2
1
1672-8785(2014)02-0001-08
1
1,2
1,2
(1.
200083
2.
100049)
(HgCdTe)
SWaP3(Size,Weight,andPower,PerformanceandPrice)
HgCdTe
(HighOperatingTemperature,HOT)
SWaP3
TN215
ADOI:10.3969/j.issn.1672-8785.2014.02.001
OverviewofLatestTechnologiesofHgCdTeInfrared
PhotoelectricDetectors
YEZhen-hua1,CHENYi-yu
1,2
,ZHANGPeng
1,2
(1.ShanghaiInstituteofTechnicalPhysics,ChineseAcademyofSciences,Shanghai200083,China;
2.UniversityofChineseAcademyofSciences,Beijing100049,China)
Abstract:Infraredphotoelectricdetectorshaveshowntheirversatilityinmilitary,civilianandscientificresearchapplications.Becauseofmanyadvantages,thedetectormaterialHgCdTehasplayedavitalroleinthedevelopmentofinfraredphotoelectricdetectors.Uptonow,itisstillthebestchoiceformanyapplications.First,theSWaP3conceptproposedforthenewgenerationofinfrareddetectorsisanalyzed.Then,theHgCdTematerialsqualifiedforthethirdgenerationofinfraredfocalplanearrays(FPA)arepresentedinbrief.Finally,theresearchprogressoflargeformatarraydevices,verylongwavelengthdevices,highoperationtemperature(HOT)devices,hyper-spectraldevices,dual-banddevicesandavalanchephotoelectricdiodes(APD)issummarized.
Keywords:HgCdTe;SWaP3concept;HOT;hyper-spectral;dual-band;APD
0
(HgCdTe)
(InSb)
(PtSi)
/
(AlGaAs/GaAs)
2014–01–20
(1977-)
E-mail:zhye@mail.sitp.ac.cn
http://journal.sitp.ac.cn/hwInfrared(monthly)/Vol.35,No.2,Feb2014
2
2014
2
1
SWaP3
[1]
(1)
[1−2]
(2)
HgCdTe
(3)
1959
HgCdTe
20
70
Cd
HgCdTe
0
∼1.6eV
(
)
HgCdTe(2)
(
)
(1)
(3)
/
(4)
(5)
[1]
p–n
SWaP3
[4]
1
SWaP3
SWaP3
·
1999
HgCdTe
SWaP3
HgCdTe
(multi-color)
1
SWaP3
Infrared(monthly)/Vol.35,No.2,Feb2014http://journal.sitp.ac.cn/hw
35
2
SWaP3
2HgCdTe
HgCdTe
(LiquidPhaseEpitaxy,LPE)
HgCdTe
HgCdTe
(Molecular
BeamEpitaxy,MBE)
(Metal-OrganicVapor-PhaseEpitaxy,MOVPE)
HgCdTe/
DRS
CEA–Leti
Sofradir
AIM
SELEX
2.1
LPE
HgCdTe
Zn
4%
(CdZnTe)
CdZnTe
HgCdTe
CdZnTe
CEA–Leti
90mm
CdZnTe
115mm
(
2)
[3]
Cd
CdZnTe
(EtchPitDensity,EPD)
http://journal.sitp.ac.cn/hw3
104/cm2∼105/cm2
X
CdZnTe
25arcsec
∼45arcsec
2CEA–Leti115mm
CdZnTe
MBE
MOVPE
HgCdTe
(Si)
(Ge)
(GaAs)
HgCdTe
(
Ge
HgCdTe
14%)
MBE
HgCdTe
LPE
2.2HgCdTe
LPE
HgCdTe
Cd
Hg
Te
(1.7∼3µm)(3∼5µm)
(8∼10
µm)
(>12µm)
HgCdTe
±1.5
µm±0.25
µm
[5]
X
25arcsec∼
40arcsec42EPD
10/cm∼105/cm2
(
)
Infrared(monthly)/Vol.35,No.2,Feb2014
4
MBE
LPE
HgCdTe
/
MBE
MBE
HgCdTe
MBE
MBE
(In)n
(As)
p
MBE
Si
Ge
GaAs
CdZnTe
MBE
HgCdTe
LPE
MOVPE
MBE
HgCdTeSELEX
MOVPE
GaAs
HgCdTe2M
3HgCdTe
HgCdTe
HgCdTe
HgCdTe
3.1
AIM
LPE
(CdZnTe
)
MBE
(GaAs
)
15µm
1280×1024
(80K
5.3µm)
(80K
10µm)
[5]
SELEX
MOVPE
GaAs
12µm
Infrared(monthly)/Vol.35,No.2,Feb20142014
2
1920×1080
HgCdTe
(
FALCON)8
16M
3)
[7]
(
16M
50µm
90%
3
SELEX
16M
Cd
0.18µm
(
9µm
)
15µm
12µm
10µm2k×2k
[5]
15µm
6µm
6µm
http://journal.sitp.ac.cn/hw
35
2
AIM
99%
80K
99.96%
SELEX
99.6%
3.2
HgCdTe
HgCdTe
Cd
HgCdTe
16µm
Cd
1%
4.4%(0.7µm)
Sofradir
n–on–p
CdZnTe
16µm(
55K)
HgCdTe
30µm
320×256
55K
99.6%
[8]
p–on–n
[9]
2
3.3HOT
HOT
exp(–Eg/kT)
exp(–Eg/2kT)
http://journal.sitp.ac.cn/hw5
HOT
