SparsityConstraintsforFaceRecognition
ComputerScienceandEngineering
ArizonaStateUniversityTempe,AZ,85281
QiangZhang,BaoxinLi
qzhang53,baoxin.li@asu.edu
ABSTRACT
Thispaperintroducesanovelimagedecompositionapproachforanensembleofcorrelatedimages,usinglow-rankandsparsityconstraints.Eachimageisdecomposedasacombi-nationofthreecomponents:onecommoncomponent,oneconditioncomponent,whichisassumedtobealow-rankmatrix,andasparseresidual.ForasetoffaceimagesofNsubjects,thedecompositionfindsNcommoncomponents,oneforeachsubject,Klow-rankcomponents,eachcap-turingadifferentglobalconditionoftheset(e.g.,differentilluminationconditions),andasparseresidualforeachin-putimage.Throughthisdecomposition,theproposedap-proachrecoversacleanfaceimage(thecommoncomponent)foreachsubjectanddiscoverstheconditions(theconditioncomponentsandthesparseresiduals)oftheimagesintheset.ThesetofN+Kimagescontainingonlythecommonandthelow-rankcomponentsformacompactanddiscrim-inativerepresentationfortheoriginalimages.WedesignaclassifierusingonlytheseN+Kimages.Experimentsoncommonly-usedfacedatasetsdemonstratetheeffective-nessoftheapproachforfacerecognitionthroughcompar-ingwiththeleadingstate-of-the-artintheliterature.Theexperimentsfurthershowgoodaccuracyinclassifyingtheconditionofaninputimage,suggestingthatthecomponentsfromtheproposeddecompositionindeedcapturephysicallymeaningfulfeaturesoftheinput.
1.INTRODUCTION
Facerecognitionhasbeenanactiveresearchfieldforafewdecades,anditschallengesandimportancecontinuetoattracteffortsfrommanyresearchers,resultinginmanynewapproachesinrecentyears.Themostrecentliteraturemaybedividedintoroughlytwogroups,wheremethodsinthefirstgrouptrytomodelthephysicalprocessesofimagefor-mationunderdifferentconditions(e.g.,illumination,expres-sion,poseetc.).Forexample,theapproachof[10]modelsthefaceimageundervaryingilluminationconditionstobealinearcombinationofimagesofthesamesubjectcapturedat9speciallydesignedilluminationconditions;theSRCal-gorithmof[19]furtherassumesthatfaceimageswithillu-minationandexpressionconditionscanberepresentedasasparselinearcombinationofthetraininginstances(i.e.,thedictionaryatoms).Ontheotherhand,thesecondgroupofapproachesutilizesmathematical/statisticaltoolstocap-turethelatentrelationsamongfaceimagesforclassification.E.g.,theSUNapproach[7]usesthestatisticsofthehumanfixationoftheimagestorecognizethefaceimages,Volter-rafaces[9]findsalatentspaceforfacerecognition,wheretheratioofintra-classdistanceoverinter-classdistanceismin-imized.Onemajoradvantageofthetechniquesinthefirstclasscomesfromtheirbeinggenerativeinnature,whichal-lowsthesemethodstoaccomplishtaskslikefacerelightingornovelposegenerationinadditiontorecognition.Thesecondgroupofmethodsinasenseignoresthephysicalpropertyofthefacesimagesandtreatsthemasordinary2Dsignals.Althoughthemethodsinthefirstgrouphavetheaboveniceproperty,abaselineimplementationusuallyrequiresdictionarieswithtrainingimagesasatomsandthusmayfacethescalabilityissueinreal-worldapplicationswithahugenumberofsubjects.Henceeffortshavealsobeende-votedtoreducingthesizeofthedictionarywhileattemptingtoretainthelevelofperformanceoftheoriginaldictionary.Examplesincludethosethatgeneratemorecompactdictio-nariesthroughsomelearningprocedure(e.g.,[13])andthosethatattempttoextractsubject-specificfeaturesthatareef-fectivelyusedasdictionaryatoms(e.g.,[15]).Ourapproachbelongstothesecondgroup.Sincetheexpressivepoweroftheoriginaldictionary-basedtechniquescomesfromlargelythenumberoftrainingimagesforeachsubject,acompactdictionarymaysufferfromdegradedperformanceunlessthereduceddictionaryproperlycapturestheconditionsoftheoriginaldatathatarecriticalforarecognitiontask.Forexample,themethodof[15],whileshowntobeeffectiveforexpression-invariantrecognition,isdifficultytogeneralizetohandleglobalconditionssuchasilluminationchange,which
CategoriesandSubjectDescriptors
H.4[InformationSystemsApplications]:Miscellaneous
GeneralTerms
Featureextractionandpreprocessing
Keywords
Subspacelearning,Low-rankmatrix,Sparsematrix,FaceRecognition,ComponentDecomposition
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6/12/08... $15.00.
1469
oftenintroducetothedatanon-sparseconditionsthatcan-notbecapturedbythesparsitymodelproposedtherein.Recognizingthatnon-sparseconditionssuchasillumina-tionchangeandlargeocclusionarecriticalforfacerecogni-tion,andthatforatypicalapplicationwemayassumeonlyafinitenumberofsuchconditions(e.g.,arelativelysmallnumberofilluminationconditionsorotherconditions),inthispaper,weproposeamodelforrepresentingasetoffaceimagesbydecomposingthemintothreecomponents:acommoncomponentsharedbyimagesofthesamesubject,alow-rankcomponentcapturingnon-sparseglobalchanges,andasparseresidualcomponent.Suchadecompositionispartiallyinspiredbytheobservationthatthereconstructionoftheimagewiththetopfewsingularvaluesandthecorre-spondingsingularvectorsoftencapturetheglobalinforma-tionoftheimage,whichcanberepresentedbyalow-rankmatrix.Tothisend,agenericalgorithmisproposed,withtheoreticanalysisontheconvergenceandparameterselec-tion.Thelearnedcommonandlow-rankcomponentsformacompactanddiscriminativerepresentationoftheoriginalsetofimages.Aclassifieristhenbuiltbasedoncomparisonofsubspacesspannedbythesecomponentsandbyanovelimagetobeclassified.Thisisverycompactcomparedwiththenumberofatomsinanover-determineddictionarysuchasthatin[19].Further,byexplicitlymodelingnon-sparseconditions,theproposedapproachisabletohandlebothilluminationchangesandlargeocclusions,whichwouldfailmethodslike[15].
