九 年 级 数 学 试 卷
全卷满分120分,考试时间共120分钟
第Ⅰ卷(选择题 共30分)
一、选择题(本大题共10个小题,每小题3分,共30分。在每小题给出的四个选项中,只有一个
选项符合题意)
1.︱-32︱的值是( ) A.-3
B. 3
C.9
D.-9
x-2
中,自变量x的取值范围是( ) x
B.x≥2
C.x>2且x≠0
D.x≥2且x≠0
2.函数y = A.x≠0 有( )
3.由一些大小相同的小正方体组成的几何体的三视图如图1所示,那么组成这个几何体的小正方体A.6块
B.5块 C.4块
D.3块
主视图俯视图左视图 4.在等腰△ABC中,一腰AB的垂直平分线交另一腰AC于点G,若已知AB=10,△GBC的周长为17,则底BC的长为( )
A.10
B.9
C.7 C.10
D.5 D.6
图1
5.若α、β是方程x2-4x-5=0的两个实数根,则α2+β2的值为( ) A.30
B.26
6.某校九(3)班的全体同学喜欢的球类运动用如图2所示的统计图来表示,下面说法正确的是( )
A.从图中可以直接看出喜欢各种球类的具体人数; B.从图中可以直接看出全班的总人数;
C.从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况; D.从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系 则BD的长是( )
A.16
B.18
C.20
D.22
8.如图4,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为( )
A.(-a,-2b)
B.(-2a,-b)
C.(-2a,-2b) D.(-b,-2a)
图2
7.如图3,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,
篮球 25% 足球 30% 乒乓球 25% 排球 20% O B 图3 C
图4
9.已知二次函数y=ax2+bx+(ca≠0)的图象如图5所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1且为实数),其中正确的个数是( )
A.2个
B.3个
C.4个
D.5个
10.如图6,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点、AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴正半轴上的A′处,则图中阴影部分面积为( )
4πA.-2
3
4πB.
3y
2πC.
3
2πD.-2
3
A -1 0 1 x B 图6 F E 图7 D C 图5 第Ⅱ卷(非选择题 共90分)
二、填空题(本大题6个小题,每小题3分,共18分。)
11.某汽车参展商为参加中国(成都)国际汽车博览会,印制了105000张宣传彩页,105000这个数字用科学记数法表示为 ___ .
12.如图7,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长是 __ . 13.某篮球兴趣小组五位同学的身高(单位:cm)如下:175、175、177、x、173,已知这组数据的平均数是175,则这组数据的方差是 .
14.如图8所示,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC= ____ .
15.如图9,给正五边形的顶点依次编号为1、2、3、4、5,若从某一顶点开始,沿五边形的边顺时针行走,顶点编号是几,就走几个边长,则称这种走法为一次“移位”. 如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→l为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次5 2 O C B 1 A P 图8 “移位”.若小宇从编号为2的顶点开始,第10次“移位”,则他所处顶点的编号为 _______ .
16.有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需630元;若购甲4件、乙10件、丙1件共需840元,现购甲、乙、丙各一件共需 ___ 元.
4 图9 3 三、解答题(共8个小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)
17.(本小题满分8分)
1( 1)计算:6.282+-2cos60°
602x2-4x+41
(2)先化简(1-)÷2,并求当x满x2-6=5x时该代数式的值.
x-1x-1
18.(本小题满分8分)如图10,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1∶3,点P、H、B、C、A在同一平面上,点H、B、C在同一条直线上,且PH⊥HC,
(1)山坡坡角(即∠ABC)的度数等于 度.
(2)求A、B两点间的距离(结果精确到0.1米.参考数据3≈1.732)
19.(本小题满分8分)小明与他的父亲、母亲计划五一期间外出旅游,初步选择了广安、绵阳、泸州、眉山四个城市,由于时间仓促,他们只能去一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小明父亲建议,用小明学过的摸球游戏来决定,规则如下:
①在一个不透明的袋子中装一个红球(广安)、一个白球(绵阳)、一个黄球(泸州)和一个黑球(眉山),这四个球除颜色不同外,其余完全相同;
②小明父亲先将袋中球摇匀,让小明从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小明母亲从袋中随机摸出一球,父亲记录下它的颜色;
③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出求的颜色相同为止.
按照上面的规则,请你解答下列问题:
(1)已知小明的理想旅游城市是绵阳,小明和母亲随机各摸球一次,请用画树状图求出他们均摸出白球的概率.
(2)已知小明母亲的理想旅游城市是泸州,小明和母亲随机各摸球一次,则他们至少有一人摸出黄球的概率是多少?
k1
20. (本小题满分8分) 如图11,已知反比例函数y1=(k1﹥0)与一次函
x
B 图11 A O C x y 图10
数y
2
=k
2
x+1(k
2
≠0)相交于A、B两点,AC⊥x
轴于点C,若△OAC的面积为1,且tan∠AOC=2.
