PredictionofProteinConformationalFreedomFromDistanceConstraints
B.L.deGroot,1D.M.F.vanAalten,2R.M.Scheek,1A.Amadei,1G.Vriend,3andH.J.C.Berendsen1*1GroningenBiomolecularSciencesandBiotechnologyInstitute(GBB),DepartmentofBiophysicalChemistry,UniversityofGroningen,Groningen,TheNetherlands
2KeckStructuralBiology,ColdSpringHarborLaboratory,ColdSpringHarbor,NewYork3EMBL,Heidelberg,Germany
ABSTRACTAmethodispresentedthatgeneratesrandomproteinstructuresthatfulfilasetofupperandlowerinteratomicdistancelimits.Theselimitsdependondistancesmea-suredinexperimentalstructuresandthestrengthoftheinteratomicinteraction.Struc-turaldifferencesbetweengeneratedstruc-turesaresimilartothoseobtainedfromexperi-mentandfromMDsimulation.Althoughdetailedaspectsofdynamicalmechanismsarenotcoveredandtheextentofvariationsareonlyestimatedinarelativesense,applicationstoanIgG-bindingdomain,anSH3bindingdomain,HPr,calmodulin,andlysozymearepresentedwhichillustratetheuseofthemethodasafastandsimplewaytopredictstructuralvariabilityinproteins.Themethodmaybeusedtosupportthedesignofmutants,whenstructuralfluctuationsforalargenum-berofmutantsaretobescreened.Theresultssuggestthatmotionalfreedominproteinsisruledlargelybyasetofsimplegeometricconstraints.Proteins29:240–251,1997.1997Wiley-Liss,Inc.Keywords:moleculardynamics;essentialdy-namics;proteindynamics;NMR
INTRODUCTION
StructuralstudieslikeX-raycrystallographyandNMRspectroscopyoftenprovideinsightintothefunctionofaprotein.However,detailedquestionsonmanydynamicaspectsofenzymaticmechanismssuchasregulationorsubstrateentry,remainunan-sweredwhenonlystaticstructuresareavailable.Dynamicprocessesarecrucialstepsinthefunction-ingofenzymes.Therefore,detailedinformationonthedynamicsofaproteinisnecessaryforacompleteunderstandingofitsfunction.
Simulationtechniquescanhelptoobtaindynamicinformationthatcannotbeprovidedbyexperimen-taltechniquesinastraightforwardmanner.Anum-berofcomputationaltechniqueshasbeendevelopedtogaininformationonproteindynamicsandstruc-turalfluctuations.MolecularDynamics(MD)andMonteCarlo(MC)techniquesarethemostpopularones.Theaccuracyofthesetechniquesdependson1997WILEY-LISS,INC.
theprotocolsused(force-field,molecularrepresenta-tionetc.)andonthesimulationlength.Usingthemostrealisticforcefields,atmostafewnanosecondsforasmallproteininanaqueousenvironmentcanbesimulatedwithinacceptablecomputertime.1,2Thistimescaleisafewordersofmagnitudesmallerthanthatonwhichmostbiologicalprocessestakeplace,leavingtheMDtechniquewithasignificantsam-plingproblem.3,4TheefficiencyofMCcalculationsiscomparabletothatofMDduetothepresenceofinternalbarriers.5EssentialDynamics
EssentialDynamics(ED),6–9equivalenttoPrinci-palComponent10,11analysesofMDtrajectorieshaveshownthatmost(morethan90%)ofthesimulatedatomicfluctuationsusuallycanbedescribedbyafewlarge-scaleconcertedmotions.EDanalysesofMDtrajectoriesdeterminetheeigenvectorsofthecovari-ancematrixofatomicfluctuations.Diagonalisationofthismatrixyieldsasetofeigenvectorsandeigen-valuesandtheeigenvectorswithlargesteigenvalues(usuallyatypicalnumberoftensuffices)describealllarge-scaleconcertedfluctuations.Iftheeigenvec-torsareseenasvectorsthatspanacomplexspacethenthefew‘‘essential’’eigenvectorswithlargesteigenvaluesspanasubspace,theessentialsubspace,andalllargeconcertedmotionstakeplaceinthissubspace.Itisassumedthatalsothetrueconfigura-tionalspaceofmostproteinscontainsalow-dimen-sionalsubspaceinwhichmostpositionalfluctua-tionstakeplace.Theessentialsubspaceobtainedfromsimulationisanapproximationofthatsub-space.EDanalysesofMDtrajectorieshavebeenhelpfulinanumberofcasestostudyfunctionalmotionsandpredictmutants.7,8,12Asthetrajectoryofeachsimulationcanbeconsideredasadiffusionalpaththroughapartoftheavailablespacespannedbythefirstfeweigenvectors,13,14thedefinitionof
*Correspondenceto:H.J.C.Berendsen,GroningenBiomolecu-larSciencesandBiotechnologyInstitute,DepartmentofBio-physicalChemistry,UniversityofGroningen,Ny¨enborgh4,9747AG,Groningen,TheNetherlands.E-mail:berends@chem.rug.nl
Received2August1996;Accepted6May1997
PROTEINCONFORMATIONSFROMDISTANCECONSTRAINTS
241
individualeigenvectorsspanningthissubspacefromasimulationhasnotconvergedinthesimulatedtime,3,4butthedefinitionofthesubspaceitselfapproximatelyhas.15,16Thismeansthatthehigheigenvalue-eigenvectorsconstructedfromindepen-dent(piecesof)simulation(s)arerotatedwithre-specttoeachotherbutonlyinasubspacewithlimiteddimension.Thefactthatthedynamicbehav-iorofsimulatedproteinscanbecapturedbyonlyafewdirectionsinconfigurationalspacecanbeusedtoimprovesamplingefficiencyinMDsimulationsbydrivingasecondMDrunalongeigenvectorsex-tractedfromaninitialMDrun.13,14,17
CurrentlytheeigenvectorsthatapproximatetheessentialsubspacecanonlybedeterminedfromcovarianceanalysesoflongMDruns,requiringconsiderablecomputationaleffort.Inthepresentstudy,however,anattemptismadetoobtainthesemostprominentcollectivestructurevariationsinaverysimplifiedway.
