Aheuristics-basedsolutiontothecontinuousberthallocationandcraneassignmentproblem
MohammadHamdyElwanya,IslamAlia,YasmineAbouelseoud
abb,*
ProductionEngineeringDepartment,FacultyofEngineering,AlexandriaUniversity,Egypt
EngineeringMathematicsandPhysicsDepartment,FacultyofEngineering,AlexandriaUniversity,Egypt
Received19January2012;revised5September2013;accepted9September2013Availableonline9October2013
KEYWORDS
ContainerTerminal(CT);BerthAllocationProblem(BAP);
QuayCraneAssignmentProblem(QCAP);
SimulatedAnnealing(SA)
AbstractEffectiveutilizationplansforvariousresourcesatacontainerterminalareessentialtoreducingtheturnaroundtimeofcargovessels.Amongthescarcestresourcesaretheberthanditsassociatedcranes.Thus,twoimportantoptimizationproblemsarise,whicharetheberthalloca-tionandquaycraneassignmentproblems.Theberthallocationproblemdealswiththegenerationofaberthplan,whichdetermineswhereandwhenashiphastoberthalongsidethequay.Thequaycraneassignmentproblemaddressestheproblemofdetermininghowmanyandwhichquaycrane(s)willserveeachvessel.Inthispaper,anintegratedheuristics-basedsolutionmethodologyisproposedthattacklesbothproblemssimultaneously.ThepreliminaryexperimentalresultsshowthattheproposedapproachyieldshighqualitysolutionstosuchanNP-hardprobleminareason-ablecomputationaltimesuggestingitssuitabilityforpracticaluse.
ª2013ProductionandhostingbyElsevierB.V.onbehalfofFacultyofEngineering,Alexandria
University.
1.Introduction
Sincetheintroductionofstandardizedcontainersinfreighttransportinthe1960s,itsusehasbeenincontinuousgrowth,especiallywiththeenormousgrowthinworldtradeinthepast
*Correspondingauthor.Tel.:+201003727019.
E-mailaddresses:elwany@aucegypt.edu(M.H.Elwany),islam.ali@alexu.edu.eg(I.Ali),yasmine.abouelseoud@gmail.com(Y.Abouelseoud).PeerreviewunderresponsibilityofFacultyofEngineering,AlexandriaUniversity.
Production and hosting by Elsevier20years.Thisgrowthincontainertransportledtoincreasedservicedemandsatcontainerterminalswhonowhavetoservetensofvesselsperday,loadandunloadthousandsofcontain-ersperday,andtheyhavetodosoinatimelymannerinordertoreducethetimethatshipshavetospendattheterminalandthusgainingacompetitiveadvantageoveritsneighboringportsintheregion.Thiscompetitiveadvantagewouldhelptheterminalincreaseitscustomersandthusitsprofit.
Containerterminalsusealargevarietyofresourcesandequipmenttoserveincomingvessels.BerthandQuayCranes(QCs)arethescarcestandmostexpensiveresourcesforcon-tainerterminalsbecauseofthelargeinvestmentneededtoin-creasethecapacityofanyofthesetworesources,iftheexpansionofthesetworesourcesisphysicallyfeasibleinthefirstplace.Consequently,achievingmaximumutilizationforthesetworesourcesthroughbetterplanningiscriticalto
1110-0168ª2013ProductionandhostingbyElsevierB.V.onbehalfofFacultyofEngineering,AlexandriaUniversity.http://dx.doi.org/10.1016/j.aej.2013.09.001
672
achievetheoverallmaximumproductivityforthewholeterminal.
Twoimportantplanningproblemsthusarise,whicharetheBerthAllocationProblem(BAP)andtheQuayCraneAssign-mentProblem(QCAP).Intheformer,aberthingtimeandaberthingpositionatthequayforeachvesseltobeservedwith-inagivenplanninghorizonaredetermined.Inthelatter,asetofspecificcranesisassignedtoserveeachvessel.Thestronginterrelationshipbetweentheutilizationofthequayspacere-sourceandthequaycranesmotivatesanintegratedsolutionapproachtothetwoproblems.Thedrivingforceofthisap-proachistoanticipatevesselhandlingtimesonthebasisofcraneassignmentandcraneschedulingdecisions.Thesespeci-fiedhandlingtimesareusedwithintheberthplanningsteptodecideontheberthingtimesandberthingpositionsofvessels.TheresultingproblemisreferredtoastheBerthAllocationandCraneAssignmentProblem(BACAP).
