搜索
您的当前位置:首页正文

Modeling the Unconventional Superconducting Properties of Expanded A$_3$C$_{60}$ Fullerides

来源:爱go旅游网
ModelingtheUnconventionalSuperconductingPropertiesofExpandedA3C60Fullerides

MassimoCapone,1,2MicheleFabrizio,3,4ClaudioCastellani,1andErioTosatti3,4

SMC,CNR-INFMandDipartimentodiFisica,Universit`a“LaSapienza”,P.leAldoMoro2,I-00185,Roma,Italy2

ISC-CNR,ViadeiTaurini19,I-00185Roma,Italy3

InternationalSchoolforAdvancedStudies(SISSA),andCNR/INFMDEMOCRITOSNationalSimulationCenter,ViaBeirut2-4,I-34014Trieste,Italy4

TheAbdusSalamInternationalCenterforTheoreticalPhysics(ICTP),P.O.Box586,I-34014Trieste,Italy(Dated:September4,2008)

ThetrivalentalkalifulleridessolidsofgenericcompositionA3C60,whereC60isthefullerenemoleculeandA=K,Rb,andCs,areawellestablishedfamilyofmolecularsuperconductors.Thesuperconductiveelectronpairingisofregulars-wavesymmetryandisaccountedforbyconventionalcouplingofelectronstophonons,inparticularbywellunderstoodJahnTellerintramolecularC60vibrations.Asourceofrenewedinterestinthesesystemsarealarmingindicationsofstrongelectron-electronrepulsionphenomena,whichemergedespeciallyincompoundswheretheC60-C60distanceisexpanded,byeitheralargecationsizeorbyotherchemicalorphysicalmeans.Severalexamplesarenowknownwherethiskindofexpansion,whileleadingtoahighsuperconductingtemperatureatfirst,graduallyorsuddenlycausesadeclineofsuperconductivityanditseventualdisappearanceinfavorofaMottinsulatingstate.Thiskindofinsulatingstateisthehallmarkofstrongelectroncorrelationsincuprateandorganicsuperconductors,anditsappearancesuggeststhatfulleridesmightalsobemembersatlargeofthatfamily.

Ourapproachtothefulleridesistheoretical,andbasedonthesolutionofaHubbardtypemodel,whereelectronshopbetweenmolecularsites.Wetakeadvantageofthefactthat,unlikemodelsforthestronglycorrelatedcuprates,stillunderdebate,inaHubbardmodeloffulleridesalltheimportantelectroncorrelationsoccurwithinthemolecularsite,efficientlysolubleintheDynamicalMeanFieldTheory(DMFT)approximation.DMFTsolutionsconfirmthatsuperconductivityinthismodelfulleride,althoughofs-wavesymmetryratherthand-wave,sharesmanyofthepropertiesthatarecharacteristicofhighTccuprates.Thecalculationsareheavy;andwhileourworkingmodelisseveralyearsold,thenewresultswepresentinthisColloquiumpertaintothemostinterestingcaseofthreeelectronsperC60molecule,appropriatetoA3C60,andhaveonlybeenpossiblerecentlythankstoastrongercomputationaleffort.Wehavecalculatedthezerotemperaturephasediagramasafunctionoftheratioofintra-molecularrepulsionparameterUovertheelectronbandwidthW,theincreaseofU/Wrepresentingthemaineffectoflatticeexpansion.Thephasediagramisclosetothatofactualmaterials,withadomeshapedsuperconductingorderparameterregionprecedingtheMotttransitionforincreasingcellvolume.Unconventionalpropertiesofexpandedfulleridesuperconductorspredictedbythismodelinclude:(i)anenergypseudogapinthenormalphase;(ii)againofelectronkineticenergyandofconductingDrudeweightattheonsetofsuperconductivity,asinhighTccuprates;(iii)aspinsusceptibilityandaspecificheatbehaviorthatisnotdrasticallydifferentfromaregularphononsuperconductor,despitestrongcorrelations;(iv)theemergenceofmorethanoneenergyscalegoverningtherenormalizedsingleparticledispersion,electronicentropyandthespecificheatjump.Thesepredictions,whichifconfirmedshouldestablishfullerides,especiallytheexpandedones,asmembersofthewiderfamilyofstronglycorrelatedsuperconductors,arediscussedinthelightofexistingandforeseeableexperiments.

1

arXiv:0809.0910v1 [cond-mat.supr-con] 4 Sep 2008PACSnumbers:71.30+h,71.10.Pm,71.10.Fd

Contents

I.introduction

II.ElectronInteractionsinFulleridesIII.ModelandInteractions

A.DynamicalMean-FieldTheoryB.T=0PhaseDiagramIV.UnderstandingStronglyCorrelated

23557SuperconductivityfromDMFTandtheImpurityModel

A.AndersonImpurityWithaRigidBath

B.AndersonImpuritywithaSelf-ConsistentBathin

DMFTV.DiscussionofExperimentalProbesVI.Conclusions

Acknowledgments

91112131516

References

16

I.INTRODUCTION

DiscoveredbyKamerlinghOnnesnearlyacenturyago(Onnes,1911),andfirstexplainedmicroscopi-callybackin1957intermsofelectronpairingbyBardeen,CooperandSchrieffer(BCS)(Bardeenetal.,1957a,b),superconductivityisstillsurprisinglya’lapage.Ononehand,superconductivityisbeingconstantlydis-coveredinaneverincreasingvarietyofsolidstatecom-pounds.Ontheotherhand,itappearsmoreandmoredifficulttousebasicallythesamestandardtheory,es-sentiallyBCSanditsextensions(e.g.Parks,1969,chap-ters10and11)toaccountforallofthem.Inthisstan-dard,conventionaltheory,superconductivityarisesfromthecondensationofelectronpairs,thetwoelectronsusu-allyboundinapairstateofs-wavesymmetryandheldtogetherbyexchangeoflatticephonons.TheCoulombrepulsionbetweenthetwoelectronsopposespairforma-tion,butitdoesnotsuppresssuperconductivitybecausescreeningmakesitweakenough.

Thesurprisinglyfavorableeffectofrepulsiveelectroncorrelationsonsuperconductivityfoundinsomesys-tems,particularlyinhigh-Tcsuperconductingcuprates,whereelectron-electronrepulsionisdominant,remainsastandingpuzzle.Animmenseamountofexperimen-talandtheoreticalworkhasaccumulatedoverthelasttwodecadesintheattempttounderstandthesephenom-ena,seee.g.thereviewbyBennemannandKetterson(2008).Actually,cupratesarebutthemostspectacularmembersofawiderclassofstronglycorrelatedsupercon-ductorsincludingheavyfermionandorganicmolecularcompounds(BennemannandKetterson,2008),systemsforwhichthereisnoreallycomprehensivetheoryeither.Amongotherfactors,theoreticaleffortshavebeenham-peredbythegeneralinter-sitenatureofelectroninter-actionsandcorrelationsinmanyofthesesystems,afactthatposeslargetechnicaldifficulties.Inthislight,iden-tifyingasuperconductorfamilywherecorrelationsareatthesametimestrong,simple,andon-siteiswelcome.Amorecrucialelementisoneofperspective.Ithasbeenawidespreadprejudicetodistinguishbetweensu-perconductorswhere(asinBCStheory)pairingofelec-tronstakesplaceinthes-wavechannelandismediatedbyphonons,fromthosewherethemechanismmaybeelectronicandnotphononic,andwherepairinginsteadtakesplaceinthed-wavechannel.Whereasitiswidelyheldthatstrongrepulsivecorrelationsareessentialtosu-perconductivityinthelatter(Anderson,1987),theyarenotconsideredcrucialintheformer.TheconventionalBCSscenarioanditsextensions,namelytheMigdal-Eliashbergtheory(Eliashberg,1960;Migdal,1958;Parks,1969)–acontrolledapproximationvalidwhenthetyp-icalphononfrequencyismuchsmallerthantheFermi-energy–aremoreorlessautomaticallyaccepted,andusedtoaccountforthesuperconductingproperties.In

2

thistheory,electron-electronrepulsionmerelyrenormal-izestheelectron-phononparameters,loweringthecriticaltemperatureTcratherthanenhancingit.