AnalogyWithStructureDeterminationFromNMRData
StructuresolutionbyNMRismainlybasedontheconversionofforce-fieldderivedandexperimentallydetermineddistances(fromNOEdata)intoasetofthree-dimensionalcoordinates.Theavailabledataisofteninsufficienttoreachauniquesolution,aprob-lemthatisusuallycircumventedbyprovidinganensembleofstructures.Largelocalconformationaldifferencesbetweengeneratedstructurescanrepre-sentstructuralflexibilitybutareoftentheresultofalackofexperimentaldata.18,19
Herewecarrythisideaabitfurther.Ifalldis-tancesareknown,andtheirupperandlowerboundsaresettophysicallyrealisticvalues,thentheresult-ingstructuresareclosetorealisticconfigurationsthatshould,inprinciple,bereachable(duringanMDsimulation).AnEDanalysisofsuchasetofstructureswill,iftheensembleofgeneratedstruc-turesislargeenough,yielddirectionsdescribingfluctuationsthatarepossiblewithintheselecteddistancelimits.Ifthedistancelimitsarechoseninasensiblemanner,thentheobservedfluctuationscorrespondtorealisticconfigurationalfreedomandtheEDresultscouldbeusedtoimprovethesam-plingduringMDsimulation.13,14,17
Atechniquehasbeendevelopedtogenerateran-domstructures,limitedbydistancecriteria.Themethodhasbeenappliedtoanumberofproteins(theB1IgG-bindingdomainofstreptococcalproteinG,thechicken␣-spectrinSH3domain,HPrfromEsch-erichiacoli,bacteriophageT4lysozymeandrattestiscalmodulin).Theseapplicationsindicatethattheapplieddistancerestrictionsarecompatiblewithacceptableproteinstructuresandthatthediffer-encesbetweenthesestructurescanbeusedtoex-tractinformationonthestructuralvariabilityoftheproteinsstudied.
METHODS
DistanceBounds
Themethodinitscurrentimplementationisbasedonacovarianceanalysisofrandomlygeneratedstructuresthatfulfilasetofdistanceconstraints.Thefirststepistomeasureallpairwiseinteratomicdistancesinthe(known)experimentalstructureoftheproteintobestudied.ThedistancelimitsarenowsetatthisdistanceplusorminusDnanometers,whereDissmallfortightlyinteractingatompairsandlargerforweakerinteractions.ThedifferenttypesofinteractionsthatwereconsideredarelistedinTableIanddistancelimitsDaregiveninTableII.Forallcovalent1–4pairs,theupperandlowerboundsarecorrectedsuchthattheirdistanceisalwaysbetweenthedistancescalculatedinthe‘cis’resp.‘trans’conformation.Thereisaspecialgroupforatompairsthatarepartofthesamesecondarystructureelementtomakesuresecondarystructure(helix,strand)ispreservedinthegeneratedstruc-tures.Thisway,atotalof4697distancerestrictions(3.3%ofthetotalnumberofdistances)couldbedefinedfortheB1IgG-bindingdomain.Thisnumberwas4197(2.5%)forSH3,7333(2.4%)forHPr,14388(1.5%)forcalmodulinand17818(0.6%)forlysozyme,respectively(seeTableIIforthedistributionofdistancesoverthedifferentclasses).
Tospeedupthesearchforstructuresthatfulfilalldistancecriteria,upperandlowerboundsarede-finedforallatompairsthatarenotexplicitlymen-tionedinTableI.TherangeoffreedomDgiventothesepairs(0.5nm)ismuchlargerthanforallotherpairs(TableII)(thelowerdistancelimitsforthesepairsarecorrectedsuchthattheyarenotlowerthanthesumofthevanderWaalsradiioftheatomsinvolved).Ifthisupperlimitisrelaxed,thespeedofconvergenceisstronglyreducedbuttheresultingstructuresarevirtuallyunchanged.
ForallstudiedproteinsexceptHPr,distanceswerecalculatedfromtheexperimental(X-ray)struc-tures(pdbentries1pgb,201shg,213cln22and2lzm,23respectively).ForHPr,asnapshotfromanequili-bratedMDsimulation24(initiatedfromtheNMRstructurewithpdbentry1hdn25)wasusedtoextractthedistances.AllstructureswereenergyminimisedusingtheGROMOS26forcefieldbeforedistanceswerecalculated.Allnonpolarhydrogenatomswereincludedwithinunitedcarbonatoms(exceptforaromatichydrogensinthecaseoflysozyme).PolarhydrogenswereplacedusingstandardGROMOShydrogenplacement.Thisresultedin535atomsfortheIgG-bindingdomain(56residues),583forSH3(57residues),785forHPr(85residues),1364forcalmodulin(143residues;residues1–4and148wereexcluded,sincetheywerenotobservableinthecrystallographicdata)and1703forlysozyme(164residues).
242
B.L.DEGROOTETAL.
TABLEI.DifferentClassesofInteractingPairs
1–21–3Rings
Side-chaindoublebondsOmega
Pairsthatarecovalentlybonded.
Ifatom1and2andatom2and3arecovalentlybonded.Allatompairsthatarepartofringsystems.
ASN,GLNandARGhaveoneormore(partiallydelocalized)doublebond(s)inthesidechain.Tor-sionanglesaroundthesebondsarerestricted,making1–4pairs(atom1–2,2–3and3–4arecovalentlybonded)aroundthesebondsmorerestrictedthanothers.
DistancesbetweenC␣atomsfromneighboringresiduesdependonthedihedralangle,whichis
morerigidthantheandtorsionanglesduetoconjugationofthecarbonylbondalongthepeptidebond,whichcausesthepeptideunittoberigidandplanar(other1–4pairsdefinedbythistorsionanglealsofallinthiscategory).
DistancesbetweenbackboneNatomsdependondihedralangles,whereasdistancesbetween
backbonecarbonylCatomsdependondihedralangles(other1–4pairsdefinedbyandalsofallinthiscategory)./restrictedpairsaresubdividedinthreegroups:
—Tight/:pairsofneighboringresiduesofwhichoneisaprolineandpairsthatarepartofthesamesecondarystructureelement(helixorstrand).BackbonedihedralsarerelativelymorerigidinprolineresiduesbecausetheNandC␣arepartofaringsystem.Residuesinhelixandstrandconformationhavewell-definedpositionsintheRamachandranplot,fromwhichlittledeviationisusuallyobserved.
—Loose/:pairsofneighboringresiduesofwhichoneisaglycineandpairsofresiduesinloopregions.Glycineresidueshaverelativelymuchrotationalfreedomaroundtheirandtor-sionanglesbecausethereisnosidechainthatinducesspecificpreferenceforcertainandcombinationsoverothers.Loopregionsareknowntohavearelativelypoorlydefinedstruc-ture,indicativeofconformationalflexibility.—Other/:allother/restrictedpairs.
Other1–4dihedralanglerestrictedpairs,involvingside-chainatoms.
Pairsofbackboneatomsthatarepartofthesamesecondarystructureelement(helixorstrand)
andarenotmorethan4residuesapart.
Oppositelychargedgroups(allatomsfromsuchagrouparerestricted)incloseproximity(Ͻ4Å).Donor–acceptordistanceshouldnotexceed3.5Å,thehydrogen–acceptorshouldnotexceed2.5Å
andthedonor–hydrogen–acceptorangleshouldbeminimally90°.
