您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页数理统计习题答案四

数理统计习题答案四

来源:爱go旅游网
习题四 回归分析

1解:利用最小二乘法得到正规方程:

lxyˆ1nnlxx其中lxyxiyinxy,l2xxxinx2

i1i1ˆ0yˆ1x代入样本数据得到:ˆ10.05,ˆ024.6286 用R分析可以直接得到

Call:

lm(formula = y ~ 1 + x)

Residuals:

1 2 3 4 5 6 -2.28571 1.82857 0.94286 0.05714 1.17143 -1.71429

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 24.628571 2.15 9.2 0.0007 *** x 0.058857 0.004435 13.270 0.000186 *** ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.855 on 4 degrees of freedom

Multiple R-Squared: 0.9778, Adjusted R-squared: 0.9722 F-statistic: 176.1 on 1 and 4 DF, p-value: 0.00018

所以:样本线性回归方程为:yˆ24.62860.05x

2证明:

1) 由于ˆN21,所以ˆ11lN0,1

1,lxxxx2又因为:SE2ˆ2n222(n2),故2(n2)。 ˆ11所以:lxxtn2,ˆ11ˆˆlt2n2n2xx

2n2ˆpˆ11c1,p11clxxˆˆ1

c=ˆt2,所以:ˆˆ1tlnn2

xx12lxx12命题得证。

2)同理得证。

3解:利用最小二乘法得到正规方程:

lˆtynn1ltt其中ltytiyinty,lttt2int2

i1i1ˆ0yˆ1t代入样本数据得到: ˆ10.0472,ˆ00.3145 用R分析得:

Call:

lm(formula = y ~ 1 + x)

Residuals:

Min 1Q Median 3Q Max -0.049553 -0.0251 0.002805 0.023843 0.051012

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.3144 0.027074 11.615 2.45e-05 *** x -0.047172 0.009839 -4.795 0.00302 ** ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 1

Residual standard error: 0.03746 on 6 degrees of freedom Multiple R-Squared: 0.793, Adjusted R-squared: 0.7585 F-statistic: 22.99 on 1 and 6 DF, p-value: 0.003017

所以:样本线性回归方程为:yˆ0.31450.0472t 拒绝域形式为:ˆ21c

而cˆ2F0.951,6,c0.0058ˆ2l10.0022,所以是显著。 tt

’ ‘ 4解:

1)利用最小二乘法得到正规方程:

lxyˆ1lxx其中lxyˆˆ0y1xnni1xiyinxy,lxxi1xinx

22ˆ2.0698,ˆ3.0332 10用R分析得 Call:

lm(formula = y ~ 1 + x)

Residuals:

Min 1Q Median 3Q Max -0.074323 -0.025719 -0.002468 0.025209 0.083125

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 3.03318 0.03871 78.35 <2e-16 *** x -2.06979 0.05288 -39.14 <2e-16 *** ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.044 on 15 degrees of freedom Multiple R-Squared: 0.9903, Adjusted R-squared: 0.97 F-statistic: 1532 on 1 and 15 DF, p-value: < 2.2e-16

ˆˆ3.03322.0698x,所以:样本线性回归方程为:y2SE2150.0020

2)第二题已证:1的置信区间为ˆ1ˆlxxt12n2,所以代入值计算得到:

1nx2ˆˆ12.1825,1.9571,0的置信区间为0lxxt12n2,代入数值

计算得到:02.95069,3.1160。 (3)cˆlxxt12(n2),经过计算,显著。

2(4)yN(0,(xxlxx11n))

2令s(x)xxlxx22211n,ˆyys(x)N(0,1)

ˆ(n2)2(n2),ˆyyˆs(x)t(n2)

ˆy(yˆts(x)12ˆ(n2),yˆts(x)12(n2))

5)解方程:

ˆˆys(x)t12ˆˆ1.68,ys(x)t121.08

最后求得: x(0.7802,0.8172)

5证明:

ˆ,ˆEˆcov0100ˆ1ˆx1y10ˆ11

ˆˆ2xˆyˆx) E(y110111101ˆ2yx2 y1xE1011101ˆ22xE112121

2ˆDˆ(Eˆ)E12lxx12

若要covˆ0,ˆ10,那么x0。

6解:

1)最小化残差平方和:SE求0,1的偏导数2[yi01(xix)]

2

2SE20S2yi01(xix)0,E2yi01(xix)(xix)01lxylxxˆy,ˆ得到:01

2)证明:

n2in2inniyi1yyi1ˆiyˆiyy(yi1ˆi)(yˆiy)2yiyˆi(yˆiy)y22i1ˆˆ(xx)yˆi其中:y01i2lxylxxnˆi(yˆiy)0 (xix)将其代入,得到yiyi1nnyiyi1(yi1iˆi)2(yˆiy)2 y2ˆ~N(,ˆy,3)i~N(0,2),000ˆ~N(, 同理,易得11n)