Todemonstratetheeffectivenessoftheproposedmethod,wefirstdesignsyntheticexperimentswithknowngroundtruthtoverifyitskeycapabilityinrecoveringtheunderlyingcommon,low-rankandsparsecomponents.Thenwereportresultsonthreecommonly-useddatasetsofrealfaceim-ages:theExtendedYaleBdataset[4],theCMUPIEdataset[17]andtheARdataset[14].Theexperimentsshowthat,theproposedapproachobtainedbetterperformancethantheSRCalgorithm[19],whichutilizesamuchlargerdic-tionary,andtheSUNapproach[7].TheproposedapproachalsoachievescomparableresulttoVolterrafaces,whichisthecurrentstate-of-the-artintheliteratureforafewcommonly-useddatasets.Inaddition,theproposedapproachcanex-plicitlymodelthemostimportantfeatureofthesubjectandtheconditionsinthedataset.Experimentsalsoshowthattheproposedmethodisrobusttosituationswhereanon-trivialpercentageofthetrainingimagesisunavailable.Fur-ther,thecapabilityoftheproposedapproachforclassifyingthetypeofconditionthataninputimageissubjecttoisalsodemonstratedbyextensiveexperiments.Thissuggeststhattheproposeddecompositionisabletoobtainphysicallymeaningfulandthuspotentiallydiscriminativecomponents.WeintroducetheproposedmethodinSection2,includingtheproposedmodel,thelearningalgorithmandtheclassifi-cationmethod.TheexperimentsarereportedandanalyzedinSection3.WeconcludeinSection4withasummaryoftheworkandbriefdiscussiononfuturework.
Inthepresentation,weuseuppercaseboldfontforma-trices,e.g.,X,lowercaseboldfontforvectors,e.g.,xandnormalfontforscalars,e.g.,x.{Xi,j}N,Mi=1,j=1denotesasetofN×Mmatrices,withXi,jasits(i,j)thmember.WeassumethatNisthenumberofthesubjects,andMthenumberofimagespersubject1.ThusXi,jreferstojthim-1
ageoftheithsubject.Whenthereisnoconfusion,wealsouseXtodenotetheset{Xi,j}N,Mi,j=1.
2.PROPOSEDMETHOD
Inthissection,wefirstpresentthegeneralformulationoftheproposedmodelinSection2.1,andthenpresentouralgorithmforobtainingthedesireddecompositioninSection2.2andanalysisofitsconvergenceinSec.2.3.Withthese,afacerecognitionalgorithmisthendesignedinSection2.4.
2.1DecomposingaFaceImageSet
Inmanyapplicationsofimageandsignalprocessing,weoftenconsiderasetofcorrelatedsignalsasanensemble.Forefficientrepresentation,asignalintheensemblecanoftenbeviewedasacombinationofacommoncomponent,whichissharedamongallthesignalsintheensemble,andaninnova-tioncomponent,whichisuniquetothissignal.Manybene-fitscanbedrawnfromthisdecompositionoftheensemble,suchasobtainingbettercompressionrateandbeingabletoextractmorerelevantfeatures.Infacerecognition,allthefaceimages,especiallythesubsetcorrespondingtoasub-ject,maybenaturallyviewedasformingsuchanensembleofcorrelatedsignals.Inasense,asparse-codingapproachlikeSRCimplicitlyfiguresoutthecorrelationoftheimagesintheensembleviathesparsecoefficientsunderthedictio-naryofthetrainingimages.
Inthiswork,weaimatdevelopinganewrepresentationofthisensemblesothatthefacerecognitiontaskcanbebettersupported.Inparticular,consideringthecommonchallengessuchasilluminationconditionsandlargeocclu-sions,wewanttohavearepresentationthatcanexplicitlymodelsuchconditions.Tothisend,weproposethefollowingdecompositionoffaceimagesXi,jintheensembleXas:
Xi,j=Ci+Aj+Ei,j,∀Xi,j∈X
(1)
whereCiisthecommonpartforSubjecti,Ajisalow-rankmatrix,andEi,jisasparseresidual.
OneessentialdifferencebetweentheproposedmethodandRobustPCA(RPCA[18]),isthatRPCAassumesthesig-nalsarelinearlydependent,withsomesparselycorruptedentriesinthesignals.Asaresult,theybuildabigmatrixwitheachsignalasavector.Thebigmatrixwouldnatu-rallybelow-rank(becauseoftheassumedinter-imagecorre-lation),inadditiontohavingasparsesetofentries.Ontheotherhand,theproposeddecompositionispartiallyinspiredbytheobservationthatthereconstructionoftheimagewithfirstfewsingularvaluesandthecorrespondingsingularvec-torsoftencapturetheglobalinformationoftheimage[12],e.g.,illuminationconditions,structuredpatterns,whichcanberepresentedbyalow-rankmatrix.Herethelow-rankcon-straintarisesfromcertainphysicalconditions(ratherthanduetointer-imagecorrelation),anditisimposedoneachindividualimage.Accordingly,werepresentimagesbyma-tricesratherthanvectors,unlikeothermethodslike[19,18].Withthis,wecanexpectthat:
Ciisamatrixrepresentingthecommoninformationofim-agesforSubjecti,i.e.,thecommoncomponents;numberofimages,whichcanalwaysbeachievedbyusingsomeblankimages,asituationtheproposedmethodcanhandle.