Pairsofatomsbetweenwhichtheinteratomicdistanceissmallerthanthesumofthevander
Waalsradiioftheinvolvedatomsplus0.5Åthatdonotfallinoneoftheabovecategories.Identicaltotighthydrophobic,butnowpairsareincludedofwhichtheinteratomicdistanceis
smallerthanthesumofthevanderWaalsradiioftheinvolvedatomsplus1.0Å.
Phi/psi
1–4
SecondarystructureSaltbridgeHydrogenbondTighthydrophobicLoosehydrophobic
ThevaluesgiveninTableIIwereobtainedfromananalysisofthedistancefluctuationsinMDsimula-tionsoftheB1IgG-bindingdomainofstreptococcalproteinG.ThelimitswerechosensuchthatthemajorityoftheMD-generateddistancesiscontainedwithinthelimits.
GenerationofStructures
Havingdefineddistanceboundsforallpairsofatoms,thenextstepistofindstructures,otherthanthereferencestructure,thatfulfilallconstraints.Wehavedevelopedanew,iterativeprocedurethatgener-atesstructuresfulfillingtherequirementthatalldistancesfallbetweentheirlowerandupperbound.Startingfromrandomcoordinates,correctionsareappliediterativelytothepositionsofthoseatomsthatareinvolvedininteratomicdistancesthatvio-latetheupperorlowerdistancebound.Correctionsareappliedsuchthatforeachviolatingpair,thedistanceisputrandomlybetweentheupperandlowerbound(bothatomsinvolvedaredisplacedbyanequalamount).Thesumofviolationsdecreaseswiththenumberofiterations.Theprocedureisstoppedwhenthesumofviolationsiszero.Conver-genceisusuallyreachedafter100–300iterationsofNsteps(Nisthenumberofviolations).Occasionally,thealgorithmdoesnotconvergetoastructuresatisfyingalldistanceconstraints.Whenthenum-berofiterationsexceedsacriterion(typically500),thealgorithmisstoppedandrestartedwithadiffer-entsetofrandomstartingcoordinates.Sincenoinformationonchiralityisincludedinthedistancebounds,bothmirrorimagesaregenerated.ThegeneratedD-aminoacidenantiomersareconvertedintotheLformbysimplytakingthemirrorimage.Themethod,calledCONCOORD(fromCONstraintstoCOORDinates)resemblesamethodproposedbyCrippen27butdiffersfromitinthewaythedistancecorrectionsareapplied.
Sinceinitialcoordinatesarechosenrandomly(fromacubewithedgesof2nm)anddistancecorrectionsareappliedbychoosingdistancesrandomlybetweentheirupperandlowerbounds,biasintheresultsisminimal.Thereisnocorrelationbetweenanytwostructuresthataregenerated,andtherefore,theaccessiblespacedefinedbythedistanceboundsismoreefficientlysampledthanbyproceduresinwhichsuchcorrelationispresent(likeMD).
PROTEINCONFORMATIONSFROMDISTANCECONSTRAINTS
243
TABLEII.ParametersUsedintheCONCOORDMethod*No.ofatoms
Type
1234567891011121314Total15
1–21–3Ring
doublebond1–4Omega1–4
Tightphi/psi1–4Loosephi/psi1–4Otherphi/psi1–4Other1–4Sec.str.SaltbridgesHydrogenbondsTighthydrophobicLoosehydrophobicAllotherpairs
pgb535
D(nm)0.0020.0050.010.010.010.020.040.030.040.050.0750.050.050.10.5
5417806816220272120322541556
8472785054697
59285588362241901925627659611603536654194SH3583
HPrcal7851364No.ofpairs79211373440336422180443552776
1544487147333
137619627396568762265726246622
2102741113214388
lys1703172325106291726528932887674574713986963157117818
No.
*Valuesindicatethedegreeoffreedomininteratomicdistancesrelativetotheexperimentalstructures.Thenumberofdistancesforallproteinsstudiedineachcategoryarelisted.Abbreviations:pgb,theB1IgG-binding;cal,calmodulin;lys,lysozyme.
Forallproteinsstudied,500structuresweregen-eratedwiththeCONCOORDmethod.FortheIgGbindingdomain(56residues),ϳ1hourofCPUtimeonaPentium100processorwasrequired(forcom-parison:anumberofweekswouldberequiredforanMDsimulationof1ns).Thespeedcouldbeimprovedbyintroductionofacutoffradiusforinteratomicdistancesorothermethodsthatreducethenumberofpairsthatneedtobecorrectedeveryiterationstep.However,themethodinitspresentimplemen-tationisfastenoughforallpracticalpurposes.Startingfromcoordinatesotherthanrandomlycho-senonesmayalsoenhanceconvergencespeed,butsincethecorrectionalgorithmisparticularlyeffi-cientintheinitialstageandbecausewewanttominimizetheamountofbiasintheresults,wepreferredrandomstartingcoordinates.
Allinformationonstructuralvariabilityisstoredintheupperandlowerdistancebounds.Therefore,itshouldinprinciplebepossibletoextractthisinforma-tiondirectlyfromthedistancebounds,withoutfirstgeneratingstructures.Wehavenotbeenabletoderiveananalyticalsolution,butanapproximationispossible.Givenaninteractionfunction,awaytogaininsightinthemostprominentmodesofmotionisbydiagonalizationofthe(mass-weighted)Hessianmatrix,asinNormalModes(NM)analyses.28–30Thematrixelementscorrespondtosecondderivativesofthepotentialenergywithrespecttothecoordinates.Thesimplestwaytoimplementdistancerestrictionsinsuchaninteractionfunctionistomodelallpairinteractionsbyharmonicpotentials,withthemini-mumdefinedatthedistancemeasuredintheexperi-mentalstructureandtheforceconstantinversely
proportionaltothedifferencebetweenupperandlowerdistancebound(allmassesareputto1.0).EigenvectorsoftheHessianmatrixthathavethesmallesteigenvalues(apartfromthosethatcorre-spondtooverallrotationandtranslation)aredirec-tionsinconfigurationalspacethatrepresenttheslowestvibrationsofamolecularsystem.Inade-tailedforcefield,thesedirectionshavebeenshowntobesimilartotheeigenvectorswithlargesteigenval-uesfromPrincipalComponentanalysesofMDtrajec-tories,15,31althoughnormalmodeshavetherestric-tionofharmonicity.
Startingfromthesamedistancebounds,diagonal-izationoftheHessianmatrixwillyieldresultsthataresomewhatdifferentfromthoseobtainedfromdiagonalisationofthecovariancematrixofposi-tionalfluctuationsfromgeneratedstructuresforanumberofreasons.First,duringgenerationofstruc-tures,somedistanceboundswillneverbereachedbecausetheyareexcludedbythepresenceofotherdistancelimits.Therefore,boundsmoothingonthetriangulationlevel32hadtobeperformedbeforecalculationoftheHessianmatrix.Second,distribu-tionsofdistancesareassumedtobeGaussianintheharmonicapproximation,whereasnosuchassump-tionismadeduringthegenerationofstructuresinCONCOORD,wherethedistancedistributionmayevenbeasymmetric.AnalysisTechniques
EssentialDynamics6analyseswereusedforcom-parisonofstructuralfreedominproteins.ThemethodconsistsofdiagonalizationofthecovariancematrixCofatomicfluctuations,afterremovalofoverall
244
B.L.DEGROOTETAL.
