值
416所以当m
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务