2lxx)

7解:1)令vlvyˆ1lvvˆˆ0y1vx,yabv,根据最小二乘法得到,正规方程:

ˆ1.1947,ˆ106.3013 ,最后得到10ˆ106.30131.1947x,R0.8861 所以:样本线性回归方程为:y2)令vlnx,yabv

lvyˆ1lvvˆˆ0y1vˆ1.714,ˆ106.3147 ,得到10ˆ106.31471.714lnx,R0.9367 所以:样本线性回归方程为:y3)令v1x,yabv

lvyˆ1lvvˆˆ0y1vˆ111.4875,ˆ9.833 ,得到10ˆ111.48759.833x,R0.987 所以:样本线性回归方程为:y综上,R3相关最大

8解:

Yy1,y2,y3T10TT,X21,(1,2),1,2,3

12YX

2S2EYX1YY2YXXXTTTT

SE20

ˆXTXˆ11XYT

ˆ1(YY) (Y12Y2Y3),22366

9解:

YX由多元线性模型得: 20,I140,1,2,Yy1,y2yn,1,2n

141145151152159162169X172178180190192198110349586271627471ˆXTX74798485949195TTT1XYT

ˆ15.93840.5223x10.4738x2 代入数值得到:y用R分析得

Call:

lm(formula = y ~ x1 + x2, data = weight)

Residuals:

Min 1Q Median 3Q Max -2.7400 -1.1550 -0.13 0.8862 3.92

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -15.93836 3.8 -4.133 0.00166 ** x1 0.52227 0.08532 6.121 7.51e-05 *** x2 0.47383 0.12243 3.870 0.00261 ** ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’1

Residual standard error: 1.81 on 11 degrees of freedom

Multiple R-Squared: 0.9905, Adjusted R-squared: 0.9887 F-statistic: 570.5 on 2 and 11 DF, p-value: 7.757e-12

同样得到:yˆ15.93840.5223x10.4738x2

10解:

用R分析得 Call:

lm(formula = y ~ x1 + x2, data = demand)

Residuals:

Min 1Q Median 3Q Max -8.4750 -5.3674 -0.4031 4.1193 9.9523

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 111.69182 23.53081 4.747 0.00209 ** x1 0.01430 0.01113 1.284 0.24000 x2 -7.18824 2.55533 -2.813 0.02603 * ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.213 on 7 degrees of freedom

Multiple R-Squared: 0.44, Adjusted R-squared: 0.83 F-statistic: 29.65 on 2 and 7 DF, p-value: 0.0003823

得到回归方程:yˆ111.69180.0143x17.1882x2

11解:

0.1 ‘ ’ 0,1,2,Yy1,y2yn,1,2n

1Xx1x211x2x12TTT1xn ˆXTX2xnT1XYT

2)

n2in2inniyi1yyi1Tˆiyˆiyy(yi1nˆi)(yˆiy)2yiyˆi(yˆiy)y22i1ˆxxxˆ其中:y=x21ˆi(yˆiy)0x,将其代入,得到yiyTi1

nnyiyi1(yi1iˆi)2(yˆiy)2 y

12解:1)令xx1,xx2,

用R分析得:

Call:

lm(formula = y ~ x1 + x2, data = demand)

Residuals:

1 2 3 4 5 6 7 8

1.18333 -1.55238 -0.80714 0.61905 0.92619 0.01429 -0.21667 -0.16667

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 3.41667 0.90471 3.777 0.01294 * x1 2.72619 0.60377 4.515 0.00631 ** x2 -0.39048 0.08293 -4.708 0.00530 ** ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.075 on 5 degrees of freedom

Multiple R-Squared: 0.816, Adjusted R-squared: 0.7424 F-statistic: 11.08 on 2 and 5 DF, p-value: 0.01453

ˆ3.41672.7262x0.3905x2 求得回归方程为:y22) 拒绝域形式为:ˆ12c

而cˆF0.951,62lxxˆ2,所以是显著。 13)将x5.5代入回归方程,得到yˆ6.5982 13 解

1,2,Yy1,y2yn,1,2

TTTx11Xx21SEYXSE2x12x222Tx1n x2nTTTT2YY2YXXX

Tˆ0,得到XX1XY

T

常用统计术语:

(1) regression analysis 回归分析

(2)regression equation 回归方程 (3)regression forecasting 回归预测 (4)regression variance 回归方差 (5)linear regression 线性回归 (6)non-linear regression 非线性回归

(7)sample regression line 样本回归直线 (8)least square estimation 最小二乘估计 (9)linear model 线性模型 (10)regression diagnostic 回归诊断 (11)residual sum of squares 残差平方和 (12)residual variance 剩余方差 (13)influence case 强影响点 (14)outlier 异常点

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务