TABLEIII.AverageGeometricalPropertiesforStructuresGeneratedbyMDandCONCOORD,Compared
WiththeValuesObtainedFromExperimentalStructures
RMSD
pgbPDBpgbMD
pgbCONCOORDSH3PDBSH3MD
SH3CONCOORDHPrPDBHPrMD
HPrCONCOORDcalPDBcalMD
calCONCOORDlysPDBlysMD
lysCONCOORD
0.001.431.040.001.290.810.001.390.900.002.651.930.001.811.57
NRC8.09.67.314.014.813.312.014.112.120.021.317.916.020.419.7
HBO39.044.242.338.040.044.574.067.973.2110.099.4108.9122.0122.3124.8
ACC339138403673366540513858484050314892935598519788867588638585
GYR1.0211.0231.0231.0121.0261.0011.1461.1471.1262.0952.1132.0911.5901.5621.581
DIH1.02.681.863.02.032.945.05.094.525.010.425.465.07.217.91
QUALϪ0.083Ϫ0.662Ϫ0.337Ϫ0.668Ϫ1.231Ϫ0.639Ϫ0.553Ϫ0.741Ϫ0.540Ϫ0.160Ϫ0.728Ϫ0.509Ϫ0.228Ϫ0.953Ϫ0.891
ENEϪ2241Ϫ2005Ϫ2140Ϫ2975Ϫ2816Ϫ2811Ϫ4237Ϫ4252Ϫ4223Ϫ7428Ϫ7505Ϫ7484Ϫ10869Ϫ10740Ϫ10493
Abbreviations:pgb,theB1IgG-bindingdomain;cal,calmodulin;lys,lysozyme;RMSD,rootmeansquaredeviation,expressedinÅ;NRC,numberofresiduesinrandomcoilconformation,accordingtoDSSP34;HBO,numberofmainchainhydrogenbonds(DSSP);ACC,totalsolventaccessiblesurfaceinÅ2(DSSP);GYR,radiusofgyrationinnm;DIH,numberofresiduesinunfavorableregionsinRamachandranplot35,44;QUAL,WHATIFindexindicatingthenormalityofpacking45;ENE,potentialenergyafterenergyminimizationintheGROMOSforcefield.
translationandrotation:
Cijϭ7(xiϪ7xi8)(xjϪ7xj8)8
(1)
wherexarecartesianatomiccoordinates.Resultingeigenvectorsaredirectionsinconfigurationalspaceofwhichthecorrespondingeigenvaluesgivethemeansquarefluctuationofthedisplacementineachdirection.EDanalysescanbeappliedtoany(sub)setofcoordinatesofthestudiedmolecularsystem.OnlyC␣atomswereincludedinEDanalysespresentedherebecauseithasbeenshown6,8,15thatthisap-proachbestdetectsthelarge-scaleconcertedmo-tionsinproteins.
ThesoftwareforthegenerationofstructureswillbeavailableontheWWW(http://rugmd0.chem.rug.nl)andisimplementedintheWHATIF33package.EDandallotherstructuralanalyseswereperformedusinganinterfaceinthemolecularmodelingpackageWHATIF.33Secondarystructureanalysesandacces-siblesurfacecalculationswereperformedwithDSSP.34DihedralanglecriteriaweretakenfromPROCHECK.35
RESULTS
AllCONCOORDstructuresweresubjectedtoanumberofstructuralanalysestoassesshowphysi-callyrealisticthegeneratedstructuresare(TableIII).Thesameanalyseswereperformedonstruc-turessampledbyMD(forsimulationdetails:theIgG-bindingdomain16(1ns),SH39(1ns),HPr24(300ps),calmodulin36(500ps),andlysozyme(submittedforpublication)(1ns).AllMDsimulationswereperformedinexplicitsolventatroomtemperature.ComparisonwithcrystalstructuresandMDshows
thatinCONCOORD,withthepresentsetofparam-eters,structuresgenerallyaremoresimilartotheirrespectiveexperimentalstructurethaninMD.ThereisgoodcorrespondencebetweenthevaluesobtainedfromMDandCONCOORDforallpropertiestakenintoaccount.MeansquareatomicfluctuationsofC␣atomsareplottedinFigure1forbothCONCOORDandMD.ThereisreasonablequalitativecorrelationbetweencurvesobtainedfromCONCOORDandMD(correlationcoefficientsbetween0.501and0.871).Forallmoleculesstudiedtheensemblesofconfor-mationsgeneratedbyMDandCONCOORDweresubjectedtoessentialdynamicsanalyses.Inallcasesonlyafeweigenvectorswerefoundwithsignifi-canteigenvalues.TheseeigenvaluesareshowninFigure2(eigenvalueshavebeensortedbydecreas-ingvalue).Eigenvaluecurvesfrombothtechniquesareequallysteepforallproteins,indicatingthatalsofromtheCONCOORDresultsonlyafewcollectivefluctuationsemergewithappreciablefreedom.
InnerproductsbetweeneigenvectorsfromMDandCONCOORDwerecalculatedtoevaluatewhethereigenvectorsobtainedfrombothtechniquesrepre-sentsimilarfluctuations.SquaredinnerproductsareshownforeverypairofeigenvectorsfromMDandCONCOORDfortheB1IgG-bindingdomaininFigure3a.Allhighinnerproductsarefoundclosetothediagonal,meaningthatforbothtechniques,directionsinconfigurationalspaceareorderedsimi-larlywithrespecttotheamountoffluctuation,thatis,directionsthatshowlargefluctuationsinMDalsoshowrelativelylargefluctuationsinCONCOORD,andviceversa.Figure3bshowsthesquaredinnerproductsbetweeneigenvectorsobtainedfromtwohalvesofanMDsimulationof1ns.Theoverlap
PROTEINCONFORMATIONSFROMDISTANCECONSTRAINTS
245
Fig.1.MeansquarepositionalfluctuationofC␣atoms.ThecorrelationcoefficientbetweenthecurvesobtainedfromMDandCONCOORDisshownnexttothefigures.
