【题目】排球队员站位问题
┏━━━━━━━━┓图为排球场的平面图,其中一、二、三、四、五、六为位置编号,
┃ ┃二、三、四号位置为前排,一、六、五号位为后排。某队比赛时,
┃ ┃一、四号位放主攻手,二、五号位放二传手,三、六号位放副攻
┠──┬──┬──┨手。队员所穿球衣分别为1,2,3,4,5,6号,但每个队
┃ 四 │ 三 │ 二 ┃员的球衣都与他们的站位号不同。已知1号、6号队员不在后排,
┠──┼──┼──┨2号、3号队员不是二传手,3号、4号队员不在同一排,5号、
┃ 五 │ 六 │ 一 ┃6号队员不是副攻手。
┗━━┷━━┷━━┛ 编程求每个队员的站位情况。
【算法分析】本题可用一般的穷举法得出答案。也可用回溯法。
【回溯解法参考程序】
type sset=set of 1..6;
var a:array[1..6]of 1..6;
d:array[1..6]of sset;
i:integer;
procedure output; {输出}
begin
if not( (a[3]in [2,3,4])= (a[4] in[2,3,4])) then
begin { 3,4号队员不在同一排 }
write('number:');for i:=1 to 6 do write(i:8);writeln;
write('weizhi:');for i:=1 to 6 do write(a[i]:8);writeln;
end;
end;
procedure try(i:integer;s:sset); {递归过程 i:第i个人,s:哪些位置已安排人了}
var
j,k:integer;
begin
for j:=1 to 6 do begin {每个人都有可能站1-6这6个位置}
if (j in d[i]) and not(j in s) then begin
{j不在d[i]中,则表明第i号人不能站j位. j如在s集合中,表明j位已排人了}
a[i]:=j; {第 i 人可以站 j 位}
if i<6 then try(i+1,s+[j]) {未安排妥,则继续排下去}
else output; {6个人都安排完,则输出}
end;
end;
end;
begin
for i:=1 to 6 do d[i]:=[1..6]-[i]; {每个人的站位都与球衣的号码不同}
d[1]:=d[1]-[1,5,6];
d[6]:=d[6]-[1,5,6]; {1,6号队员不在后排}
d[2]:=d[2]-[2,5];
d[3]:=d[3]-[2,5]; {2,3号队员不是二传手}
d[5]:=d[5]-[3,6];
d[6]:=d[6]-[3,6]; try(1,[]);
end.
{5,6号队员不是副攻手}
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务