Althoughmanystudiesconsideredberthsasdiscretere-sourcesthatcanbeallocatedtovessels,somestudieshavecon-sideredthequayasacontinuouslinethatmultiplevesselscansharewitheachotheratthesametime.Thus,whenthequayisconsideredasacontinuousline,morevesselscanbeservedsimultaneouslyataquayofaparticularlength–ofcourse,ifthevesselsareshorterinlengththanthequayside[1–4].Therearemanydifferenttypesofconstraintsthatmustbeconsideredwhendeterminingtheberthingpositionsofvessels.ExamplesincludethedepthofwateralongthequayandthemaximumoutreachofQCsinstalledatspecificpositionsonthequay.Ifthedepthofthewaterofapartofthequayisnotenough,ortheoutreachofQCsinstalledatapartofthequayisshorterthanthatnecessary,thecorrespondingvesselcannotbeassignedtothatpartofthequay.
Temporalconstraintscanrestricttheberthingtimesandthedeparturetimesofvessels.AccordingtoFrankMeisel[5],thefollowingcasescouldbedistinguished:staticarrivalsanddy-namicarrivals.Intheformercase,therearenoarrivaltimesgivenforthevesselsanditisassumedthatvesselsalreadywaitattheportandcanberthimmediately.Inthecaseofdynamicarrivals,eitherfixedarrivaltimesaregivenforthevesselsandtheycannotberthbeforetheexpectedarrivaltime,orarrivaltimesimposemerelyasoftconstraintontheberthingtimesanditisassumedthatavesselcanspeedupatacertaincostinordertomeetaberthingtimeearlierthantheexpectedarri-valtime.
Inthispaper,theproblemofallocatingvesselswithdy-namicarrivalstoacontinuousquayisconsidered–whichisamorechallengingproblemcomparedtothediscretevariantoftheproblem.Moreover,variablewaterdepthconstraintshavebeenaccountedfor.Aheuristics-basedapproachispro-posedtosolvetheBACAP.
Therestofthispaperisorganizedasfollows.Inthenextsection,aliteraturereviewontheberthallocationandcraneassignmentproblemsispresented.Section3includesthede-tailedproblemdefinitionandtherelatedassumptions.InSec-tion4,theproposedsolutiontechniqueisdescribed.Theresultsofimplementingoursolutionstrategytoasetofbench-markinstancesareshowninSection5.Section6discussesaninterestingspecialcase,whichisreferredtoasatightlypackedproblem,andproposesamethodologytohandleit.Finally,Section7concludesthepaper.
M.H.Elwanyetal.
2.Relatedwork
Inliterature,mathematicalformulationshavebeendevelopedtomodeltheberthallocationandquaycraneassignmentprob-lems.Ingeneral,theresultingmodelsaremixedintegerpro-grammingformulationsandthus,cannotbesolvedforinstancesofpracticalsize.Hence,heuristicsolutionmethodshavebeentailoredtohandlesuchproblems.Inwhatfollows,lightisshedonsomeofthesemethods.
Ageneticalgorithmhasbeenappliedin[6]tosolvetheberthallocationproblemwithdynamicarrivalsanddiscreteberthsthatcanbesharedbymorethanonevessel.Theobjec-tiveistominimizethetotaltimespentattheCTwhichin-cludestheshiphandling(orservicetime)andthewaitingtimeforberthavailability.Moreover,ithasbeenassumedthattheservicetimeisdependentontheberthwhereavesselisas-signed.Furthermore,variablewaterdepthconstraintshavebeenincorporatedinthedevelopedmathematicalmodel.
ParkandKimdevelopedamathematicalformulationforthecontinuousBACAPwithdynamicarrivals[7].Theypro-posedatwophasesolutionprocedurefortheirformulation.Inthefirstphase,theberthingtimesandpositionsaswellasthenumberofcranesassignedtoavesselduringitsservicearedetermined.Inthisphase,aLagrangianrelaxationoftheproblemissolvedusingasub-gradientoptimizationtechniquewheretheproblemisdecomposedintoseveralindependentsub-problems.Thisstepmayyieldinfeasibleberthplans.Therefore,aheuristichasbeenproposedtotransforminfeasi-blesolutionsintofeasibleones.Inthesecondphase,thespe-cificsetofcranesassignedtoeachvesselisdeterminedusingdynamicprogramming.