betweenthetwoeigenvectorsetsfromMDissimilartothatbetweenMDandCONCOORD.InFigure3cthesamecomparisonismadefortwosetsofstruc-turesobtainedbyCONCOORD.Twoindependentsetsof250structureswereusedintheEDanalyses.Figure3showsthattheoverlapbetweenMDandCONCOORDisespeciallyhighintheessentialsub-space(definedarbitrarilyasthesubspacespannedbythe10eigenvectorswithlargesteigenvalues).TheoverlapoftheessentialsubspacesfromMDandCONCOORDhasbeenevaluatedinamorequantita-tivewaybecausetheessentialsubspaceisofparticu-larinterest(about80%oftheobservedstructuralfluctuationusuallyoccursinthissubspace).Figure4showsthemeancumulativesquaredinnerproductsbetweeneigenvectors(fromMDandCONCOORD)spanningthissubspaceandthefirst50eigenvectorsfromindependentMD/CONCOORDruns,fortheIgGbindingdomain.Overlapisconcentratedintheinitialpart.Forexample,80%ofoverlapwiththefirst10CONCOORDeigenvectorsisreachedwithinthefirst20MDeigenvectors,indicatingthatallessentialdirectionsfoundbyCONCOORDarealsoaccessibleinMD.TheoverlapbetweeneigenvectorsfromtwoindependentMDrunsisverysimilartotheoverlapbetweenCONCOORDandMD,whereastheoverlapbetweentwoindependentCONCOORDrunsisveryclosetothemaximumpossibleoverlap,indicatinganalmostcompleteconvergence.
Themeansquaredinnerproductsbetweenthe10eigenvectorswithlargesteigenvaluesfromMDandCONCOORDaregiveninTableIV,forallproteinsstudied.Theoverlapbetweentheessentialsub-spacesobtainedbyMDandCONCOORDiscompa-rabletotheoverlapobtainedfromthetwohalvesofeachMDtrajectory.Atypicaloverlapofϳ0.5isobtainedforallproteins(avalueof1.0wouldbeobtainedifthetwosetsareidentical).OverlapbetweeneigenvectorsobtainedfromtwopartsoftheclustersproducedbyCONCOORDissignificantlylargerforallproteins.
Overlapofthe10CONCOORDeigenvectorswithlargesteigenvalueswiththe10lowestfrequency-eigenvectorsobtainedfromdiagonalizationoftheHessianmatrixwascalculatedtobe0.678fortheB1IgG-bindingdomain(C␣componentswereextractedfromtheeigenvectorsoftheHessianmatrixandtheobtainedvectorswererenormalisedbeforetheanaly-
246
B.L.DEGROOTETAL.
Fig.2.EigenvaluesobtainedfromMDtrajectoriesandensemblesofstructuresgeneratedbyCONCOORD.Onlythe50largesteigenvaluesareshownoutof168(pgb,B1IgG-bindingdomain),171(SH3),255(HPr),429(cal),and492(lys),respectively.
sis).Thisvalueissomewhatsmallerthantheover-lapbetweeneigenvectorsobtainedfromtwoclustersofCONCOORDstructures(0.866),indicatingthatsmalldeviationsfromtheconvergedCONCOORDresultsemergeinthisapproximation.TheoverlapoftheHessianeigenvectorswithMDeigenvectorswascalculatedtobe0.486.ThisisslightlylowerthantheoverlapoftheeigenvectorsobtainedfromCONCOORDstructureswithMDeigenvectors(0.532).
ThedifferenceinthewaytheconformationalspaceissampledinCONCOORDandMDisillustratedinFigure5.InMD(Fig.5a),asinglepathisfollowedthatresemblesarandomwalk,13,14,17whereasinCONCOORD(Fig.5b),arandomsamplingtakesplace,witheachpositionindependentfromtheprevi-ousone.ToinvestigateinmoredetailtowhichextentthemodesofmotionpredictedbyCONCOORDareaccessibleinMD,anextendedMDsimulationwithconstraintsonthetwoCONCOORDeigenvectorswithlargesteigenvalueswasperformed.Thewayinwhichtheseconstraintsareappliedmakesitpos-sibletoefficientlyassesstheportionoftheconforma-tionalspacethatisaccessibletoMD.13,14,17AscanbeseenfromFigure5c,theregionsampledbythistechniqueissimilartotheregionsampledbyCONCOORD.
StructurescollectedalongthemostimportantdirectionsdefinedbyCONCOORDareshowninFigure6forcalmodulinandlysozyme.TheCONCOORDeigenvectorwithlargesteigenvalueforcalmodulincorrespondstoacombinationofabendandatwistoftheinterdomainhelix,resultinginarotationofonedomainwithrespecttotheother(Fig.6a).Fromexperiments(hydrogenexchangemeasurements,37NMRrelaxationdata38andNMRNOEdata39fromwhichdisorderinthesetofNMRstructures40emerged),thehelixisknowntobreakinthemiddle,whichwasalsoobservedinMDandNormalModesanalyses.36
Forlysozyme,theCONCOORDeigenvectorwithsecondlargesteigenvaluecorrespondstoafluctua-tionthatissimilartostructuraldifferencesthathavebeenobservedbycrystallographyofanumberofmutants41(Fig.6b).Themaindomainfluctuationconsistsofarotationofthetwodomainswithrespecttoeachother,initiatedbyacombinedtwistingand
PROTEINCONFORMATIONSFROMDISTANCECONSTRAINTS
247
Fig.3.SquaredinnerproductmatricesfortheB1IgG-bindingdomain.A:EigenvectorsfromMD(1ns,y-axis)arecomparedtothosefromCONCOORD(500independentstructures,x-axis).B:EigenvectorsfromthetwohalvesoftheMDrun(500pseach)arecomparedtoeachother.C:ThesameisdoneforCONCOORD(250independentstructureswereusedineachanalysis).
bendingoftheinterdomainhelix.Thedifferencebetweenthemostopen41andthemostclosed42X-raystructurealongthisrotationaxisisasmuchas49°.TheangulardifferencebetweenthemostopenandmostclosedCONCOORDstructurewas33°;forMDthisvaluewas28°.BothCONCOORDandMDdonotreachthemostopenexperimentalconfiguration.
DISCUSSION
TheresultsshowthattherearemanysimilaritiesbetweenMDandCONCOORD.However,thereisalsoanumberofapparentdiscrepancies.InFigure1,anumberofpeaksareonlyobservedinthecurvesobtainedfromCONCOORDandnotfromMD,orviceversa.Thebroadpeaknearresidue48(locatedintheturnconnectingstrands3and4)fortheB1IgG-bindingdomaininCONCOORDthatisnotpresentinthecurvefromMDrepresentsfluctua-tionsthataredominatingtheCONCOORDeigenvec-torwithlargesteigenvalue.ThisdirectionisnotpresentwithinthefirsttwoeigenvectorsfromMD,butisrepresented75%bythefirstsixMDeigenvec-tors,indicatingthatthismotionisalsoaccessibleinMD.Likewise,thepeaknearresidue39forcalmodu-lin(asurfaceloopconnectinghelices2and3)inMDismostlytheresultfromthemotionalongthefirstMDeigenvector.ThismodeofmotionshowslittleoverlapwiththefirstfiveeigenvectorsofCONCOORDbutiscontainedfor75%inthefirst15CONCOORDeigenvectors,indicativeofsignificantfluctuationinthecloudofCONCOORDstructures.