(1)求出反比例函数与一次函数的解析式;
(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值? 21.(本小题8分)已知正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图12),易证BM+DN=MN.
(1)当∠MAN绕点A旋转到BM≠DN时(如图13),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.
(2)当∠MAN绕点A旋转到如图14的位置时,线段BM,DN和MN之间又有怎样的数量关系?请写出你的猜想并加以证明.
A D N N B M 图12 C B B M 图13 C M 图14 C N A D A D 22.(本小题满分10分)某机械租赁公司有同一型号的机械设备40套,经过一段时间的经营发现,当每套设备的月租金为270元时,恰好全部租出.在此基础上,当每套设备的月租金每提高10元时,这种设备就少租出一套,且没租出的一套设备每月需支出费用(维护费、管理费等)20元.设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y(元).
(1)用含x的代数式表示未出租的设备数(套)以及所有未出租设备(套)的支出费用
(2)当月租金分别为300元和350元时,租赁公司的月收益分别是多少元?此时应该出租多少套机械设备?请你简要说明理由.
(3)当x为何值时,租赁公司出租该型号设备的月收益最大?最大月收益为多少? 23.(本小题满分10分)如图15,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线; 1
(2)求证:BC=AB;
2
(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.
A C O N M B P 图15
24.(本小题满分12分)如图16,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ,当△CQE的面积为3时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
参考答案及评分意见
y C E B O Q D A x 图16
一、 选择题
1—5 CBBCB 6—10 DCCBC
二、填空题
11.1.05×105 12.4 13.1.6 14.20° 15.3 16.210
三、解答题
17.(1)解:原式=1+36﹣1……………2分
=36; ………………3分 x-2(x+1)(x-1)
(2)解:原式 =· ··············································································· 2分
x-1(x-2)2x+1
= ······························································································ 3分
x-2
方程x2-6=5x的解为:x1=6 x2=-1 ········································································ 4分
6+17
∵x=-1时分式无意义 ,∴当x=6时,原式== ···················································· 5分
6-24
18.解:(1)30. ································································································ 2分 (2)在Rt△BHP中,∠PBH=600, PHPH30∵=sin∠PBH,∴PB===203 ···················································· 4分 PB sin∠PBHsin60°在△ABP中,∠APB=60°-15°=45°, ∠ABP=180°-∠PBH-∠ABC=180°-60°-30°=90° ····················································· 5分 ∴△ABP是等腰直角三角形, ·············································································· 6分 ∴AB=PB=203≈34.6(米) ··················································································· 7分 答:A、B两点间的距离约为34.6米. ····································································· 8分
19.解:(1)画树状图得:
······································ 4分
∵共有16种等可能的结果,小明和母亲随机各摸球一次,均摸出白球的只有1种情况,
1
∴小明和母亲随机各摸球一次,均摸出白球的概率是:; ········································· 6分
16
(2)由(1)得:共有16种等可能的结果,小明和母亲随机各摸球一次,至少有一人摸出黄球的有7种情况,
7
∴小明和母亲随机各摸球一次,至少有一人摸出黄球的概率是:. ····························· 8分
16
20.解:(1)在Rt△OAC中,设OC=m,
AC
∵tan∠AOC==2,∴AC=2×OC=2m,
OC11
∵S△OAC=×OC×AC=×m×2m=1,
22
∴m2=1,∴m=±1(负值舍去), ∴A点的坐标为(1,2), ····················································································· 2分
k1
把A点的坐标代入y1=中,得k1=2,
x
2
∴反比例函数的表达式为y1=, ············································································· 3分
x
把A点的坐标代入y2=k2x+1中,得k2+1=2,∴k2=1, ∴一次函数的表达式y2=x+1; ················································································ 4分 (2)B点的坐标为(-2,-1), ·············································································· 6分 当0<x<1和x<-2时,y1>y2. ············································································· 8分
21.解:(1)BM+DN=MN成立. ············································································· 1分 如下图1,在MB的延长线上,截得BE=DN,连接AE, 易证:△ABE≌△AND,∴AE=AN. ······································································· 2分
A D A D F N E B M 图1 C B M 图2 C N ∴∠EAB=∠NMD.∴∠BAD=90°,∠NAM=45°
∴∠BAM+∠NMD=45°.∴∠EAB+∠BAM=45°.∴∠EAM=∠NAM 又AM为公共边,∴△AEM≌△ANM , ∴ME=MN,∴ME=BE+BM=DN+BM.
∴DN+BM=MN. ································································································· 4分 (2)DN-BM=MN. ······························································································ 5分 理由如下:
如图2,在DC上截取DF=BM,连接AF.
