1解:利用最小二乘法得到正规方程:
lxyˆ1nnlxx其中lxyxiyinxy,l2xxxinx2
i1i1ˆ0yˆ1x代入样本数据得到:ˆ10.05,ˆ024.6286 用R分析可以直接得到
Call:
lm(formula = y ~ 1 + x)
Residuals:
1 2 3 4 5 6 -2.28571 1.82857 0.94286 0.05714 1.17143 -1.71429
Coefficients:
Estimate Std. Error t value Pr(>|t|) (Intercept) 24.628571 2.15 9.2 0.0007 *** x 0.058857 0.004435 13.270 0.000186 *** ---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.855 on 4 degrees of freedom
Multiple R-Squared: 0.9778, Adjusted R-squared: 0.9722 F-statistic: 176.1 on 1 and 4 DF, p-value: 0.00018
所以:样本线性回归方程为:yˆ24.62860.05x
2证明:
1) 由于ˆN21,所以ˆ11lN0,1
1,lxxxx2又因为:SE2ˆ2n222(n2),故2(n2)。 ˆ11所以:lxxtn2,ˆ11ˆˆlt2n2n2xx
2n2ˆpˆ11c1,p11clxxˆˆ1
c=ˆt2,所以:ˆˆ1tlnn2
xx12lxx12命题得证。
2)同理得证。
3解:利用最小二乘法得到正规方程:
lˆtynn1ltt其中ltytiyinty,lttt2int2
i1i1ˆ0yˆ1t代入样本数据得到: ˆ10.0472,ˆ00.3145 用R分析得:
Call:
lm(formula = y ~ 1 + x)
Residuals:
Min 1Q Median 3Q Max -0.049553 -0.0251 0.002805 0.023843 0.051012
Coefficients:
Estimate Std. Error t value Pr(>|t|) (Intercept) 0.3144 0.027074 11.615 2.45e-05 *** x -0.047172 0.009839 -4.795 0.00302 ** ---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 1
Residual standard error: 0.03746 on 6 degrees of freedom Multiple R-Squared: 0.793, Adjusted R-squared: 0.7585 F-statistic: 22.99 on 1 and 6 DF, p-value: 0.003017
所以:样本线性回归方程为:yˆ0.31450.0472t 拒绝域形式为:ˆ21c
而cˆ2F0.951,6,c0.0058ˆ2l10.0022,所以是显著。 tt
’ ‘ 4解:
1)利用最小二乘法得到正规方程:
lxyˆ1lxx其中lxyˆˆ0y1xnni1xiyinxy,lxxi1xinx
22ˆ2.0698,ˆ3.0332 10用R分析得 Call:
lm(formula = y ~ 1 + x)
Residuals:
Min 1Q Median 3Q Max -0.074323 -0.025719 -0.002468 0.025209 0.083125
Coefficients:
Estimate Std. Error t value Pr(>|t|) (Intercept) 3.03318 0.03871 78.35 <2e-16 *** x -2.06979 0.05288 -39.14 <2e-16 *** ---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.044 on 15 degrees of freedom Multiple R-Squared: 0.9903, Adjusted R-squared: 0.97 F-statistic: 1532 on 1 and 15 DF, p-value: < 2.2e-16
ˆˆ3.03322.0698x,所以:样本线性回归方程为:y2SE2150.0020
2)第二题已证:1的置信区间为ˆ1ˆlxxt12n2,所以代入值计算得到:
1nx2ˆˆ12.1825,1.9571,0的置信区间为0lxxt12n2,代入数值
计算得到:02.95069,3.1160。 (3)cˆlxxt12(n2),经过计算,显著。
2(4)yN(0,(xxlxx11n))
2令s(x)xxlxx22211n,ˆyys(x)N(0,1)
ˆ(n2)2(n2),ˆyyˆs(x)t(n2)
ˆy(yˆts(x)12ˆ(n2),yˆts(x)12(n2))
5)解方程:
ˆˆys(x)t12ˆˆ1.68,ys(x)t121.08
最后求得: x(0.7802,0.8172)
5证明:
ˆ,ˆEˆcov0100ˆ1ˆx1y10ˆ11
ˆˆ2xˆyˆx) E(y110111101ˆ2yx2 y1xE1011101ˆ22xE112121
2ˆDˆ(Eˆ)E12lxx12
若要covˆ0,ˆ10,那么x0。
6解:
1)最小化残差平方和:SE求0,1的偏导数2[yi01(xix)]
2
2SE20S2yi01(xix)0,E2yi01(xix)(xix)01lxylxxˆy,ˆ得到:01
2)证明:
n2in2inniyi1yyi1ˆiyˆiyy(yi1ˆi)(yˆiy)2yiyˆi(yˆiy)y22i1ˆˆ(xx)yˆi其中:y01i2lxylxxnˆi(yˆiy)0 (xix)将其代入,得到yiyi1nnyiyi1(yi1iˆi)2(yˆiy)2 y2ˆ~N(,ˆy,3)i~N(0,2),000ˆ~N(, 同理,易得11n)
2lxx)
7解:1)令vlvyˆ1lvvˆˆ0y1vx,yabv,根据最小二乘法得到,正规方程:
ˆ1.1947,ˆ106.3013 ,最后得到10ˆ106.30131.1947x,R0.8861 所以:样本线性回归方程为:y2)令vlnx,yabv
lvyˆ1lvvˆˆ0y1vˆ1.714,ˆ106.3147 ,得到10ˆ106.31471.714lnx,R0.9367 所以:样本线性回归方程为:y3)令v1x,yabv