Forsimplicity,weassumethateachsubjecthasthesame
1470
Ajisalow-rankmatrixcapturingtheglobalinformationof
theimageXi,j,e.g.,illuminationconditions(Fig.3),structuredpatterns(Fig.1);andEi,jisasparsematrixpertainingtoimage-specificdetails
suchasexpressionconditionsornoisewithsparsesup-portintheimages.Inthismodeling,wehaveassumedMdifferentlow-rankmatrices,whichareresponsibleforMdifferentglobalcon-ditionssuchasilluminationconditionsorlargeocclusions,andtheyaresharedamongtheimagesofdifferentsubjects.However,imagesofeachsubjectdonotnecessarilycontainalltheMconditions,aswewillshowinSec.2.2.
Wecanalsoobtainavariantoftheabovemodelbycon-sideringtheRetinextheory,inwhichimageIcanberepre-sentedas:
I(p,q)=R(p,q)·L(p,q)
(2)
that,unlike[18]whereasetofimagesarestackedasvectorsofalow-rankmatrix,wedonotconverttheimagetoavectorinthedecompositionstage.
Toabsorbtheconstraintsintotheobjectivefunction,wecanreformulateEqn.5withaugmentedLagrangemultiplieras:
C,A,E=argminAj∗+λi,jEi,j1
C,A,E
μi,j
Xi,j−Ci−Aj−Ei,j2F2
+ i,j (6) whereR(x,y)isthereflectanceatlocation(x,y),whichde-pendsonthesurfaceproperty,L(x,y)istheillumination,and·iselement-wiseproduct.Convertingthisintothelog-arithmdomain,wehave log(I)=log(R)+log(L) (3) Theaboveequationindicatesthatwecanrepresentthein-tensityofthefaceimageasfollows: log(Xi,j)=Ci+Aj+Ei,j,∀Xi,j∈X (4) whereCi=log(R)capturesthecommonpropertyoftheim-agesforSubjecti,Aj=log(L)capturesthelightingcondi-tions,andEi,jcapturestheresidual.ThisisavariantofthemodelinEqn.1,andisespeciallysuitableforillumination-dominateddatasetssuchastheextendedYaleBdatasetandtheCMU-PIEdataset. Withtheabovedecomposition,theentiredatasetcon-tainingN×MimagescanbecompactlyrepresentedbyNcommoncomponentsandKlow-rankcomponents.IfweextractthecommoncomponentCiforfaceimagesofSub-jectiunderdifferentconditions,weexpectthatthiscom-moncomponentCirepresentsthemostsignificantfeatureofthatsubject.Thesetofallthelearnedlow-rankcompo-nentsA={Aj}Mj=1representsallpossibleglobalconditionsoftheimagesintheset.HencewemayuseAandCitospanthesubspaceofthefaceimagesforSubjecti,where,intheidealcase,anyfaceimagesofthissubjectshouldliein,barringasparseresidual.Thissuggeststhatwecanutilizethesubspacesforfacerecognitionbyidentifyingwhichsub-spaceatestimageismorelikelytoliein,whichisdetailedinSec.2.4. whereYi,jistheLagrangemultiplier,λi,jandμi,jarescalarscontrollingtheweightofsparsityandreconstructionerroraccordingly.Whenμissufficientlylarge,Eqn.6isequivalenttoEqn.5.Itisworthpointingoutthat,whileforclaritywehavewrittenonlytheexpressionforSubjecti,theoptimizationisactuallydonefortheentiresetofimages,sincethelow-rankcomponentsaredeemedasbeensharedbyallimages. TosolvetheproblemofEqn.6,ablockcoordinatede-scentalgorithmmaybedesigned,witheachiterativestepsolvingaconvexoptimizationproblem[3][18]foroneoftheunknowns.Tothisend,wefirstdescribethefollowingthreesub-solutionsthatareneededineachiterationofsuchanalgorithm,whichcorrespondtosolvingonlyoneoftheun-knowns(blocks)whilefixingothers. Sub-solution1:ForfindinganoptimalEi,jinthet-thiteration,wheretheproblemcanbewrittenas Ei,j =argminλi,jEi,j1+ μi,j2E XEi,j−Ei,jF+ Ei,j (7) withXEi,j=Xi,j−Ci−Aj.Sowedothefollowingupdate [6]: Ei,j=S λμi,j (XEi,j+ 1 Yi,j)μi,j (8) whereSτ(X)=sign(X)·max(0,|X|−τ). Sub-solution2:ForfindinganoptimalAkinthet-thiteration,wheretheproblemcanbewrittenas Aj=argminAj∗(9) Aj + μi,j2A XAi,j−AjF+ i 2.2AnAlgorithmfortheDecomposition BasedonEqn.1,weformulatethedecompositiontaskasthefollowingconstrainedoptimizationproblem,withanobjectivefunctionderivedfromtherequirementofdecom-posingasetofimagesintosomecommoncomponents,somelow-rankmatricesandthesparseresiduals: C,A,E=argminAj∗+λi,jEi,j1 C,A,E i,j Weusethesingularvaluethresholdingalgorithm[2,5]: A Tiμi,jXi,j+Yi,j ←UΣV iμi,j Aj = USτ(Σ)VT s.t.Xi,j=Ci+Aj+Ei,j,∀Xi,j∈X(5) whereAj∗=iσi(Aj)isthenuclearnorm,Ei,j1=N,M p,q|Ei,j(p,q)|isthe1normandE={Ei,j}i,j=1.Note NwithXA.i,j=Xi,j−Ci−Ei,jandτ=iμi,j Sub-solution3:ThesolutiontotheproblemoffindingoptimalCi μi,j2C argminXC(10)i,j−CiF+ 2jCi whereXCi,j=Xi,j−Aj−Ei,j,canbeobtaineddirectly(by takingderivativesoftheobjectivefunctionandsettingto 1471 zero)as Ci= j Yi,j+μi,jXCi,j jμi,j (11) Asalludedearlier,theimagesofanygivensubjectmaynotrangeoverallpossibleMconditions.Thismaybeequiv-alentlyviewedasaproblemofsomeimagesaremissingforthesubject.Wenowshowhowthiscanbeaddressedinaprincipledway.AssumethatΩisthesetof(i,j)where ¯isthecomplementofΩ.TodealXi,jisavailableandΩ withthosemissingentries,weonlyneedtosetYi,j,μi,j ¯intheinitializationstage.InandXi,jto0for(i,j)∈Ω ¯Theeachiteration,wedonotupdateEi,jfor(i,j)∈Ω. proposeddecompositionalgorithmwillautomaticallyinferthemissingimages. Withtheabovepreparation,wenowproposethefollow-ingAlgorithm1tosolveEqn.6: Algorithm1:LearningtheDecompositionInput:X,Ω,N,M,ρ,λandτ; N,MK Output:{Ci}Ni=1,{Aj}j=1and{Ei,j}i,j=1;%Initialization 00 t=0,C0i=Aj=Ei,j=0; Xi,j0τ Y0i,j=Xi,jF,μi,j=Xi,jFfor(i,j)∈Ω; IdeallyafaceimagefromSubjectishouldlieinasub-spacespannedbyitscommoncomponentCiandthelow-rankcomponentsA.Therefore,weproposethefollowing classificationschemebasedoncomparingthedistancebe-tweensubspacesspannedbythetrainingcomponentsandthosespannedbyreplacingthetrainingcommonbythetestimagey.WefirstbuildthesubspaceSiforsubjecti,whichcontainsallthelinearcombinationsoftheimagesofSubjectiunderallconditions,i.e., wk×(ci+aj)∀w∈RM}(12)Si={x|x= k whereciandajisthevectorizedformofCiandAjrespec-tively.SubspaceSicanbesufficientlyrepresentedbyaset of“basis”,i.e.,{ci+aj}Mj=1.Accordingly,wecanbuildthesubspaceSyforthetestimageyasthefollows: Sy={x|x=wk×(y+aj)∀w∈RM}(13) k Thenweusetheprincipalangles[8]betweenthesesubspace tomeasuretheirsimilarities.Inthispaper,theprincipalanglesmeasurethecosinedistancebetweenthesubspaces, whichiscalculatedass(Si,Sy)=kcos2(θk),whereθkisthekthprincipalanglebetweenSiandSy.Theassigniasthelabeloff,forwhichs(Si,Sy)ismaximal. 0 Y0/Ω;i,j=0,μi,j=0for(i,j)∈whilenotconvergeddo SolveEi,jfor(i,j)∈ΩbySub-solution1: SolveAjforj=1,2,...,MwithSub-solution2;SolveCifori=1,2,...,NusingSub-solution3;%UpdateYi,jandμi,jfor(i,j)∈Ω:+1t+1+1+1ttYt−At−Eti,j=Yi,j+μi,j(Xi,j−Ciji,j);+1tμti,j=μi,jρ;t=t+1;end 3.EXPERIMENTALRESULTS Experimentshavebeendonetoevaluatetheproposedmodelandalgorithms.Inthissection,wereportseveralsetsofresultsfromsuchexperiments.First,simulations(Sec.3.1)areemployedtodemonstratetheconvergenceandpa-rameterselectionoftheproposeddecompositionalgorithm.Then,weshowthedecompositionoftheimagesfromex-tendedYaleBdatasetandalsohowthelearnedcomponentscanbeusedtoreconstructnewimagesinSec.3.2.Finally,wedemonstratetheapplicationoftheproposedmethodandalgorithmsinclassificationtasks,includingfacerecognition(Sec.3.3)andidentifyingtheconditionsoftheimages(Sec.3.4).Theperformanceoftheproposedmethodinfacerecog-nitiontaskiscomparedwiththatofSRC[19],Volterrafaces[9]andSUN[7]on2commonlyuseddatasets,i.e.,extendedYaleB[10]andCMU-PIE[17]. whereforconvergence,wecheck i,j andifitissmallenough(e.g.,10−6),weterminatetheal-gorithm.λ,τandρarethreeparametersspecifiedininput,whicharediscussedinSec.3.1. Xi,j−Ci−Aj−Ei,j2F i,jXi,j2 F 2.3ConvergenceoftheAlgorithm Theconvergencepropertyofaniterativeoptimizationpro-cedurelikethealgorithmproposedaboveiscriticaltoitsuse-fulness.TheAlgorithm1hassimilarconvergencepropertyasthemethodsdescribedin[11],whicharealsoaugmentedLagrangemultiplierbasedapproaches.Wecandrawthefol-lowingtheorem:t+1t+1t−2Theorem1If∞<∞andlimt→∞μti,j(Ei,j−t=1μi,j(μi,j)Eti,j)=0∀i,j,thenAlgorithm1willconvergetotheopti-malsolutionfortheproblemofEqn.5. TheproofofTheorem1isincludedintheappendix. 3.1Simulation-basedExperiments Inthissubsection,weusesyntheticdatatodemonstratetheconvergenceofthealgorithmandselectionoftheparam-eters.ThecommoncomponentsandconditioncomponentsusedinthisexperimentareshowninFig.1(b,c),wheretheconditioncomponentsarefrom[16]andbothcomponentsarerescaledtorange[0,1].Thesparsecomponentsaresam-pledfromauniformdistributionintherangeof[0,1].Weusethosecomponentstogenerate25images,whichareusedinthisexperiment,asEqn.1. Algorithm1inSec.2.2requiresthreeparameters,ρcon-trolstheconvergencespeed;λcontrolsthesparsityofthesparseresiduals;andτisascalar.In[11],theysuggestρ=1.5,τ=1.25andλ=√1forRobustPCA,wherem misthewidthofXi,j.Wehavealsofoundthatλ=√1 m isoptimalfromtheexperiments,thusweadoptthisselec-tioninourpaper.Fromtheexperiment,wefoundthatτ∈[0.125,2]andρ=1.25wouldbeanoptimalchoice.Fig.1showsanexampleoftherecoveredcommoncomponents 2.4FaceRecognitionUsingtheDecomposition WiththecomponentsinEqn.1estimatedfromtheprevi-ousalgorithm,wenowdiscusshowtoclassifyatestimage.Recognizingthatthesparseresidualcapturesonlyimage-specificdetailsthathavenotbeenabsorbedbythecommonortheglobalcondition,wediscardthesparseresidualsfromthedecomposition(training)stageandkeeponlythecom-monandthelow-rankcomponents. 