湖北省黄石市2011年初中毕业生学业考试
一、仔细选一选(每小题3分,共30分)
1. 4的值为( )
A.2 B. -2 C. 2 D. 不存在
2.黄石市2011年6月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示为( )
A. (11+t)℃ B. (11-t)℃ C. (t-11)℃ D. (-t-11)℃ 3.双曲线yA.k122k1x的图像经过第二、四象限,则k的取值范围是( )
12 B. k C. k12 D. 不存在
1x4. 有如下图形:①函数yx1的图形;②函数y的图像;③一段弧;④平行四边形,其中一定是
轴对称图形的有( )
A.1个 B.2个 C.3个 D.4个 5.如图(1)所示的几何体的俯视图是( ) A B C D 图(1)
6.2010年12月份,某市总工会组织该市各单位参加“迎新春长跑活动”,将报名的男运动员分成3组:青年组,中年组,老年组。各组人数所占比例如图(2)所示,已知青年组有120人,则中年组与老年组人数分别是( )
A.30,10 B.60,20 C.50,30 D.60,10
中年人 青年人 30%
60%
老年人 10%
30°
图(2) 图(3)
7.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),则三角板的最大边的长为( ) A. 3cm B. 6cm C.32cm D. 62cm
8.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定
21条直线,则n的值为( )
A. 5 B. 6 C. 7 D. 8
9.设一元二次方程(x1)(x2)m(m0)的两根分别为,,且,则,满足( )
A. 12 B. 12 C. 12 D. 1且 2
10.已知梯形ABCD的四个顶点的坐标分别为A(1,0),B(5,0),C(2,2),D(0,2),直线ykx2将
梯形分成面积相等的两部分,则k的值为( ) A. 23294727 B. C. D.
二、认真填一填(每小题3分,共18分) 11.分解因式:2x8= . 京翰教育网 http://www.zgjhjy.com/
2京翰教育初中数学辅导网www.jhshuxuefudao.cn
12.为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛,组委会规定:任何一名参赛选
手的成绩x满足:60x100,赛后整理所有参赛选手的成绩如表(一)
分 数 段 60x70 70x80 频数 30 m 60 20 频率 0.15 0.45 n 0.1 80x90 90x100 表(一)
根据表(一)提供的信息得到n .
13.有甲、乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4)。将这两张纸条交叉重叠地放在一起,
重合部分为四边形ABCD,则AB与BC的数量关系为 . 14.如图(5),△ABC内接于⊙O,若B=30°,AC
A 甲 B C 乙
D
C A B O 3,则⊙O的直径为 .
图(4)
图(5)
1x15.若一次函数ykx1的图像与反比例函数y是 .
的图像没有公共点,则实数k的取值范围
16.初三年级某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准
备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]mi,nj,并称ab为该生的位置数。若某生的位置数为10,则当mn取最小值时,
mn的最大值为 .
三、全面答一答(本题有9个小题,共72分) 17.(本小题满分7分)计算: (2011)(0222)1222cos60
0x)(x)18.(本小题满分7分)先化简,再求值:(2,其中2x4xy4yx2yyxy4y34xy2121.
19.(本小题满分7分)如图(6),在等腰梯形ABCD中,
AD//BC,ABDC,E是BC的中点,连接.AE、DE。 求证:AEDE.
A D
B
E
图(6)
C
京翰教育网 http://www.zgjhjy.com/
京翰教育初中数学辅导网www.jhshuxuefudao.cn
20.(本小题满分8分)解方程:xy4(35x5y10)0
21.(本小题满分8分)2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内
掀起一股网球热。某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座,如果摸出的是白球,小明去听讲座。
(1)爸爸说这个办法不公平,请你用概率的知识解释原因。
(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明
有利还是对妹妹有利,说明理由。
22.(本小题满分8分)东方山是鄂东南地区的佛教圣地,月亮山是黄荆山脉第二高峰,山顶上有黄石电视
塔。据黄石地理资料记载:东方山海拔453.20米,月亮山海拔442.00米,一飞机从东方山到月亮山方向水平飞行,在东方山山顶D的正上方A处测得月亮山山顶C的俯角为,在月亮山山顶C的正
上方B处测得东方山山顶D处的俯角为,如图(7)。已知tan0.15987,tan0.15847,若飞机的飞行速度为180米/秒,则该飞机从A到B处需多少时间?(精确到0.1秒)
A B β α D C
东方山 月亮山
图(7)
23.(本小题满分8分)今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环境意识,节约用水,
某校数学教师编制了一道应用题:
为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:
月用水量(吨) 不大于10吨部分 大于10吨不大于m吨部分(20m50) 大于m吨部分 单价(元/吨) 1.5 2 3 222(1)若某用户六月份用水量为18吨,求其应缴纳的水费; (2)记该用户六月份用水量为x吨,缴纳水费为y元,试列出y与x的函数式;
(3)若该用户六月份用水量为40吨,缴纳水费y元的取值范围为70y90,试求m的取值范围。
京翰教育网 http://www.zgjhjy.com/
京翰教育初中数学辅导网www.jhshuxuefudao.cn
24.(本小题满分9分)已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,,直线CB与⊙O1交于另一点D。 B,O1重合)
(1)如图(8),若AC是⊙O2的直径,求证:ACCD; (2)如图(9),若C是⊙O1外一点,求证:O1CAD;
(3)如图(10),若C是⊙O1内一点,判断(2)中的结论是否成立。
25.(本小题满分10分)已知二次函数yx2mx4m8
(1)当x2时,函数值y随x的增大而减小,求m的取值范围。
2
(2)以抛物线yx2mx4m8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,
N两点在抛物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若
2不是,请说明理由。
(3)若抛物线yx2mx4m8与x轴交点的横坐标均为整数,求整数m的值。
2y 0 A x
京翰教育网 http://www.zgjhjy.com/
京翰教育初中数学辅导网www.jhshuxuefudao.cn
数学答案及评分标准
一、选择题(每小题3分,共30分) 题号 答案 1 A 2 C 3 B 4 C 5 C 6 B 7 D 8 C 9 D 10 A 14二、填空题(每小题3分,共18分)
11.2(x2)(x2) 12.0.3 13.AB2BC 14.23 15.k三、解答题(9小题,共72分) 17.(7分)解:原式12221 ····································································· (4分)
16.36
2 ········································································································· (3分)