KimandMoonconsideredtheBAPwithdynamicarrivals[8].Theyproposedaheuristicsolutionstrategythatinsertsves-selsinthespace–timediagramaccordingtoagivenprioritylist.Vesselsatthetopofthelistaremorelikelytobemooredclosetotheirdesiredberthingpositions.Simulatedannealingisthenusedtoexplorethespaceofprioritylistsinordertosearchforimprovementsintheobjectivefunctionvalue.Theobjectivefunctionincludedtermspenalizingnon-optimalber-thinglocationsanddelayeddeparturesofvessels.
MeiselandBierwirthin[9]haveexplicitlyincorporatedtheimpactofthequaycraneresourcesasadeterminantofthehandlingtime.Factorsinfluencingthecraneproductivityhavebeenmodeledaswellaspracticalaspectsoftheproblemlikespeedingupvesselsandconsideringthecostofoperatingcranesbesidesthetraditionalservicequalitycost.Moreover,theyconsidereddynamicarrivalsofvessels.FortheresultingdynamiccontinuousBACAP,newheuristicshavebeenpre-sentedtosolvethisproblemagainaccordingtoagivenprioritylist.Theyconsideredaninitialprioritylistinwhichvesselsaresortedinascendingorderaccordingtotheirexpectedtimeofarrival;thatis,onaFCFSbasis.Theyalsosuggestedtheuseofmeta-heuristics;namely,SqueakyWheelOptimization(SWO)andTabuSearch(TS)toimprovetheresultsinitiallyobtainedbasedontheirproposedheuristics.ComputationalcomparisonsshowedthatbothSWOandTSdeliversolutionsofgoodqualityinareasonablecomputationaltime.Inthispa-per,theirinterestingworkisextendedbyconsideringanalter-nativeinitialprioritylistandbyincorporatingwaterdepthconstraintsintoourmodel.
Aheuristics-basedsolutiontothecontinuousberthberthallocationandcraneassignmentproblem673
3.Problemdefinitionandrelatedassumptions
Inthissection,variousaspectsoftheproblemaddressedinthispaperarediscussedindetail.3.1.Basicassumptions
ThefollowingassumptionsaremadeforthecontinuousBA-CAPwithdynamicarrivalsdealtwithinthispaper:
1.Ittakesnotimetoberthandtounberthvessels.
2.IttakesnotimetomoveaQCfromonevesseltoanothervessel.
3.Vesselsareservedwithoutpreemption,i.e.,oncestartedtoserveavesseltheprocessisnotinterrupteduntiltheserviceiscompleted.
4.Everycranehasthetechnicalcapabilitytoserveanyvessel.Furthermore,thecranesareidentical,i.e.,theyshowthesamemaximumproductivity.
5.Thewaterdepthisnotfixedforallberthingpositionsandhencespecialconsiderationisgiventorespectingtherequireddraftassociatedwitheachincomingvessel.
6.Allinputparameters(suchasunloadingtime)anddecisionvariables(suchastheberthingtime)aredeterministic.
3.2.Inputparameters
AterminalwithaquayoflengthL,measuredinsegmentsof10mlength,isconsidered.Thewaterdepthalongsidethequayisprovidedforeachsegment.AnumberofQQCsareavail-abletoservethevessels.TheplanninghorizonoftheBACAPisHhours,whereTisacorrespondingsetof1-htimeperiods;i.e.,T={0,1,...,HÀ1}.Withintheplanninghorizon,asetofvesselsV={1,2,...,n}isprojectedtobeserved,wherenisthetotalnumberofvessels.
Foreachvesseli,itslengthlimeasuredinsegmentsof10mlengthisgiven.ThecranecapacitydemandofvesselitofulfillallloadingandunloadingoperationsismiQC-hours.Themin-imumandmaximumnumberofQCstoassigntothevesselare
denotedbyrminiandrmax,yieldingtherangeRi¼½rminmax
anexpecteditimeofarrivalETAknown.i;r.Furthermore,i
iisBer-thingthevesselearlierthanETAiispossiblebyaspeeduponitsjourneytotheterminal.Therealizablespeedup,however,islimited.Tomodelthis,anearlieststartingtimeESTi6ETAiisestimated;i.e.,thevesselcannotbeberthedearlierthanESTi.Finally,anexpectedfinishingtimeEFTiandalatestfinishingtimeLFTiaregivenforthevessel.Importandexportcontain-ersofavesselarestoredindedicatedyardareas.Adesiredber-thingpositionb0iisspecifiedforvesseliwithinthevicinityoftheseyardareas.Inaddition,thevesseldraftDiisprovidedsothatthechoiceofaberthingpositionmustbemadesuchthatthequayshowsasufficientwaterdepthalongthevessel’slength.