1472 (a)(a) (b)(c)(b)(c) (d)(e) Figure2:(a)theinputdatawith10imagemanu-allyremoved,(b,c)isthecommoncomponentsandconditioncomponentsdecomposedfrom(a)accord-ingly. commonsarelargelycleanpicturesofthesubjects,whiletheconditioncomponentsalignwellwiththegivenillumi-nationconditions.ThisexperimentshowsthecapabilityoftheproposedmethodwiththeRetinexmodeltodiscovertheilluminationconditionsandthesubjectcommonsfromasetofrealimages. Next,werandomlypick32illuminationconditionsoutofthedecomposedconditionsandthecommoncomponentsofSubject1toformasubspaceasdescribedinEqn.14.Thenweusetheproposedmethodtoidentifywhetherannewimageisinthissubspace,byreconstructingthisimageasthelinearcombinationofthe“basis”ofthissubspace,i.e.,c1+aj.Fig.4showsanexample,wherethenewimageisalsopickedfromSubject1;andFig.5showsanotherexam-ple,wherethenewimageispickedfromSubject2.Theseexamplessuggestthatthelearnedcomponentscanbeusedforidentifyingwhichsubjectannewimagebelongsto.Sim-ilarly,thelearnedcomponentscanalsobeusedforiden-tifyingwhichconditionsthenewimageisassociatedwith.Thesetwoscenariosarefurtherevaluatedinthefollowingtwosubsections,withrealfaceimages. Figure1:(a)showsthe25imagesgeneratedintheexperiment,wherethesparseparthas20%supportofeachimage.(b,c)showsthegroundtruthofthecommoncomponentsandconditioncomponentsac-cordingly.Wealsoshowthecommoncomponents(d)andconditioncomponents(e)decomposedfrom(b)whenρ=1.25andτ=2. (d)andconditioncomponents(e)whenthesparseparthas20%supportoftheimage.2 Todemonstratetherobustnessofthealgorithm,whenonlypartofdataisavailable,werandomlyremove10imagesfromthe25images(Fig.2(a))andrunthealgorithmwiththesamesetofparameters.TheresultsareshowninFig.2,where(b)istherecoveredcommoncomponentsand(c)istherecoveredconditioncomponents.Theseresultssuggestthatthealgorithmisstillabletoproducereasonableresultsevenwith40%oftheimagesmissing. 3.2DecomposingaSetofImages Inthissubsection,wefirstdemonstratethedecompositionofthesetofimagesfromExtendedYaleBdataset[4].Allthe2432imagesfrom38subjectsunderilluminationcondi-tionswereused.Thecommoncomponentsandthecondi-tioncomponentsareillustratedininFig.3.Comparingthesewiththeoriginaldata,itisevidentthattherecoveredTherecoveredpartsaresubjecttoalinearshiftandscaling.Weidentifytheparametersforthislinearshiftandscalingthenmapthembackwiththoseparameters. 2 3.3RecognizingtheFaceImages Inthissubsection,wedemonstratetheperformanceoftheproposedmethodinfacerecognitiontask,withthecompar-isontoSRC,VolterrafaceandSUNontheextendedYaleBdatasetandCMUPIEdataset.Asthesetwodatasetsaredominatedbyilluminationconditions,weusetheRetinexmodelfortheproposedmethod,i.e.,theimageisconverted 1473 (a)(b) Figure5:(a)thecoefficientforthelinearcombina-tion,(b)theinputimageand(c)thereconstructedimage. mentsaresetto0andthecorrespondingimageswon’tbeusedfortraining. TheExtendedYaleBdataset[4]containsN=38sub-jectswithimagesforeachsubject,whichcorrespondtoilluminationconditionsinthedataset.Theimagesarere-sizedto48×42.TheresultsontheextendedYaleBdatasetaresummarizedinTab.1.Fromthistable,wefindthattheproposedapproachandVolterrafacesachievethebestresults;andSUNgetobviouslythelowestaccuracy.TheperformanceofSRCdegradedramaticallyasthesizeofdic-tionary(i.e.,numberoftraininginstances)reduced. TheCMUPIEdataset[17]containsN=68subjectswithvaryingposes,illuminationsandexpressionsetc..Foralltheimages,wemanuallycropthefaceregion,accordingtotheeyeposition,thenresizethemto50×35.TheresultsaresummarizedinTab.2.InExperiment1,all4methodsgetsimilarresults;inExperiment2,theproposedmethodandVolterrafacesgetthebestresult;andinExperiment3,theproposedapproachgetsthebestresult.Inaddition,theproposedmethodismorerobusttothemissingoftrainingimages.TheperformanceofSRCdegradesobviouslyasthesizeofdictionaryreduced. Toillustratethespeedperformanceoftheproposedap-proach,wecomparedthetimerequiredtoclassifyoneim-ageinourapproachandtheSRCapproach.Thistimewasabout0.84secondsinourmethod,andabout1.59secondsinSRC.Thetimeforthedecomposition(i.e.