y(x4y)4xyx2xy18.(7分)解:原式 ·················································· (2分) 2(x2y)x2yy(x2y)(x2y)x(x2y) ··············································· (2分) 2(x2y)x2y222 ··························································································· (2分) xy ·
x 当y2121时,原式的值为1。 ( 1分)
19.证明:∵四边形ABCD是等腰梯形 ∴BC ··············································· (2分)
又E是BC的中点 ∴BEEC ································································································· (2分) 又ABDC
∴△ABE≌△DCE. ··············································································· (2分) ∴AEDE. ····························································································· (1分)
221xy4020.(8分)解:由题意得: ·············································· (2分)
235x5y100 由方程(2)得:y35x2代人(1)式得
x35x100 ·················································································· (1分) 解得,x5或x25. ···································································· (2分)
2x5x25代人得或 ······································································· (2分)
y1y421.(8分)解:(1)∵红球有2x个,白球有3x个,
x25,∴P(红球), P(白球) ················ (2分)
2x3x52x3x5y42x23x3∴P(红球) P(白球) ∴这个办法不公平 ······················································ (1分)
京翰教育网 http://www.zgjhjy.com/
京翰教育初中数学辅导网www.jhshuxuefudao.cn
(2)取出3个白球后,红球有2x个,白球有(3x3)个, ∴P(红球)2x5x3,P(白球)3x5x33x35x3,x为正整数 ········································ (1分)
∴P(红球) P(白球) ··········································································· (1分)
①当x3时,则P(红球) P(白球) ∴对小妹有利;
②当x3时,则P(红球) P(白球) ∴对小妹、小明是公平的; ③当x3时,则P(红球) P(白球) ∴对小明有利; ······························· (3分) 22.(8分)解:在Rt△ABC中,BCABtan,
在Rt△ABD中, ADABtan ········································································ (2分) ∴BCADAB(tantan) ·········································································· (2分)
BCADtantan453.20442.000.159870.158478000180∴AB8000 ··········································· (2分)
故A到B所需的时间为t44.4(秒) ···················································· (1分)
答:飞机从A到B处需44.4秒. ··········································································· (1分)
A
α β B
D C 东方山 月亮山
23.(8分)解:(1)六月份应缴纳的水费为:1.5102831(元) ········· (3分)
(2)当0x10时,y1.5x
当10xm时,y152(x10)2x5
当xm时,y152(m10)3(xm)3xm5
(0x10)1.5x∴y2x5 (10xm ) (3分)
3xm5(xm)(3)当40m50时,y240575元,满足条件,
当20m40时,y340m5115m,则
京翰教育网 http://www.zgjhjy.com/
京翰教育初中数学辅导网www.jhshuxuefudao.cn
70115m90 ∴25m40
综上得,25m40 ·························································· (2分)
24.(9分)证明:(1)如图(一),连接AB,CO1
∵AC为⊙O2的直径 ∴DBAB ∴AD为⊙O1的直径 ∴O1在AD上 又CO1AD,O1为AD的中点
∴△ACD是以AD为底边的等腰三角形 ∴ACCD ············································································ (3分) (2)如图(二),连接AO1,并延长AO1交⊙O1与点E,连ED
∵四边形AEDB内接于⊙O1 ∴ABCE
ACAC ∴EAO1C 又∵∴CO1//ED
又AE为⊙O1的直径 ∴EDAD
∴CO1AD ·········································································· (3分) (3)如图(三),连接AO1,并延长AO1交⊙O1与点E,连ED
∵BEO1C 又EB ∴EO1CE
∴CO1//ED 又EDAD
∴CO1AD ·········································································· (3分)
25.(10分)解:(1)∵y(xm)4m8m
∴由题意得,m2 ································································ (3分)
(2)根据抛物线和正三角形的对称性,可知MNy轴,设抛物线的对称轴与MN交
于点B,则AB3BM。设M(a,b)
22∴BMam(ma)
又AByByAb(4m8m)
2京翰教育网 http://www.zgjhjy.com/
京翰教育初中数学辅导网www.jhshuxuefudao.cn
a2ma4m8(4m8m)
22
a2mam(am)222
∴(am)∴BM∴SAMN
223(am) ∴am3
3,AB3 12AB2BM1232333定值············· (3分)
y B M N 0 A x (3)令y0,即x2mx4m80时,有
2m2m4m8222xm(m2)4
2由题意,(m2)4为完全平方数,令(m2)4n 即(nm2)(nm2)4
∵m,n为整数, ∴nm2,nm2的奇偶性相同
nm22nm22nm22nm2222∴或
m2m2解得或
n2n2综合得m2 ··········································································· (4分)
京翰教育网 http://www.zgjhjy.com/
因篇幅问题不能全部显示,请点此查看更多更全内容