3.3.Decisionvariables
ThedecisionstobemadetoderiveasolutionoftheBACAParetodetermineforeachvesseli:aberthingtimesi,aberthingpositionbi,andthenumberofQCstoassigntoitduringeach
ofitsservicetime-slotssuchthatacostmeasureisminimized.Theberthingtimesiofavesselismarkedbythebeginningofthefirsttime-slotwithcranesassigned,whereasitsdeparturetimeeiisdefinedbytheendofthelasttime-slotwithcranesassigned.Thetimespanbetweensiandeidefinesthehandlingtimeofvesseli.Theassignmentofcranestovesselsisrepre-sentedbyabinarydecisionvariableritq.Itissetto1,ifandonlyifexactlyqQCsareassignedtovesseliduringtime-slott.ToevaluateasolutiontotheBACAP,thedeviationfromthedesiredberthingpositionDbi¼jb0ETAiÀbij,thenecessaryspeedupDi=(ETAiÀsi)+,andthetardinessDEF-Ti=(eiÀEFTi)+aredeterminedforeachvesseli,wherex+=max{0,x}.InFig.1,anexampleofacompleteberthplanwithquaycraneassignmentisshown.Eachrectanglerep-resentstheregionoccupiedinthetime–spacedomainbysomevesseli,wherethelowerleftcornercorrespondstotheob-tainedoptimalpairofberthingtimeandberthingposition
ðsÃbÃ
i;iÞ.
3.4.Objectivefunction
ThesameobjectivefunctionemployedbyMeiselandBierwirthin[9]isadoptedinthispaper,whichincorporatesbothservicequalitycostsandoperationalcosts.Itisthesumofthecostsarisingfromfourfactors:
1.Assigningavesselaberthingtimeearlierthanitsexpectedtimeofarrivaladdsacostforspeedingupthevesselduetoexcessinfuelconsumption(c1exceedingiperunittime).
2.Tardinesscostincurredfortheexpectedfinishingtime(c2iperunittime).
3.Beingunabletofinishservingavesselbeforeitslatestfin-ishingtimeincursapenalty(c34.ThecostoftherequiredQC-hoursi).
forservingtheincomingvessel,whichistheoperationalcostterm(c4perQC-hour).
3.5.Productivityofquayresources
TherailmountedQCsinacontainerterminalareunabletopasseachother.AsaconsequenceinterferenceamongQCscanbemodeledintheformofunproductivecranewaitingtime.Ingeneral,themorecranesareassignedtoavesselthemoreinterferencewilltakeplaceleadingtoreducedmarginalproductivityofcranes.AccordingtoSchonfeldandSharafeldi-en,aninterferenceexponentcanbeusedtomodelthereductioninmarginalproductivityofcranes[10].Foragiveninterfer-enceexponenta(0 Theproductivityofaterminalisalsoaffectedbythework-loadonhorizontaltransportmeans;thatis,thetrucksthatde-liver/receivecontainersto/fromtheyardareas.Thisworkloadisminimalifavesselberthsatitsdesiredberthingpositionb0desiredposition,i.Therefore,ifavesselmoorsawayfromthisthisleadstolowerproductivity.Thisproductivitylossismod-eledbyanincreaseinthevessel’sQCcapacitydemand.LetbP0denotetherelativeincreaseinQCcapacitydemandperunitofberthingpositiondeviation,calledtheberthdevia-tionfactor.Hence,avesselmooringDbiquaysegmentsawayfromitsdesiredberthingpositionrequires(1+bDbi)miQC-hourstobeserved,assuggestedin[5]. Consideringbotheffectsdescribedabove,theminimumhandlingdmin timeneededtoserveavesseliisgivenas ð1þbDbiÞmii¼ðrmaxað1ÞiÞThecompletemathematicalmodelforthevariantofthe BACAPinhandappearedinanearlierpublication[11].4.Theproposedsolutiontechnique Inthissection,adetaileddescriptionoftheproposedheuris-tics-basedapproachtosolvethecontinuousBACAPwithdynamicarrivalsandvariablewaterdepthalongsidethequayisprovided.Thesolutioniterativelyproceedsinthreesteps.Inthefirststep,aprioritylistforthevesselsisgenerated.Inthenextstep,aheuristicprocedureisappliedtothegeneratedlisttoconstructaninitialfeasiblesolution.Inthethirdstep,tworefinementproceduresareinvokedtoseekfurtherimprove-mentsintheobjectivefunctionvalue.4.1.Prioritylistgeneration