ThesimilarityoftheMDandCONCOORDresultsisremarkable,sincebothtechniquesdifferonsev-eralfundamentalpoints.First,theinteractionfunc-tionbetweenparticlesismuchmorecomplexinMDthaninCONCOORD,intermsofthenumberofparametersthatdeterminetheamountandkindoffluctuationsthatareaccessible.Inthecurrentimple-
248
B.L.DEGROOTETAL.
Fig.4.Cumulativemeansquareinnerproductsbetweenthe10eigenvectorswithlargesteigenvaluesobtainedfromMD/CONCOORDandalleigenvectorsobtainedfromdifferentMD/CONCOORDruns.Afterdivisionby10,allcurvesconvergeto1.0,sinceeveryeigenvectorfromonesetiscontainedinthecompletesetofvectorsfromanotherset.Thesolidlinecorrespondstothemaximumobtainableoverlap.pgbdenotestheB1IgG-bindingdomain.
TABLEIV.MeanSquaredInnerProductsBetweenSubsetsContainingthe10EigenvectorsWith
LargestEigenvalues
MeancumulativesquareinnerproductMD–MD–CONCOORD–ProteinCONCOORDMDCONCOORD
pgb0.532
0.5600.866SH30.4460.4940.809HPr0.4160.3870.904cal0.4400.5320.802lys
0.454
0.487
0.910
ThefirstcolumncontainsacomparisonbetweenMDandCONCOORD,thesecondcolumncomparestwohalvesofeachMDtrajectory,whichisdoneinthethirdcolumnforCONCOORD.pgbdenotestheB1IgG-bindingdomain.
mentation,atotalofonly15parametersissufficient.Second,inCONCOORDonlyshort-rangeinterac-tions(roughlysmallerthan6Å)withintheproteinmakeaseriouscontribution,whereasinMDlong-rangeinteractionsandinteractionswithsolventarealsoincluded.Additionally,allinteractionsareimple-mentedintheformofdistanceconstraintsinCONCOORD.InMD,usuallyonlybondlengthsaredescribedthisway.AnotherimportantdifferencebetweenMDandCONCOORDisthewayinwhichstructuresaregenerated.InMD,theequationsofmotionsareintegratednumericallytoyieldauniquepathinconfigurationalspace,whereeachstructureisadeterministicresultofthepreviousone.InCONCOORD,structuresaregeneratedbyarandomsearchmethodthatsearchesforsolutionsinapre-definedcoordinatespace.Incompletesamplingisoneofthedominatingreasonsforerrorsinthedefinition
ofanessentialsubspacefromMDsimulation.3,4,16ThefactthattheoverlapbetweenCONCOORDandMDissimilartotheoverlapbetweendifferentpartsofMDsimulationssuggeststhattheseerrorsareofthesameorderofmagnitudeastheerrorsmadeinCONCOORDduetoatoosimplemodel.
ThedifferencesbetweenMDandCONCOORDimplythatnotallthedatathatcanbeobtainedbyMDcanalsobeobtainedbyCONCOORD.Dynamic(time-dependent)information,forexample,cannotbederivedfromCONCOORDdata.Also,theampli-tudeofpredictedfluctuationscanonlybederivedinarelativesense,thatis,themethodonlypredictscertainmodestobemoreaccessiblethanothers.Forexample,thehingebendingmodeinlysozymewasnotsampledinthesamerangeasinexperiment.However,thisalsoholdsforanMDsimulationof1ns.Thelocalcauseofalargeoverallstructurevariationcannotbededucedreliablyfromananaly-sisofCONCOORDresults.Themainmotionincalmodulin,forexample,isknowntobetheresultofthebreakingoftheinterdomainhelix.Sucharigor-ouseventisnotallowedwithinthedistanceboundsastheyaredefinednow.However,itisinterestingtonotethateveninthecaseofsuchlargeconforma-tionalchanges,thefirststageofsuchchangesisalreadysampledand,inthecaseofcalmodulin,emergesasthefluctuationwithlargestamplitude.ThecomparisonofeigenvectorsobtainedfromdiagonalizationoftheHessianmatrixwiththosefromCONCOORDandMDindicatesthatevenwith-outthegenerationofstructures,aroughapproxima-tioncanbeobtainedofthesubspaceinwhichallsignificantbackbonemotionstakeplace.Diagonaliza-tionoftheHessianmatrixisfasterthanthegenera-tionofalargeenoughsetofstructuresbyCONCO-ORDforacovarianceanalysis.Inmostcasesthegenerationofstructuresistobepreferred,however,sincetheproducedstructurescanalsobeusedforotheranalyses,andtheCONCOORDeigenvectorsshowbetteroverlapwithMD.
TheparametersusedforCONCOORD(TableII)weregeneratedfortheB1IgG-bindingdomain,buttheywereapplicablewithoutmodificationsfortheotherproteinsandgavemeaningfulresults.ThevaluesinTableIIIindicatethatasetofphysicallyrealisticstructureshasbeengeneratedbyCONCOORDforallproteinsstudied.
StructuralVariationinClustersofNMRStructures
AsignificantlevelofcorrelationbetweenessentialdirectionsdefinedfromMDandfromclustersofNMRstructureshasbeenfoundforanumberofproteins(unpublishedobservations).FortheB1IgG-bindingdomainofstreptococcalproteinGforinstance,thesummedsquareinnerproductsofthe10eigenvectorswithlargesteigenvaluesfromMDandNMRwasfoundtobe0.35,comparabletothe
PROTEINCONFORMATIONSFROMDISTANCECONSTRAINTS
249
Fig.6.Stereorepresentationofextremestructures(thinlineandthindashedline)alongCONCOORDeigenvectors,togetherwithaveragestructures(boldline).A:Calmodulin,eigenvector1.B:Lysozyme,eigenvector2.
valuesinTableIV.Inarecentstudy,asimilarobservationwasreported43forBPTI.TheamountofdynamicinformationthatcanbederivedfromNMR/NOEdatahasbeensubjectofdiscussion.Ithasbeenargued18,19thattheamountofinformationusuallyusedforstructuregenerationfromNMRdataisgenerallytoolimitedtoyieldinformationontheconformationalflexibilityofmacromolecules.Inlinewiththeresultspresentedinthispaper,however,methodsthatprovideasetofproteinstructuresinwhichallstructuralconstraintsarefulfilledcanbeexpectedtogiveinsightintotheconformationalflexibilityofthesemolecularsystems.Theinforma-tionderivedfromaclusterofNMRstructuresisonlypartiallytheresultoftheexperimentaldatausedintheanalysis.InNMRstructurerefinement,notonlytheexperimentallyderived(distance)restrictionsareusedfortheanalyses,alsoknowledgeof,for
Fig.5.a(top):ProjectionoftheMDtrajectoryoftheIgGbindingdomainandb(middle):thecollectionofCONCOORDstructuresontotheplanesdefinedbythetwoeigenvectorswithlargesteigenvaluesfrombothtechniques.c(bottom):ProjectionofCONCOORD(smallcircles)andextendedMD(continuousline)structuresontotheplanedefinedbythetwoCONCOORDeigen-vectorswithlargesteigenvalues.