,Algorithm1)islessthan5minutes.Themosttimeconsumingpartfortheproposedapproachisthesingularvaluedecomposition(SVD),whichisusedincomputingtheprincipleangle,soanefficientimplementationofSVDcanmaketheproposedalgorithmevenfaster. Figure3:ThedecompositionoftheextendedYaleBdataset.Weuseallthe2432imageswhichcontain38subjects(b)andilluminationconditions(a). Figure4:(a)thecoefficientforthelinearcombi-nation,(b)theinputimage,whichisnotobservedintheimagesfortrainingthe32illuminationcondi-tions,and(c)thereconstructedimage. tologarithm.IntheSRCmethod,webuildthedictionarybycontainingallthetrainingimagesasitscolumns.SincethereisnocodepubliclyavailableforSRC,webuildourownimplementation.For1optimizationusedbySRC,weusedOrthonormalMatchingPursuit(OMP)[1]asthesolver.Wesetthenumberofnon-zeroelementsinthesparsecoefficient(referasKlater)tobetwicethenumberofconditionsinthetrainingdata.Inaddition,eachimageisnormalizedtohavezeromeanandunitl2normforSRC.ForVolterrafacesandSUN,weusetheauthor’soriginalimplementationandtheprovidedparameters.Foralltheresults,wepresentthebothmeanandstandarddeviationoftheaccuraciesof3roundsofexperiments. Toexaminetherobustnessoftheapproacheswithrespecttotheamountoftrainingdata,weusethefollowingscheme.Intheexperiment,weonlypick“#trainpersubject”imagesforeachsubjectasthetraininginstances,accordingtotherandomlygeneratedsamplematrix,wheresomeoftheele- 3.4IdentifyingtheConditions Finally,weuseanexperimenttoshowhowtheproposedmethodcanbeappliedtotoidentifyingtheconditionsthetestingimagesareassociatedwith.TheARdataset[14]containsN=100subjectsand26imagesforeachsubjects.Thedatasetcontains2sessions,whicharetakenatdifferenttimes.Eachsessioncontains13conditions:4forexpres-sions,3forilluminations,3forsunglassesand3forscarves. 1474 (a)Experiment1 #trainpersubjectProposedSRC VolterrafacesSUN #trainpersubjectProposedSRC VolterrafacesSUN 322499.78±0.24%99.±0.04%96.48±0.44%95.29±0.52%99.95±0.06%99.80±0.26%.61±1.85%87.±2.80% (b)Experiment216 99.56±0.00%.14±0.00%99.25±0.34%79.22±0.00% 12 99.33±0.23%87.88±0.44%99.17±0.39%76.75±0.00% 16 99.18±0.14%91.90±0.94%99.48±0.49%76.91±3.71%8 98.32±0.03%81.02±0.13%96.27±4.03%68.86±0.00% 8 95.15±1.03%78.65±1.81%90.22±11.84%60.17±2.09%4 80.03±2.17%58.±1.26%91.03±2.43%51.60±0.00% Table1:TheresultsonextendedYaleBdataset.Experiment1:werandomlypickM=32illuminationconditionsfortrainingandtheremainingfortesting,i.e.,wewillobtainN=38commoncomponentsandM=32conditionsbytheproposedmethod.Experiment2:wemanuallypickM=16illuminationconditionsfortrainingandtheremainingfortesting. 4.CONCLUSIONSANDFUTUREWORK Inthispaper,weproposedanoveldecompositionofasetoffaceimagesofmultiplesubjects,eachwithmultipleimages.Thedecompositionfindsacommonimageandalow-rankimageforeachofthesubjectsintheset.Allthelow-rankimagesformasetthatisusedtocaptureallpossi-bleglobalconditionsexistinginthesetofimages.Thisfa-cilitatesexplicitmodelingoftypicalchallengesinfacerecog-nition,suchasilluminationconditionsandlargeocclusion.Basedonthedecomposition,afaceclassifierwasdesigned,usingthedecomposedcomponentsforsubspacereconstruc-tionandcomparison.Theclassificationperformanceshowsthattheproposedapproachcanachievestate-of-the-artper-formance.Experimentsalsoshowedthattheproposedmethodisrobustwithmissingtrainingimages,whichcanbeanim-portantfactortoconsiderinapracticalsystem.Wealsodemonstratedwithexperimentsthatthedecompositionin-deedcapturesphysicallymeaningfulconditions,withbothsyntheticdataandrealdata. Thereareafewpossibledirectionsforfurtherdevelop-mentofthework.Inparticular,thecurrentalgorithmas-sumesthatthelow-rankconditionsofthetrainingimagesareknownandgivenforeachofthem.Inpractice,ifthedatadonothavesuchimage-levellabel(butstillwithafinitesetoflow-rankconditions),itispossibletoexpandthecurrentalgorithmbyincorporatinganotherstepthatattemptstoestimateamappingmatrixforassigningacon-ditionlabeltoeachimage,duringtheoptimizationitera-tion.Forexample,wemaydefineamappingmatrixΦwithΦi,j=kdefiningthattrainingimageXi,jisassoci-atedwithconditionAk.Eqn.1suggestsaconstraintthatwemayusetosolveforΦ:theoptimalmappingmatrixshouldresultinthemostsparsityforEi,jorthelowestrankforAk,giventhesamereconstructionerror.Ifweusethefirstcriterion,theproblemoffindingΦcanbeformulatedasΦ=argminXi,j−Ci−AΦi,j1. Φ i,j Figure6:Theconfusionmatrix(inpercentage) ofconditionrecognitionresultfromtheproposedmethod,wherebothaxesaretheconditionindex.Theaxisisindexoftheconditions. Inourexperiments,weuseonesessionfortrainingandtheothersessionfortesting.Theimagesareconvertedtograyscaleandresizedto55×40.Torecognizedtheassociatedcondition,weslightlychangestheformulationofthesub-space: Si={x|x=wj×(ai+cj)∀w∈RN}(14) Sy ={x|x= jj wj×(y+cj)∀w∈RN} (15) whereSiisthesubspaceforconditioniandSythesubspace forthetestimage.Theothersettingswerethesameasthoseofpreviousfacerecognitionexperiments. Theproposedmethodachievesanaccuracyof91.77%inrecognizingtheconditions,withtheconfusionmatrixgiveninFig.6,whereweachievedover96%accuracyforallbutconditions1,2,3(3expressions)and12.Thisexperimentagaindemonstratestheeffectivenessoftheproposedmethodincapturingthephysicalconditionsintheformoflow-rankcomponents. 5.ACKNOWLEDGMENT Theworkwassupportedinpartbyagrant(GrantNo.08469)fromtheNationalScienceFoundation.Anyopin-ions,findings,andconclusionsorrecommendationsexpressed 1475 (a)Experiment1 #trainpersubjectProposedSRC VolterrafacesSUN #trainpersubjectProposedSRC VolterrafacesSUN #trainpersubjectProposedSRC VolterrafacesSUN 20 100±0.00%99.88±0.07%100±0.00%100% (b)12 100±0.00%99.91±0.16%100±0.00%100±0.00% (c)40 99.98±0.03%99.98±0.03%99.60±0.22%99.93±0.05% 15 100±0.00%99.88±0.07%100±0.00%99.84±0.11%Experiment29 99.960.08%98.±1.74%100±0.00%99.84±0.05%Experiment330 99.92±0.06%99.45±0.03%98.37±0.47%99.38±0.14% 10 99.65±0.37%99.73±0.14%100±0.00%99.45±0.43%6 99.17±0.15%96.90±3.73%99.±0.31%98.53±0.29%20 99.24±0.06%96.79±0.28%97.63±0.28%97.±0.30% 5 97.49±0.21%97.73±0.%95.83±4.16%95.75±0.49%3 94.70±0.20%87.18±1.78%94.30±4.72%88.75±4.72%10 90.95±0.70%86.98±0.16%.72±1.45%88.29±0.02% Table2:TheresultonCMU-PIEdataset.Experiment1:wepicktheimageswithfrontalpose(C27),whichinclude43illuminationconditionsforeachsubject.WerandomlypickM=20conditionsfortrainingandtheremainingfortesting.Experiment2:weagainonlypicktheimagewithfrontalpose,butwerandomlypickM=12conditionsfortrainingandtheremainingfortesting.Experiment3:weusealltheimagesfrom5nearfrontalposes(C05,C07,C09,C27,C29),whichincludes153conditionsforeachsubject.WerandomlypickM=40conditionsfortrainingandtheremainingfortesting..inthismaterialarethoseoftheauthorsanddonotneces-sarilyreflecttheviewsoftheNationalScienceFoundation. [9]R.Kumar,A.Banerjee,andB.Vemuri.Volterrafaces: Discriminantanalysisusingvolterrakernels.InComputerVisionandPatternRecognition,2009.CVPR2009.IEEEConferenceon,pages150–155,june2009. [10]K.Lee,J.Ho,andD.Kriegman.Acquiringlinear subspacesforfacerecognitionundervariablelighting.IEEETransactionsonPatternAnalysisandMachineIntelligence,pages684–698,2005. [11]Z.Lin,M.Chen,L.Wu,andY.Ma.Theaugmented lagrangemultipliermethodforexactrecoveryofcorruptedlow-rankmatrices.ArxivpreprintarXiv:1009.5055,2010. [12]J.Liu,S.Chen,andX.Tan.Fractionalordersingular valuedecompositionrepresentationforface recognition.PatternRecogn.,41:378–395,January2008. [13]J.Mairal,F.Bach,J.Ponce,G.Sapiro,and A.Zisserman.Discriminativelearneddictionariesforlocalimageanalysis.InComputerVisionandPatternRecognition,2008.CVPR2008.IEEEConferenceon,pages1–8.IEEE,2008. [14]A.MartinezandR.Benavente.TheARfacedatabase. Technicalreport,CVCTechnicalreport,1998. [15]P.NageshandB.Li.Acompressivesensingapproach forexpression-invariantfacerecognition.InComputerVisionandPatternRecognition,2009.CVPR2009.IEEEConferenceon,pages1518–1525,2009. [16]J.PortillaandE.Simoncelli.Aparametrictexture modelbasedonjointstatisticsofcomplexwaveletcoefficients.InternationalJournalofComputerVision,40(1):49–70,2000. [17]T.Sim,S.Baker,andM.Bsat.TheCMUpose, illumination,andexpression(PIE)database.In 6.REFERENCES [1]M.Aharon,M.Elad,andA.Bruckstein.K-SVD: Designofdictionariesforsparserepresentation.ProceedingsofSPARS,5,2005. [2]J.F.Cai,E.J.Candes,andZ.Shen.Asingularvalue thresholdingalgorithmformatrixcompletion.preprint,2008. [3]E.CandesandY.Plan.Matrixcompletionwithnoise. ProceedingsoftheIEEE,2009. [4]A.Georghiades,P.Belhumeur,andD.Kriegman. Fromfewtomany:Illuminationconemodelsforfacerecognitionundervariablelightingandpose.IEEETransactionsonPatternAnalysisandMachineIntelligence,23(6):3–660,2001. [5]D.GoldfarbandS.Ma.Convergenceoffixed-point continuationalgorithmsformatrixrankminimization.FoundationsofComputationalMathematics,pages1–28,2011. [6]E.T.Hale,W.Yin,andY.Zhang.Fixed-point continuationfor1-minimization:Methodologyandconvergence.SIAMJournalonOptimization,19(3):1107–1130,2008. [7]C.KananandG.Cottrell.Robustclassificationof objects,faces,andflowersusingnaturalimagestatistics.InComputerVisionandPattern Recognition(CVPR),2010IEEEConferenceon,pages2472–2479,june2010. [8]A.KnyazevandM.Argentati.Principalangles betweensubspacesinanA-basedscalarproduct: algorithmsandperturbationestimates.SIAMJournalonScientificComputing,23(6):2008–2040,2002. 