lvyˆ1lvvˆˆ0y1vˆ111.4875,ˆ9.833 ,得到10ˆ111.48759.833x,R0.987 所以:样本线性回归方程为:y综上,R3相关最大
8解:
Yy1,y2,y3T10TT,X21,(1,2),1,2,3
12YX
2S2EYX1YY2YXXXTTTT
SE20
ˆXTXˆ11XYT
ˆ1(YY) (Y12Y2Y3),22366
9解:
YX由多元线性模型得: 20,I140,1,2,Yy1,y2yn,1,2n
141145151152159162169X172178180190192198110349586271627471ˆXTX74798485949195TTT1XYT
ˆ15.93840.5223x10.4738x2 代入数值得到:y用R分析得
Call:
lm(formula = y ~ x1 + x2, data = weight)
Residuals:
Min 1Q Median 3Q Max -2.7400 -1.1550 -0.13 0.8862 3.92
Coefficients:
Estimate Std. Error t value Pr(>|t|) (Intercept) -15.93836 3.8 -4.133 0.00166 ** x1 0.52227 0.08532 6.121 7.51e-05 *** x2 0.47383 0.12243 3.870 0.00261 ** ---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’1
Residual standard error: 1.81 on 11 degrees of freedom
Multiple R-Squared: 0.9905, Adjusted R-squared: 0.9887 F-statistic: 570.5 on 2 and 11 DF, p-value: 7.757e-12
同样得到:yˆ15.93840.5223x10.4738x2
10解:
用R分析得 Call:
lm(formula = y ~ x1 + x2, data = demand)
Residuals:
Min 1Q Median 3Q Max -8.4750 -5.3674 -0.4031 4.1193 9.9523
Coefficients:
Estimate Std. Error t value Pr(>|t|) (Intercept) 111.69182 23.53081 4.747 0.00209 ** x1 0.01430 0.01113 1.284 0.24000 x2 -7.18824 2.55533 -2.813 0.02603 * ---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 7.213 on 7 degrees of freedom
Multiple R-Squared: 0.44, Adjusted R-squared: 0.83 F-statistic: 29.65 on 2 and 7 DF, p-value: 0.0003823
得到回归方程:yˆ111.69180.0143x17.1882x2
11解:
0.1 ‘ ’ 0,1,2,Yy1,y2yn,1,2n
1Xx1x211x2x12TTT1xn ˆXTX2xnT1XYT
2)
n2in2inniyi1yyi1Tˆiyˆiyy(yi1nˆi)(yˆiy)2yiyˆi(yˆiy)y22i1ˆxxxˆ其中:y=x21ˆi(yˆiy)0x,将其代入,得到yiyTi1
nnyiyi1(yi1iˆi)2(yˆiy)2 y
12解:1)令xx1,xx2,
用R分析得:
Call:
lm(formula = y ~ x1 + x2, data = demand)
Residuals:
1 2 3 4 5 6 7 8
1.18333 -1.55238 -0.80714 0.61905 0.92619 0.01429 -0.21667 -0.16667
Coefficients:
Estimate Std. Error t value Pr(>|t|) (Intercept) 3.41667 0.90471 3.777 0.01294 * x1 2.72619 0.60377 4.515 0.00631 ** x2 -0.39048 0.08293 -4.708 0.00530 ** ---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.075 on 5 degrees of freedom
Multiple R-Squared: 0.816, Adjusted R-squared: 0.7424 F-statistic: 11.08 on 2 and 5 DF, p-value: 0.01453
ˆ3.41672.7262x0.3905x2 求得回归方程为:y22) 拒绝域形式为:ˆ12c
而cˆF0.951,62lxxˆ2,所以是显著。 13)将x5.5代入回归方程,得到yˆ6.5982 13 解
1,2,Yy1,y2yn,1,2
TTTx11Xx21SEYXSE2x12x222Tx1n x2nTTTT2YY2YXXX
Tˆ0,得到XX1XY
T
常用统计术语:
(1) regression analysis 回归分析
(2)regression equation 回归方程 (3)regression forecasting 回归预测 (4)regression variance 回归方差 (5)linear regression 线性回归 (6)non-linear regression 非线性回归
(7)sample regression line 样本回归直线 (8)least square estimation 最小二乘估计 (9)linear model 线性模型 (10)regression diagnostic 回归诊断 (11)residual sum of squares 残差平方和 (12)residual variance 剩余方差 (13)influence case 强影响点 (14)outlier 异常点
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务