250
B.L.DEGROOTETAL.
instance,bondlengthsandanglesisusuallyin-cludedtogeneratestructures.Thecollectionoftheserestraintsrestrictsthegeneratedconfigurationstosuchanextentthatmeaningfulinformationabout(thefew)importantcollectivedegreesoffreedommaybederivedfromsuchanalyses.
CONCLUSIONS
WehaveshownthatthemajorfluctuationsinproteinstructuresthatarepredictedbyCONCOORDareconcentratedinafewdirectionsinconfigura-tionalspace.Apparently,theboundsoninteratomicdistances,whichareononehanddefinedbytheconnectivitiesinthestructure(covalentbonds)andontheotherhandbythewaytheproteinisfolded(hydrogenbonds,saltbridges,hydrophobiccon-tacts),restricttheconformationalfreedomofthesesystemssuchthatonlyafewcollectivedegreesoffreedomfluctuatesignificantly.Apartfromthedisad-vantagesthatnotimedependentinformationisobtainedandthattheextentandstructuralcauseofthefluctuationscannotbedetermined,analmostconvergeddescriptionofthemostimportantcollec-tivedegreesoffreedomisobtainedwhenonlyalimitednumberofstructureshasbeengenerated.Ithasbeenshownthatitisnotnecessarytousesophisticatedatomicinteractionfunctionstoobtainbasicknowledgeaboutthestructuralfluctuationsofproteinsinsolution.Thesumofallinteractionsinproteinsmakesfluctuationstobeconcentratedinafewcollectivedegreesoffreedomwhichcanbeobtainedbyastraightforwardmethod.Theminimalcomputationaleffortinvolvedallowsforthescreen-ingoffluctuationsinmanyconfigurations,whichcould,forexample,facilitatethedesignofmutants,orenhancethecapabilitiesofhomologyprediction.
ACKNOWLEDGMENTS
WethankDavidvanderSpoelforkindlyprovidingthecalmodulinMDtrajectory,NicovanNulandfortheHPrMDtrajectory,andMichaelNilges(EMBL,Heidelberg)forcriticallyreadingthemanuscript.
REFERENCES
1.Elofsson,A.,Nilsson,L.A1.2nsMolecularDynamicssimulationoftheribonucleaseT1)-3Ј-guanosinemonophos-phatecomplex.J.Phys.Chem.100:2480–2488,1996.2.Brunne,R.M.,Berndt,K.D.,Gu¨ntert,P.,Wu¨thrich,K.,VanGunsteren,W.F.Structureandinternaldynamicsofthebovinepancreatictrypsininhibitorinaqueoussolutionfromlong-timeMolecularDynamicssimulations.Proteins.23:49–62,1995.
3.Clarage,J.B.,Romo,T.,Andrews,B.K.,Pettitt,B.M.,PhillipsJr.,G.N.Asamplingprobleminmoleculardynam-icssimulationsofmacromolecules.Proc.Natl.Acad.Sci.U.S.A.92:3288–3292,1995.
4.Balsera,M.A.,Wriggers,W.,Oono,Y.,Schulten,K.Princi-palcomponentanalysisandlongtimeproteindynamics.J.Phys.Chem.100:2567–2572,1996.
5.Jorgensen,W.L.,Tirado-Rives,J.MonteCarlovsMolecu-larDynamicsforconformationalsampling.J.Phys.Chem.100:14508–14513,1996.
6.Amadei,A.,Linssen,A.B.M.,Berendsen,H.J.C.Essentialdynamicsofproteins.Proteins17:412–425,1993.
7.VanAalten,D.M.F.,Amadei,A.,Vriend,G.,Linssen,A.B.M.,Venema,G.,Berendsen,H.J.C.,Eijsink,V.G.H.Theessen-tialdynamicsofthermolysin:confirmationofhinge-bendingmotionandcomparisonofsimulationsinvacuumandwater.Proteins22:45–54,1995.
8.VanAalten,D.M.F.,Findlay,J.B.C.,Amadei,A.,Ber-endsen,H.J.C.Essentialdynamicsofthecellularretinolbindingprotein:evidenceforligandinducedconforma-tionalchanges.Prot.Eng.8:1129–1136,1995.
9.VanAalten,D.M.F.,Amadei,A.,Bywater,R.,Findlay,J.B.C.,Berendsen,H.J.C.,Sander,C.,Stouten,P.F.W.Acomparisonofstructuralanddynamicpropertiesofdiffer-entsimulationmethodsappliedtoSH3.Biophys.J.70:684–692,1996.
10.Garcia,A.E.Large-amplitudenonlinearmotionsinpro-teins.Phys.Rev.Lett.68:2696–2699,1992.11.Hayward,S.,Kitao,A.,Hirata,F.,Go¯,N.Effectofsolvent
oncollectivemotionsinglobularproteins.J.Mol.Biol.234:1207–1217,1993.
12.Aalten,D.,Jones,P.,Sousa,M.,Findlay,J.Engineering
proteinmechanics:inhibitionofconcertedmotionsofthecellularretinolbindingproteinbysite-directedmutagen-esis.Prot.Eng.10:31–38,1997.
13.Amadei,A.,Linssen,A.B.M.,DeGroot,B.L.,VanAalten,
D.M.F.,Berendsen,H.J.C.Anefficientmethodforsam-plingtheessentialsubspaceofproteins.J.Biom.Str.Dyn.13(4):615–626,1996.
14.DeGroot,B.L.,Amadei,A.,Scheek,R.M.,VanNuland,
N.A.J.,Berendsen,H.J.C.AnextendedsamplingoftheconfigurationalspaceofHPrfromE.coli.Proteins:26:314–322,1996.
15.VanAalten,D.M.F.,DeGroot,B.L.,Berendsen,H.J.C.,
Findlay,J.B.C.,Amadei,A.Acomparisonoftechniquesforcalculatingproteinessentialdynamics.J.Comp.Chem.18:169–181,1997.
16.DeGroot,B.L.,VanAalten,D.M.F.,Amadei,A.,Berendsen,
H.J.C.Theconsistencyoflargeconcertedmotionsinpro-teinsinMolecularDynamicssimulations.Biophys.J.71:1554–1566,1996.
