专题复习
一、分数四则运算的运算法则和运算顺序
运算法则是:1、加减:同分母分数相加减,分母不变,分子相加减:
异分母分数相加减,先通分,再分母不变,分子相
加减。
2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作
为积的分母
3、除法:除以一个数就等于乘这个数的倒数
运算顺序是:1、如果是同一级运算,一般按从左往右依次进行计算 2、如果既有加减、又有乘除法,先算乘除法、再算加减 3、如果有括号,先算括号里面的
4、如果符合运算定律,可以利用运算定律进行简算。 练习:
311921171、 -( + )× 2、 110 4538351372911871113、÷ 4、 1 5、12 24612499931051921216、 7、8 8、(-)
43559581÷ 40二、分数四则运算的简便运算
引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:
① 乘法交换律:________________________ ② 乘法结合律:________________________
③ 乘法分配律:________________________
做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。 分数简便运算常见题型
第一种:连乘——乘法交换律的应用 例题:1)
1336 148263114 2)5 3)13756涉及定律:乘法交换律 abcacb
基本方法:将分数相乘的因数互相交换,先行运算。 第二种:乘法分配律的应用 例题:1)(41131)27 2)()4 3)()16 2710442 涉及定律:乘法分配律 (ab)cacbc
基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
第三种:乘法分配律的逆运算 例题:1)1111555141 2) 3)77 21532699655 涉及定律:乘法分配律逆向定律 abaca(bc)
基本方法:提取两个乘式有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。7 第四种:添加因数“1” 例题:1)5755272 2) 3)9791691417232323 3131 涉及定律:乘法分配律逆向运算
基本方法:添加因数“1”,将其中一个数n转化为1×n的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。
第五种:数字化加式或减式 例题:1)173767 2)18 3)31 161969 涉及定律:乘法分配律逆向运算
基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。
注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化。例如:999可化为1000-1。其结果与原数字保持一致。 第六种:带分数化加式 例题:1)257254 2)133 3)712 1615113 涉及定律:乘法分配律
基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算。
第七种:乘法交换律与乘法分配律相结合 例题:1)5947116681371 2) 3)1391371724172413191319138138 涉及定律:乘法交换律、乘法分配律逆向运算
基本方法:将各项的分子与分子(或分母与分母)互换,通过变换得出公有因数,按照乘法分配律逆向运算进行计算。
注意:只有相乘的两组分数才能分子和分子互换,分母和分母互换。不能分子和分母互换,也不能出现一组中的其中一个分子(或分母)和另一组
乘式中的分子(或分母)进行互换。 课堂练习
5351935511、 × + × 2、17× 3、( + )×32 4、 × ×9494184816
123524115、 + × 6、44-72× 7、××10 8、×+× 591012521559、(5) 10、46×
5716234423151 11、 (+-)×12 12、 ××24
445342122312673513、42×(-) 14、6 15、(+)× 16、×
57691443-× 995200624179217、2008× 18、 +( + )× 19、 ×14×
200737225149415711391394
20、 × × 21、12×( - ) 22、 × + × 72212124810171017
911111393823、36× 24、 - × 25、( - )× 37131333423343237726、( -)× 27、 ×+× 28、 ×101-
8134252529、
193453550 30、 1008797931、解方程:
853581353 X+ X = 57 X÷ = × 3X + = 15512153574家庭作业 121、直接写出得数: 5
24
×12 = 6×
272325
= × = + = 2 × = 249103456
2、下面各题怎样简便怎样算:
86135139174
72÷ = - = ÷12= ÷ = ÷ =
9175162010087415711391394 × × 12×( - ) × + × 72212124810171017
51111139 × ×10= ÷ = ÷ ÷ = 6= 453055816111113992188
- × 36× ÷ × 13133337261327
434111 ÷ + ÷3 (1--)÷ 12727824÷(1+-) 1536
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务