Giventhefullinformationonthevesselsthataretobehandledduringtheplanninghorizon,aprioritylistdeterminestheorderinwhichvesselsareinsertedintheberthplan(time–spacedomain).Thevesselsatthetopofthelisthaveabetterchanceofbeingplacedatoratleastclosetothedesiredberthingposition. Initially,thevesselsaresortedindescendingorderofthevalueoftheexpressioncli/L+(1Àc)EFTi/H,where0 M.H.Elwanyetal. parametersandthescheduleofthetemperature.Intypicalimplementations,thesimulatedannealingapproachinvolvesapairofnestedloopsandthreeadditionalparameters,anini-tialtemperatureT0,acoolingrate0 Step2.1.PerformthefollowingloopRtimes. Step2.1.1.PickarandomneighboringprioritylistP’ofP. Step2.1.2.Letd=cost(P’)Àcost(P).(Thecostisevaluatedbyapplyingtheconstructionheuristicstepandthetwolocalrefinementprocedures). Step2.1.3.Ifd<0(downhillmove),setP=P’.Step2.1.4.IfdP0(uphillmove),generatearandomnumber,x,fromtheinterval,(0,1);ifx Aneighboringprioritylistisgeneratedbyrandomlychoos-ingtwosuccessivevesselsandinterchangingtheirranksinthelist. 4.2.Constructionheuristic Inthisstageofthesolution,afeasibleberthplanfortheincomingvesselsisgeneratedaccordingtothegivenprioritylist.Thevesselsareinsertedintotheberthplanonebyone.Theprocedureattemptstopositionavesselatitspreferredberthingpositionanditsexpectedtimeofarrival.IfthisisimpossiblebecauseitwouldcauseanoverlapwithapreviouslyinsertedvesselorduetoaninsufficientnumberofQCsavail-ableatthistimeslottoservethevesselorinappropriatewaterdepth,thenthevesselisshiftedacrossthequaylengthinordertofindafeasibleberthingspot.Moreover,thevesselisshiftedacrosstheplanninghorizonseekingabetterfeasibleberthingspotinthetime–spacedomain.ThefinishingtimeiscomputedaccordingtoEq.(1)andthenumberofcranesavailabletoserveavesselduringeachtimeslotwithinitshandlingtimeisdetermined.Thehandlingtimemaybeextendedifthere-quiredcranecapacityisnotfulfilled.Analmostuniformquaycraneassignmentisrealizedtoavoidcraneinterferenceprob-lemslikelytooccurifthenumberofcranesservingavesselisalteredfromonetimeslottoanother[5].4.3.Quaycraneresourceleveling Vesselsatthetopoftheprioritylistarelikelytobeberthedattheirpreferredberthingpositionandtobeservedbythemax-imumnumberofQCs.Resourcelevelingtriestoovercomethisdoublepreferentialtreatment.Itinsertsthevesselsonebyoneintotheberthplanafterapplyingarestrictiononthemaxi-mumnumberofQCsservingthevessel(applyingallvalues Aheuristics-basedsolutiontothecontinuousberthberthallocationandcraneassignmentproblem675 betweenrminandrmaxiteratively).Theresttheninsertediofthevesselsaretogeneratei apartialberthplan.Thecurrentves-selofinterestistemporarilydeletedfromtheberthplanandsubsequentlyre-insertedafterremovingtheimposedrestric-tion.Theresourcelevelisthenfixedatthevaluethatgeneratesthebestpartialberthplanandthenextvesselishandledinthesamemanner.Theprocedureiscompletedafterallvesselshavebeendealtwith[5]. 4.4.Spatialandtemporalshifts Thisstagebeginswithidentifyingspatialandtemporalclus-ters.Spatialclustersinaberthplanaredefinedasvesselsthatarepositionedadjacenttoeachotheralongsidethequayandareservedsimultaneouslyduringatleastonetimeslot.Tempo-ralclustersaredefinedasvesselsthatareservedrightaftereachotherandeachpairofconsecutiveshipsareassignedtoatleastonecommonquayslot.Afteridentifyingtheseclusters,thespatialclustersaremovedalongthequaytowardthelowerborderandthentowardtheotherborder.Moreover,thetem-poralclustersaremovedacrosstheplanninghorizon;onceto-wardthestartingtimeoftheplanninghorizonandasecondtimetowardtheotherextreme.Thisisdoneinordertofurthersearchforberthplanswithlowercost[5]. Thefollowingflowchartsummarizesthewholealgorithm,seeFig.2. 