17.DeGroot,B.L.,Amadei,A.,VanAalten,D.M.F.,Berendsen,
H.J.C.Towardsanexhaustivesamplingoftheconfigura-tionalspacesofthetwoformsofthepeptidehormoneguanylin.J.Biomol.Str.Dyn.13:741–751,1996.18.Bonvin,A.M.J.J.,Bru¨nger,A.T.Conformationalvariability
ofsolutionnuclearmagneticresonancestructures.J.Mol.Biol.250:80–93,1995.19.Bonvin,A.M.J.J.,Bru¨nger,A.T.DoNOEdistancescontain
enoughinformationtoassesstherelativepopulationsofmulti-confomerstructures?J.Biomol.NMR7:72–76,1996.20.Gallagher,T.,Alexander,P.,Bryan,P.,Gilliland,G.L.Two
crystalstructuresoftheB1Immunoglobulin-bindingdo-mainofstreptococcalproteinGandcomparisonwithNMR.Biochemistry33:4721–4729,1994.
21.Musacchio,A.,Noble,M.,Pauptit,R.,Wierenga,R.,Saraste,
M.CrystalstructureofaSrc-homology3(SH3)domain.Nature359:851–854,1992.
22.Babu,Y.S.,Bugg,C.E.,Cook,W.J.Structureofcalmodulin
refinedat2.2Å.J.Mol.Biol.204:191–204,1988.
23.Weaver,L.H.,Matthews,B.W.Structureofbacteriophage
T4lysozymerefinedat1.7Åresolution.J.Mol.Biol.193:189–199,1987.
24.VanNuland,N.A.J.,Boelens,R.,Scheek,R.M.,Robillard,
G.T.Highresolutionstructureofthephosphorylatedformofthehistidine-containingphosphocarrierproteinHPrfromEscherichiacolideterminedbyrestrainedmoleculardynamicsfromNMR-NOEdata.J.Mol.Biol.246:180–193,1995.
25.VanNuland,N.A.J.,Hangyi,I.W.,VanSchaik,R.C.,Ber-endsen,H.J.C.,VanGunsteren,W.F.,Scheek,R.M.,Robil-lard,G.T.Thehigh-resolutionstructureofthehistidine-containingphosphocarrierproteinHPrfromEscherichiacolideterminedbyrestrainedmoleculardynamicsfromNMR-NOEdata.J.Mol.Biol.237:544–559,1994.
PROTEINCONFORMATIONSFROMDISTANCECONSTRAINTS
251
26.VanGunsteren,W.F.,Berendsen,H.J.C.Gromosmanual.
BIOMOS,BiomolecularSoftware,LaboratoryofPhysicalChemistry,UniversityofGroningen,TheNetherlands1987.
27.Crippen,G.M.Anovelapproachtocalculationofconforma-tion:DistanceGeometry.J.Comp.Phys.24:449–452,1977.28.Levitt,M.,Sander,C.,Stern,P.S.Proteinnormal-mode
dynamics:trypsin-inhibitor,crambin,ribonucleaseandlysozyme.J.Mol.Biol.181:423–447,1985.29.Go¯,N.,Noguti,T.,Nishikawa,T.Dynamicsofasmall
globularproteinintermsoflow-frequencyvibrationalmodes.Proc.Natl.Acad.Sci.U.S.A.80:3696–3700,1983.30.Brooks,B.R.,Karplus,M.Harmonicdynamicsofproteins:
NormalModesandfluctuationsinbovinepancreatictryp-sininhibitor.Proc.Natl.Acad.Sci.U.S.A.80:6571–6575,1983.
31.Hayward,S.,Kitao,A.,Go¯,N.HarmonicityandAnharmo-nicityinProteinDynamics:aNormalModesandPrincipal
Componentanalysis.Proteins.23:177–186,1995.
32.Havel,T.F.,Kuntz,I.D.,Crippen,G.M.Thetheoryand
practiceofDistanceGeometry.Bull.Math.Biol.45:665–720,1983.
33.Vriend,G.WHATIF:amolecularmodelinganddrug
designprogram.J.Mol.Graph.8:52–56,1990.
34.Kabsch,W.,Sander,C.Dictionaryofproteinsecondary
structure:patternrecognitionofhydrogen-bondedandgeometricalfeatures.Biopolymers22:2577–2637,1983.35.Laskowski,R.A.,MacArthur,M.,Moss,D.S.,Thornton,
J.M.PROCHECK:aprogramtocheckthestereochemicalqualityofproteinstructures.J.Appl.Crystallogr.26:283–291,1993.
36.VanderSpoel,D.,DeGroot,B.L.,Hayward,S.,Berendsen,
H.J.C.,Vogel,H.J.Bendingofthecalmodulincentralhelix:atheoreticalstudy.Prot.Sci.5:2044–2053,1996.
37.Spera,S.,Ikura,M.,Bax,A.Measurementsoftheex-
changeratesofrapidlyexchangingamideprotons:applica-tiontothestudyofcalmodulinanditscomplexwithamyosinlightchainkinasefragment.J.Biomol.NMR1:155–165,1991.
38.
Barbato,G.,Ikura,M.,Kay,L.E.,Pastor,R.W.,Bax,A.Backbonedynamicsofcalmodulinstudiedby15Nrelax-ationusinginversedetectedNMRspectroscopy:thecen-tralhelixisflexible.Biochemistry31:5269–5278,1992.39.
Ikura,M.,Spera,S.,Barbato,G.,Kay,L.E.,Krinks,M.,Bax,A.Secondarystructureandside-chain1Hand13Cresonanceassignmentsofcalmodulininsolutionbyhetero-nuclearmultidimensionalNMRspectroscopy.Biochemis-try30:9216–9228,1991.
40.
Ikura,M.,Clore,G.M.,Gronenborn,A.M.,Zhu,G.,Klee,C.B.,Bax,A.Solutionstructureofacalmodulin-targetpeptidecomplexbymultidimensionalNMR.Science256:632–638,1992.
41.Zhang,X.-J.,Wozniak,J.A.,Matthews,B.W.Proteinflex-ibilityandadaptabilityseenin25crystalformsofT4lysozyme.J.Mol.Biol.250:527–552,1995.
42.Matsumura,M.,Signor,G.,Matthews,B.W.Substantialincreaseofproteinstabilitybymultipledisulphidebonds.Nature342:291–293,1989.43.
Berndt,K.D.,Gu¨ntert,P.,Wu¨thrich,K.ConformationalsamplingbyNMRsolutionstructurescalculatedwiththeprogramDIANAevaluatedbycomparisonwithlong-timeMolecularDynamicscalculationsinexplicitwater.Pro-teins.24:304–313,1996.
44.Ramachandran,G.N.,Ramakrishnan,C.,Sasisekharan,V.Stereochemistryofpolypeptidechainconfigurations.J.Mol.Biol.7:95–99,1963.
45.
Vriend,G.,Sander,C.Qualitycontrolofproteinmodels:directionalatomiccontactanalysis.J.Appl.Crystallogr.26:47–60,1993.
因篇幅问题不能全部显示,请点此查看更多更全内容