您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页同位角、内错角、同旁内角教学设计

同位角、内错角、同旁内角教学设计

来源:爱go旅游网


古城中学集体备课记载薄

课数目 学 上课时间 同位角、内错 同旁内角 课题 角、所属 单元 五 组别 七年级 主备人 侯海儒 课后记载时间 课堂教学设计 个人调整意见 教学目1、了解同位角、内错角、同旁内角的概念。 2、会识别同位角、内错角、同旁内角。 标: 3、在活动中培养学生乐于探索、合作学习的习惯,培养学生“用数学”的意识和能力。 教学重点: 教学难点: 已知两直线和截线,判断同位角、内错角、同旁内角。 已知两个角,要判别是哪两条直线被第3条直线所截而形成的什么位 置关系的角 弄清是哪两条直线被第三条直线所截而成的同位角、内错角、同旁内角。 教学思路设计: 教具准备: 学法设计: 三角板、圆规 通过动手操作进一步理解数学知识 教学过程 教学过程: 一创设情景,引入新课 (1)平面上的两条直线有相交和平行两种位置关系,两直线相交形成几个角?称之谓什么角? (2)在实际生活中,还存在着两条直线被第3条直线所截的情况,如斜拉桥的灯柱子与其横梁,脚手架的钢管,交通线路中的道路,将这些事物抽象成几何图形,就是如图所示的图形 (3)两条直线被第3条直线所截形成几个角?这8个角中有多种关系,如 ∠2与∠4,∠5与∠7,∠6与∠8, ∠1和∠3是对顶角,除了对顶角,还有没有其它新的关系的角呢?这节课我们就来研究同位角,内错角,同旁内角 二、合作交流,探索新知 (一) 同位角,内错角,同旁内角的概念 1、先看图中∠1和∠5,这两个角分别在直线AB、CD的上方,并且 都在直线EF的右侧,像这样位置相同的一对角叫做同位角。在图(1)中,像这样具有类似位置关系的角还有吗?如果你仔细观察,会发现∠2与∠6,∠3与∠7,∠4与∠8也是同位角。 变式图形:图中的∠1与∠2都是同位角。 图形特征:在形如字母“F”的图形中有同位角。 2、再看∠3与∠5,这两个角都在直线AB、CD之间,且∠3在直线EF左侧,∠5在直线EF右侧,像这样的一对角叫做内错角。同样,∠4与∠6也具有类似位置特征,∠4与∠6也是内错角。 变式图形:图中的∠1与∠2都是内错角。 图形特征:在形如“Z”的图形中有内错角。 3、在图(1)中,∠3和∠6也在直线AB、CD之间,但它们在直线EF的同一旁像这样的一对角,我们称它为同旁内角。具有类似的位置特征的还有∠4与∠5,因此它们也是同旁内角。 变式图形:图中的∠1与∠2都是同旁内角。 图形特征:在形如“n”的图形中有同旁内角。 4、辩一辩 同位角 内错角 与两直线的位置关系 与截线的位置关系 两直线同侧 两直线之间 截线的同旁 截线异侧 截线同侧 同旁内角 两直线之间 5,做一做(请一位学生上台展示学习成果) 请用三根竹条或小木棍制作一个如图的风筝骨架,观察风筝骨架中(图自己画)有几个角,请把它画成几何图形,并用符号表示这些角,然后分别指出所有的对顶角,同位角,内错角,同旁内角 归纳:寻找同位角,内错角,同旁内角关键要分清两条直线和截线,然后按相互的位置特征进行判别 三、例题讲解 1、练一练、 课本第4页课内练习1 2、合作学习 课本第3页的合作学习 3、例2如图,直线DE交∠ABC的边BA于点F,如果 ∠1=∠2,那么同位角∠1和∠4相等,同旁内角∠1和∠3互补。请说明理由 分析:如果∠1=∠2,由对顶角相等,得∠2=∠4,那么∠1=∠4。因为∠2与∠3互补,即∠2+∠3=180°,又因为∠1=∠2,所以∠1+∠3=180°,即∠1和∠3互补。 四、应用拓展 (1)第4页课内练习2 (2)图中,∠1与∠2,∠3与∠4各是哪一条直线截哪两条直线而成的?它们各是什么角? 分析:两个角若有一边在同一条直线上,则这条直线即为截线,这两个角的另一边所在的两直线即为被截的两条直线。 解:图(1)中,∠1的边DA与∠2的边BD都在直线AB上,这两个角的另一边分别是DE、BC。所以∠1和∠2是直线AB截DE、BC而成的一对同位角。∠3的边DE和∠4的边ED都在直线DE上,这两个角的另一边分别是DB、EC。所以∠3和∠4是直线DE截DB、EC所成的一对同旁内角。 图(2)中,∠1的边BD与∠2的边DB都在直线BD上,这两个角的另一边分别是DE、BC。所以∠1和∠2是直线DB截直线DE、BC所成的一对内错角。∠3的边AB与∠4的边BA都在直线AB上,它们的另一边分别是AE、BD。所以∠3和∠4是直线AB截AE、BD成的一对同旁内角。 图(3)中的∠1的边AC与∠2的边CA都在直线AC上,它们的另一边分别是AB、CD。所以∠1和∠2是直线AC截AB、CD所成的内错角。同样∠3和∠4是直线AC截AD、CB所成的内错角。 五、小结: 本讲主要讲述了同位角、内错角、同旁内角的概念以及识别它们的方法: (1)同位角、内错角、同旁内角都是两条直线被第三条直线所截时产生的,究其实质,它们主要是反映了直线相交产生的角中,相 互位置所具有的特征:(1)两个同位角就是与直线的位置关系而言具有“同上、同右”、“同上、同左”“同下、同右”或“同下、同左”的特征。(2)内错角具有“同内、异侧”的特征。(3)同旁内角具有“同内、同侧”的特征。 (2)掌握辩别这些角的关键是看哪两条直线被哪一条直线所截、分清哪一条直线截哪两条直线形成了哪些角,是作出正确判定的前提,在截线的同旁找同位角,同旁内角,在截线的不同旁,找内错角。 六、作业 作业本1 (一) 同位角,内错角,同旁内角的概念 (二) 比较 同位角 内错角 与两直线的位置关系 与截线的位置关系 两直线同侧 两直线之间 截线的同旁 截线异侧 截线同侧 同旁内角 两直线之间 板书设计: 课前备课 组长意见: 上课人 意见: 课后反 思记载:

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务