5.Implementationandexperimentalresults Inthissection,thetestinstancesandthealgorithmparameterssettingusedtoassesstheeffectivenessoftheproposedsolutionstrategyaredescribed.Moreover,asampleoftheobtainedre-sultsisshown.5.1.Testinstances Fortesting,appropriatebenchmarkinstancesarerequired.ThesetoftestinstancesusedwereprovidedbyDr.FrankMei-StartGenerateapriority listApplyconstructionheuristicRefine the obtained berth plan using resource levelingSeek a better berth plan using spatial and temporal shifts No Stopping criterion metYes End Figure2Proposedheuristics-basedsolutionprocedure.Table1 Technicalspecificationsofdifferentvesselclasses. ClasslimiDirminirmaxiFeederU[8,21]U[5,15]U[4,8]12MediumU[21,30]U[15,50]U[8,12]24Jumbo U[30,40] U[50,60] U[12,18] 4 6 seluponrequest.Intheseinstances,vesselsaredistinguishedbythreeclasses:namely,feeder,medium,andjumbo.Theclas-sesdifferintheirtechnicalspecificationsandcostratesasshowninTable1,whereUdesignatesauniformdistributionofintegervaluesinthespecifiedinterval.Theonlymodifica-tiontohistestinstancesthathasbeenmadeisaddingthedraftforeachvessel. Meiselsuggestedthefollowingmethodologyingeneratingsuitabletestinstances[5].Withineachinstance,60%ofthevesselsbelongtothefeederclass,30%belongtothemediumclass,and10%belongtothejumboclass.Theplanninghori-zonHissettooneweek(168h).TheexpectedtimesofarrivalETAiofvesselsareuniformlydistributedintheplanninghori-zon.Itisassumedthatavesselcanspeedupbyatmost10%,whichdeterminestheearlieststartingtimeESTi=0.9ETAi.TheexpectedfinishingtimeEFTiisderivedbyaddingavessel’sminimumhandlingtimetoETAi.ThelatestfinishingtimeLFTiisderivedbyadding1.5timesavessel’sminimumhan-dlingtimetoETAi.ThedesiredberthingpositionisdrawnforvesseliusingU[0,LÀli].TheterminaldataincludethequaylengthL=100(1,000m)andthenumberofQCsQ=10.ToattainmoderateQCproductivitylosses,theinter-ferenceexponentissettoa=0.9andtheberthdeviationfac-torissettob=0.01.Thelattercausesa1%increaseinthehandlingeffortperquaysegmentofberthingpositiondevia-tion.TheassumedwaterdepthalongsidethequayisshowninFig.3. 5.2.Algorithmparameterssetting Eachproblemissolved5timeswithdifferentstreamsofran-domnumbersusedinthesimulatedannealingmodule.ThecoolingscheduleparametersaresettoT0=40,r=0.65,andR=5.Theparametercusedintheinitialprioritylistgen-erationissetequalto0.5.5.3.ResultssanitychecksTheconsistencyoftheobtainedresultsisverifiedbyplottingtheberthplanandvisuallycheckingthatnooverlapbetweenFigure3Waterdepthalongsidethequay.676Figure4Ratiooftherangeforthetestinstances.vesselrectanglesexistsandanExcelsheethasbeenusedtoas-surethevalidityoftheresultingquaycraneassignment.Moreover,foreachproblem,theratiooftherangeofobjec-tivevaluesforthefivetrialstothelowestobjectivevalue(whichisexpressedasthehighestobjectivevalueduringthefivetrialsminusthelowestobjectivevalueduringthefivetrialsdividedbythelowestobjectivevalueduringthefivetrials),iscalculated.Fig.4showstheratiooftherangeoftheobjectivevaluesforfivetrialstothelowestobjectivevalueasobtainedforthesetof20testinstancesused.Theresultsshowthattheaverageratiois5.4%,thenitcanbeconcludedthattheobjectivevaluesobtainedbythesimulatedannealingmethodareconsistentfordifferenttrials. Furthermore,themathematicalmodeldevelopedin[5]hasbeenextendedtoincorporatewaterdepthconstraintsandithasbeenimplementedusingLINGOoptimizationsoftwarepackage.However,itonlyyieldedasolutionininstancesofverysmallsize.Insuchrestrictedproblems,ithasbeencheckedthatboththeLINGOmodelandtheproposedheuris-tics-basedapproachgiveidenticalresults.Unfortunately,theversionemployedofLINGOsoftwarehadlimitedcapabilitiesandthusevenalowerboundforourtestinstancesofpracticalsizecouldnothavebeenobtained. Withtheaimofvalidatingourimplementationandthesoundnessoftheobtainedresults,thelowerboundsforthetestinstancesprovidedbyDr.FrankMeiselthatwereindicatedinhisdissertation[5]areused.Intheseinstances,thewaterdepthconstraintsarenotconsidered.Asampleoftheobtainedre-sultsisshowninTable2.Itisclearthattheresultsinmostin-stancesareincloseagreementwiththelowerbounds. Furthermore,theeffectivenessoftheproposedinitialprior-itylistselectioncriterionhasbeentested.ThisisdemonstratedbytheresultsofapplyingtheconstructionheuristictothetestinstancesprovidedbyDr.FrankMeisel,asshowninTable3.6.Tightlypackedproblemsandplanninghorizonfictitiousextension Considerthefollowingproblem.ThreevesselsareassumedtobeservedataterminalwithL=14,H=10,Q=5,c4=0.1,a=0.9,andb=0.1.Table4includesthevesseldataassoci-atedwiththestudiedexample.ThevesseldraftsareD1=5,D2=8,andD3=9.Thewaterdepthissetto6forthefirst5quaysegments,whileitreaches10forthelastsixsegments.Thewaterdepthforthesixth,seventhandeighthsegmentsis7,8and9,respectively. M.H.Elwanyetal.Table2Benchmarkinstancesresults.NumberofvesselsCPLEX(LB)Objectivevalue(minimum)2084.085.153.9.975.280.275.879.756.856.857.657.667.575.456.15775.077.388.292.330137.7161.681.487100.9107.6.8113.3136.9161.240165.7217.2159.6185.9185.0300.8224.1357.5133.3168.7Table3Constructionheuristicresultsfordifferentinitialprioritylists. ProblemnumberNo.VesselsObjectivevalueObjectivevalue(FCFS)(LVF)120 118.590.2260.156.1397.694.9496.496.4573.157.9657.657.6793.385.3878.978.9996.49410115.5115.51130 2162161296.793.113135119.714144.5134.715197.5197.516137.7127.817139.8113.918167.8142.619268.7228.620184.7115.82140 31731722276.9276.923550.4432.724453.3453.325239.1239.126398.9398.9273.6300.528424.2424.229334.2334.230 425.8 425.8 ThereisnoproblemsolvingtheabovetestinstanceusingLINGOtooptimalitywithoutchangingtheplanninghorizon. Aheuristics-basedsolutiontothecontinuousberthberthallocationandcraneassignmentproblem 677 Table4Tightlypackedtestinstancevesselsdata.ilib0imirminirmaxi1374132471012356513Figure5Optimalberthplanofatightlypackedinstance.Buttryingtosolveitusingourheuristicapproach,aproblemhasbeenencounteredwhichwillbereferredtoasthe‘startupproblem’.Thisproblemmightoccurinproblemswithtightlypackedberthplans.Inthesecases,theconstructionheuristicfailstogenerateastartingfeasiblesolutionwhenitplacesthevesselsatthetopoftheprioritylistinberthingspotsthatdonotleaveroomforlatervesselstobeinsertedinthefirstplacenomatterhowtheprioritylistischanged.Aproposedremedyforthisproblemistoincreasetheplanninghorizonwithadummyperiodjusttoallowallthevesselstobeinsertedinaninitialberthplan,andbyimposingalargecostpenaltyonberthingvesselsduringthisdummyperiodthesubsequentlo-calrefinementsalwaystrytoshiftthevesselswithintheal-lowedplanninghorizon. Intheparticularexampledescribedinthissection,toalle-viatetheaforementionedproblem,theplanninghorizonisin-creasedto15handthenitwaspossibletoreproducethesameresultsobtainedusingtheLINGOÒmodel.TheresultingberthplanisshowninFig.5.Theasterisksappearinginthisfigurerepresentthenumberofunusedquaycranesduringvar-ioustime-slotsinourplanninghorizon.7.Conclusion