p–on–n
3.3.1
4
nBn
SRH
nBnB
HgCdTe
nested
[10−11]
[10]
4
nBn
3.3.2
200K
100mK
(NoiseEquivalentTemperatureDifference,NETD)
[12]
Infrared(monthly)/Vol.35,No.2,Feb2014
63.4
Sofradir
NEP-TURE
SATURN(
500×256
1000×256
)
–
1024×1024
1111
HgCdTe
[8]
3.5
/
HgCdTe
MBE
HgCdTe
HgCdTe
HgCdTe
4
NETD
MW–MW(λc=4.6µm&5.5µm)
50%
NETD20mK
98K
99.8%
MW–LW(λc=5.6µm&10µm)
99.8%(MW)
98.5%(LW)
0×480
24µm
20
µm
[3]
Si
3
n–p–n
MW–LW
(λc=5.1µm&9.6µm@81K)
Infrared(monthly)/Vol.35,No.2,Feb20142014
2
0×480
99.98%(MW)
98.7%(LW)
2009
[13]
5
Sofradir
HgCdTe
HgCdTe
3.6HgCdTe
2
4
CMOS
HgCdTe
/
1.0∼2.5µm
×10
2×10−11A/cm2
[15]
360e/s/
SELEX
3D
[13]
6
3D
(
)
Sofradir
30
µm
320×256
[5]
2kHz
(20MHz)
[15]
http://journal.sitp.ac.cn/hw
35
2
7
5
Sofradir
[14]
6
SELEX
3D
2D/3D
4
HgCdTe
HgCdTe
II
HOT
HgCdTe
HgCdTe
MBE
MOVPE
http://journal.sitp.ac.cn/hwInfrared(monthly)/Vol.35,No.2,Feb2014
8
2014
2
HgCdTe
HgCdTe
[8]PatriciaP,NicolasJ,BrunoF,etal.AReviewof
theLatestDevelopmentsofMCTInfraredTechnol-ogyfromVisibletoVLWIRforSpaceApplicationsatSofradir[C].SPIE,2013,8074:80740M.
[9]LeroyC,PhilippeC,DestefanisG.LWIRandVL-WIRMCTTechnologiesandDetectorsDevelopmentatSOFRADIRforSpaceApplications[C].SPIE,2012,8353:83532O.
[10]ItsunoAM.Bandgap-EngineeredHgCdTeInfrared
DetectorStructuresforReducedCoolingRequire-ments[D].Diss:UniversityofMichigan,2012.
[11]Martyniuk,P,RogalskiA.TheoreticalModellingof
MWIRThermoelectricallyCoolednBnHgCdTeDe-tector[J].BulletinofthePolishAcademyofSciences:TechnicalSciences,2013,61(1):211–220.
[12]KopytkoM,KeblowskiAK,GawronW,etal.High-operatingTemperatureMWIRnBnHgCdTeDetec-torGrownbyMOCVD[J].Opto-ElectronicsReview,2013,21(4):402–405.
[13]VilelaMF,OlssonKR,NortonEM,etal.High-PerformanceM/LWIRDual-BandHgCdTe/SiFocal-PlaneArrays[J].JournalofElectronicMaterials,2013,42(11):3231–3238.
[14]YannR,FabienC,CedricV,etal.InfraredDual
BandDetectorsforNextGeneration[C].SPIE,2011,8012:801238.
[15]AshcroftA,BakerI.DevelopmentsinHgCdTe
AvalanchePhotodiodeTechnologyandApplications[C].SPIE,2010,7660:76603C.
[1][2]
[J].
,2011,41(4):365–370.
[J].
,2009,32(3):96–99.
[3]RogalskiA,AntoszewskiJ,FaraoneL.ThirdGener-ationInfraredPhotodetectorArrays[J].JournalofAppliedPhysics,2009,105(9):091101.
[4]AlainM,LaurentR,YannR,etal.ImprovedIRDe-tectorstoSwapHeavySystemsforSWaP[C].SPIE,2013,8353:835334.
[5]GravrandO,DestefanisG,BisottoS,etal.Issuesin
HgCdTeResearchandExpectedProgressinInfraredDetectorFabrication[J].JournalofElectronicMa-terials,2013,42(11):3349–3358.
[6]ZieglerJ,BitterlichH,BreiterR,etal.Large-format
MWIRandLWIRDetectorsatAIM[C].SPIE,2013,8074:80742L.
[7]ThorneP,GordonJ,HipwoodLG,etal.
[C].SPIE,2013,8074:80742M.
16
Megapixel12µmArrayDevelopmentsatSelexES
News300T70
(OPIR)
2016
/
150
www.airforce-technology.com
CHIRP
1
HienVu
2012
7
CHIRP
2016
CHIRP
(CHIRP)
HienVu
CHIRP
3600
2000×2000
CHIRP
27
1/4
CHIRP
20139
12
2011
SES–2
Infrared(monthly)/Vol.35,No.2,Feb2014http://journal.sitp.ac.cn/hw
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务