1476 Proceedingsofthe5thInternationalConferenceonAutomaticFaceandGestureRecognition,2002.[18]J.Wright,A.Ganesh,S.Rao,Y.Peng,andY.Ma. RobustPrincipalComponentAnalysis:Exact RecoveryofCorruptedLow-RankMatricesviaConvexOptimization.InAdvancesinNeuralInformationProcessingSystems22. [19]J.Wright,A.Yang,A.Ganesh,S.Sastry,andY.Ma. Robustfacerecognitionviasparserepresentation.PatternAnalysisandMachineIntelligence,IEEETransactionson,31(2):210–227,2008. Eqn.5. ˙t+1,E˙t+1),wehavethefollowing:˙t+1,AProofFor(C ˙t+1,E˙t+1,Y˙t,μt)=minL(C,A,E,Y˙t,μt)˙t+1,AL(C C,A,E ≤≤ Ci+Aj+Ei,j=Xi,j,∀(i,j)Ci+Aj+Ei,j=Xi,j,∀(i,j)∗ min ˙t,μt)L(C,A,E,Y i,j minAj∗+λi,jEi,j1 =f APPENDIXA. PROOFOFTHEOREM1 ˜t+1,Proposition1ThesequencesofYi,j t+1˙andYareallbounded∀i,j,wherei,j +1Yti,jt+1ˆi,jYt+1˜i,jYt+1˙i,jY Wealsohave: t+1 t+1˙j∗+λi,jE˙i,jA1 i,j ˆt+1t+1 iYi,j,jYi,j =≤ ˙t+1,A˙t+1,E˙t+1,Y˙t,μt)−L(C ∗ t˙i,j˙t−12Y−YFi,j t2μi,j i,j ==== t+1+1+1t μt−At−Eti,j(Xi,j−Ciji,j)+Yi,jtt+1+1tμt−Eti,j(Xi,j−Ci−Aji,j+Yi,jttt+1tμti,j(Xi,j−Ci−Aj−Ei,j)+Yi,j +1t+1t˙t+1−A˙t˙i,j˙i,jμt−E)+Yi,j(Xi,j−Cij t˙i,j˙t−12Yt−1−YFi,j∗ f−=f+O((μi,j))t 2μi,ji,ji,j ˙t+1,A˙t+1,E˙t+1)istheoptimalsolutiontotheprob-and(C tN,M˙t,μt)withY˙t={Y˙i,jlemminC,A,EL(C,A,E,Y}i,j=1. ProofLet’swritetheLagrangefunctionin6as: tttt L({Cti}i,{Aj}j,{Ei,j}i,j,{Yi,j}i,j,{μ}i,j)t Aj∗+λi,jEti,j1i,j =++ μti,jtt2Xi,j−Cti−Aj−Ei,jF2 ttt ˙t+1isbounded∀i,j.whereweusetheknowledgethatYi,j ∗∗˙˙i,jTaket→∞,wehavei,jAj∗+λi,jE1=f∗.Using t˙t−1)=μt−1(X˙i,j−C˙t−1−A˙t−1−E˙t−1)andbound-˙i,j−Y(Yi,ji,jiji,j t+1∗˙˙˙∗˙∗ednessofYi,j∀i,j,wealsohaveXi,j−Ci−Aj−Ei,j=0˙∗,A˙∗,E˙∗)istheoptimalsolutionforEqn.5.∀i,j.Thus(C+1+1+1t+1tt ByXi,j−Ct−At−Etiji,j=μi,j(Yi,j−Yi,j)and t+1+1+1 +At+EtboundednessofYti,j,wehavelimt→∞Ciji,j= Xi,j∀i,j,i.e.,(Ct+1,At+1,Et+1)approachestoafeasibleso-lution.Inaddition,wehave t−1t+1t+1 t+1ˆi,j−Y˜i,jAj−At=(μi,j)(Y)FjF∞ t−1 Withtheassumption<∞,boundednessoft=1(μi,j)ˆt+1t+1t˜i,j,AandYhasalimitA∗j.Similarly:jiYi,j t−1t+1t+1 t+1tt+1˜i,jAj−At+C−C=(μi,j)(Yi,j−Y)FjiFi+1t+1t+1 Thuslimt→∞jAt−At−Ctj+Cii=0.SinceAjj t+1t+1 haslimitA∗haslimitC∗j,thenCii,thenEi,jhaslimit ∗∗∗∗ Xi,j−A∗j−Ci.So(C,A,E)isafeasiblesolution. +1 ConsideringthesubgradientsandtheoptimalityofEti,j +1ˆt+1∈∂At+1∗.˜t+1∈∂Et+11andYandAt,wehaveYji,ji,jjii,j Accordingtothepropertyofsubgradients: t+1 +1t+1t+1˙j∗+λi,jE˙i,j(At+λE)−(A1)∗i,j1ji,j ≤=− i,j tt˜t+1,Y˜t+1−Y˜i,j˙t+1−Y˙i,j˜t+1,Y μtμti,ji,ji,ji,j i,j t+1˙t+1+1t+1˙t+1+1ˆi,j˜i,j− j i i Forsimplicity,wewilluseL(Ct,At,Et+1,Yt,μt)insteadof t+1ttt L({Cti}i,{Aj}j,{Ei,j}i,j,{Yi,j}i,j,{μ}i,j).Thesubgra-dientofL(Ct,At,E,Yt,μt)overEi,jis λi,j∂Ei,j1− μti,j(Xi,j −Cti −Atj −Ei,j)− Yti,j ttt+1AsEti,jisoptimalfortheproblemargminL(C,A,E,Y,μt) Ei,j ˜t+10∈λi,j∂Eti,j1−Yi,j ˜t+1∈λi,jEt+11;andaccordingtotheTheorem3ofi.e.,Yi,ji,j t+1˜[11],Yi,jisbounded∀i,j.Similarly,wecanalsoshowthatt+1ˆt+1 ˙t+1arebounded∀i,j.Y,ii,jjYi,jandYi,j Proposition2Thesequencesof(Ct+1,At+1,Et+1)isbounded.ProofForAlgorithm1,wecanfindthat:L(C,A,E,Y,μ)≤L(Ct,At,Et+1,Yt,μt)=L(C,A,E,Y t t t t−1 t+1 t+1 t+1 t t ,μ t−1 ) ∞t+1t−2 Byboundednessofassumptionthat t upperbounded.Thusi,jAtj∗+λi,jEi,j1isbounded. ˙∗,A˙∗,E˙∗)forProposition3Theaccumulationpoint(C ˙t+1,E˙t+1)isoptimalfortheproblemin˙t+1,Asequences(C ≤L(C,A,E,Y,μ) ≤L(Ct,At,Et,Yt,μt) −1tμt i,j+μi,jt−12 +Yti,j−Yi,jFt2(μi,j)i,j tt+1t+1tt +1˙t+1arebounded;byByProposition1and2thatYti,j,Yi,j ∗˙∗˙∗Proposition3thati,jAj∗+λi,jEi,j1=f;andbyas-t+1t∗ sumptionlimt→∞μti,j(Ei,j−Ei,j)=0,wehavei,jAj∗+ ∗∗∗∗ λi,jE∗i,j1=f.Thatis(C,A,E)isoptimalfortheprobleminEqn.5.ThiscompletestheproofofTheorem1. 1477 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务