Inthispaper,anintegratedheuristics-basedsolutionmethod-ologytosolvethetwomostimportantoptimizationproblemsrelatedtoseasideoperationsatacontainerterminal;namely,theberthallocationandquaycraneassignmentproblems,hasbeenpresented.Theproblemtackledinthispaperassumesacontinuousberthwithvariablewaterdepthalongthequaysideundertheassumptionofdynamicvesselsarrivals.Theproposedtechniquebeginswithfindinganinitialfeasiblesolu-tionwhichhandlesvesselsaccordingtoagivenprioritylistand ESTiETAiEFTiLFTic1ic2ic3i2358112239102241467336thenseeksfurtherenhancementsbyapplyingtwolocalrefine-mentprocedures.Finally,simulatedannealingisusedtosearchthespaceofprioritylists.Aneffectiveinitialprioritizingcriterionhasbeenproposed,whichacceleratestheconvergenceoftheemployedheuristicstotheoptimalsolution.Theproposedsolutionalgorithmhasbeenappliedtosev-eraltestinstancesandtheconsistencyoftheobtainedresultswithallproblemconstraintshasbeenverified.ThequalityofthesolutionshasbeenassessedbycomparingthemtolowerboundsprovidedbyCPLEXoptimizationpackageandthusitisconcludedthattheemployedheuristics-basedmethodol-ogysucceededtoachievehighqualityberthplans.Yet,animportantpracticalaspectremainstobeconsidered.Thisisthestochasticnatureofsomeofthedecisionvariablesandin-putdesignparameters.Anactionplanisrequiredtodeterminehowtheberthplangeneratedbytheproposedalgorithmistobemodifiedincaseavesselfailstomeetitsberthingtimeordeparturetime.References [1]ChristianBierwirth,FrankMeisel,Asurveyofberthallocationandquaycraneschedulingproblemsincontainerterminals,EuropeanJournalofOperationalResearch(2010)615–627.[2]AkioImai,EtsukoNishimura,StratosPapadimitriou,Thedynamicberthallocationproblemforacontainerport,TransportationResearchPartB(2001)401–417.[3]AkioImai,EtsukoNishimura,MasahiroHattori,StratosPapadimitriou,Berthallocationatindentedberthsformega-containerships,EuropeanJournalofOperationalResearch(2007)579–593.[4]AkioImai,HsiehChiaChen,EtsukoNishimura,StratosPapadimitriou,Thesimultaneousberthandquaycraneallocationproblem,TransportationResearchPartE(2008)900–920.[5]Frank.Meisel,SeasideOperationsPlanninginContainerTerminals,Physica-Verlag,Berlin,2009.[6]EtsukoNishimura,AkioImai,StratosPapadimitriou,Berthallocationplanninginthepublicberthsystembygeneticalgorithms,EuropeanJournalofOperationalResearch131(2001)282–292.[7]Young-ManPark,KapHwanKim,AschedulingmethodforBerthandQuaycranes,ORSpectrum25(2003)1–23.[8]KapHwanKim,KyungChanMoon,Berthschedulingbysimulatedannealing,TransportationResearchPartB37(2003)1–560.[9]Frank.Meisel,Christian.Bierwirth,Heuristicsfortheintegrationofcraneproductivityintheberthallocationproblem,TransportationResearchPartE45(2009)196–209.[10]P.Schonfeld,O.Sharafeldien,Optimalberthandcranecombinationsincontainerports,JournalofWaterway,Port,CoastalandOceanEngineering111(6)(1985)1060–1072.[11]IslamAlietal.,ContainerterminalberthallocationandquaycraneassignmentusingIPandsimulatedannealing,in:Proceedingsofthe41stInternationalConferenceonComputersandIndustrialEngineering,LosAngeles,USA,October2011. 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务