∵AB=AD,∠ABM=∠ADF=90°,∴△ABM≌△ADF (SAS)
∴AM=AF,∠MAB=∠FAD. ················································································· 6分 ∴∠MAB+∠BAF=∠FAD+∠BAF=90°,即∠MAF=∠BAD=90°.
又∠MAN=45°,∴∠NAF=∠MAN=45°.∵AN=AN,∴△MAN≌△FAN.∴MN=FN,
即 MN=DN-DF=DN-BM; ················································································· 8分
x-270
22.解:(1)未租出的设备为套,所有未出租设备支出的费用为(2x-540)元; ··· 2分
10
x-2701
(2)∵y=(40-)x-(2x-540)=-x2+65x+540;············································· 4分
1010
∴当月租金为300元时,租赁公司的月收益为11040元,此时租出设备37套;
当月租金为350元时,租赁公司的月收益为11040元,此时租出设备32套. ·················· 5分
因为出租37套和32套设备获得同样的收益,如果考虑减少设备的磨损,应该选择出租32套;如果考虑市场占有率,应该选择37套;··············································································· 6分
11
(3)由(2)知y=-x2+65x+540=- (x-325)2+11102.5 ······································· 7分
1010
∴当x=325时,y有最大值11102.5.但是当月租金为325元时,出租设备的套数为34.5套,而34.5不是整数 ················································································································· 8分
故出租设备应为34(套)或35(套).即当月租金为330元(租出34套)或月租金为320元(租出35套)时,租赁公司的月收益最大,最大月收益均为11100元.…………………………10分
C
23.解:如图3(1)∵OA=OC,∴∠A=∠ACO, 又∵∠COB=2∠A,∠COB=2∠PCB,
A P ∴∠A=∠ACO=∠PCB,又∵AB是⊙O的直径, B O N ∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°, ∴∠PCO=90°,即OC⊥CP,
M 图3 而OC是⊙O的半径,∴PC是⊙O的切线;.............................(3分) (2)∵AC=PC,∴∠A=∠P, ∴∠A=∠ACO=∠PCB=∠P,
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
1
∴∠COB=∠CBO,∴BC=OC,∴BC=AB; ····························································· 6分
2
(3)连接MA,MB, ∵点M是弧AB的中点, ∴
,∴∠ACM=∠BCM,∵∠ACM=∠ABM,∴∠BCM=∠ABM,
BMMN
又∵∠BMN=∠BMC,∴△MBN∽△MCB,∴=, ············································ 8分
MCBM
∴BM2=MN·MC, 又∵AB是⊙O的直径,,∴∠AMB=90°,AM=BM,
y ∴AB=4,∴BM=22,∴MN·MC=BM2=(22)2=8 ·················································· 10分 C 1016a8aca24.解:(1)由题意,得 ,解得2,
4cc41
∴所求抛物线的解析式为y=-x2+x+4
2
(2)如图4,设点Q的坐标为(m,0),过点E作EG⊥x轴于1
点G,由-x2+x+4=0,
2
得x1=-2,x2=4,
∴点B的坐标为(-2,0) ,∴AB=6,BQ= m +2 ∵QE∥AC, ∴△BQE∽△BAC , ∴
EGBQEGm+22m+4= 即=,∴EG=………….5分 COBA463
E B G O y C Q D A x 图4 F E P l B G O Q M D 图5 A x 11∴ S△CQE=S△CBQ-S△EBQ=BQ·CO-BQ·EG
22
12m+41228=(m+2)(4-) =-m+m+=3, 23333
∴ m2-2m-8=-9, ∴m=1 ∴Q(1,0) ·································································· 7分
(3)存在 ·········································································································· 8分 在△ODF中,
①若DO=DF,∵A(4,0),D(2,0),∴AD=OD=DF=2,
又在Rt△AOC中,OA=OC=4,∴∠OAC= 45° ∴∠DFA=∠OAC= 45°∴∠ADF=90° 此时,点F的坐标为(2,2)
由12xx42,得x1=1+5,x2=1-5 2此时,点P的坐标为:P(1+5,2 )或P(1-5,2 )
······················································································································· 9分 ②如图5,若FO=FD,过点F作FM⊥ 轴于点M,
1
由等腰三角形的性质得:OM=OD=1,∴AM=3
2
∴在等腰直角三角形△AMF中,MF=AM=3 ∴F(1,3) 1
由-x2+x+4=3,得x1=1+3,x2=1-3 2
此时,点P的坐标为:P(1+3,3)或P(1-3,3) ………………………………10分
③若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC= 42
∴点O到AC的距离为22,而OF=OD=2<22
此时,不存在这样的直线l,使得△ODF是等腰三角形. ··································· 11分
综上所述,存在这样的直线l,使得△ODF是等腰三角形.所求点P的坐标为:
P(1+5,2 )或P(1-5,2 )或P(1+3,3)或P(1-3,3)…………………………12分
因篇幅问题不能全部显示,请点此查看更多更全内容