Thetrivalentalkalifulleridessuperconductors,excel-lentlyreviewed,e.g.,byGunnarsson(1997,2004)andRamirez(1994),areamongthesystemswherethiscon-ventionallogicseeminglyapplies.FulleridesaresolidstatecompoundsofgenericcompositionA3C60,whereC60isthefullerenemolecule(Gunnarsson,2004)andA=K,Rb,andCsarealkalications.Thethreealkalisdonateatotalofn=3electronstoeachfullerene,halffill-ingitsthreefolddegeneratet1umolecularlevel.Electronhoppingbetweenfirstneighboringfullerenesgivesrisetoametal,whereconductionisrestrictedtothethreenar-rowt1u-derivedbands,withatotalenergybandwidthofnomorethan0.6eV(Erwin,1993;Satpathyetal.,1992).Metallicfulleridesaregenerallysuperconducting,withcriticaltemperaturesTcreaching∼40K,depend-ingonvariousfactors.Anempiricallyimportantfactorappearstobethecellvolume.Whenthefulleridelatticeischemicallyexpanded,byeitherincreasingcationsizeorbyinsertionofneutralmolecules,orelsephysicallyexpandedbyremovingpressure,Tcundergoesadefiniteandsystematicchange.Itrisesinitiallywithagoodcor-relationwiththeC60-C60distance(Gunnarsson,1997;Yildirimetal.,1995).FurtherexpansionhowevercausesTctodrop,endingeventually,throughafirstordertran-sition,inaninsulatingstate,asweshalldiscusslater.Awealthofevidenceindicatesthatsuperconductingpairinginfulleridesisphononicandthattherelevantphononsarethestiffintra-molecularHgvibrationsoftheC60molecule,Jahn-Tellercoupledtothet1uconductionelectrons(Gunnarsson,1997).FurthersupporttotheapparentBCSnatureofsuperconductivityinfulleridescomesfromspecific-heatjumpsthatscalelinearlywithTcinagreementwithBCStheory(BurkhartandMeingast,1996;Kortanetal.,1992;Ramirez,1994),aswellasaregular(i.e.,notexceedinglyhigh)normalphasemag-neticsusceptibility.(Kortanetal.,1992;Robertetal.,1998)Superconductingenergygapsarelessclearlyde-fined,(Gunnarsson,1997)thegapratio2∆/Tc3.4−4.2inK3C60andRb3C60(Gunnarsson,1997;≃Ramirez,1994),butnotfarfromtheBCSvalueof3.53.TheseelementssuggestviewingtheA3C60compoundsasweaklycorrelatedFermi-liquidconductors(Ramirez,1994),thoughwithunusuallynarrowelectronbands,withalargeeffectivemassroughlythreefreeelectronmasses(Robertetal.,1998).EventheobserveddecreaseofTcunderappliedpressureinK3C60andRb3C60isinqualitativeagreementwithanincreasingbandwidthanddecreasingdensityofstatesattheFermilevel,whichfur-thersupportsastandardBCSpicture.

Thesereassuring,conventionallookingfactsarehowevercontrastedbyanumberofconflictingele-mentsthatarestrongenoughtocastseriousdoubtsonthegeneralapplicabilityoftheBCSscenariotosuperconductorsinthisfamily.Theseelementsareespeciallyapparentinthemoreexpandedful-

3

leridesincluding(NH3)xNaK2C60(Ricc´oetal.,2003)andLi3C60(Durandetal.,2003),andinthealloysCs3−xKxC60andCs3−xRbxC60(Dahlkeetal.,2000).FortheseexpandedcompoundsTcdecreasesuponex-pansion,contrarytoBCStheory.TheelectrondensityofstatesextractedbyNMRKnightshiftisatthesametimeanincreasingfunctionoflatticeparameter,smoothlyconnectingwiththatoftheunalloyedcompoundsunderpressure(Dahlkeetal.,2000).WithinBCStheory,thatincreaseshouldleadtoariseofTcandnottoadropasobserved.Thesameunconventionalbehaviorisob-servedinCs3C60,thefulleridecompoundwiththehigh-estTc∼40Kattainedunderpressure(Palstraetal.,1995).AnovelA15superconductingphaseofCs3C60withexpandedstructurehasveryrecentlybeensyn-thesized(Ganinetal.,2008)correspondingtoabody-centeredcubicarrangementoffullerenes.Superconduc-tivityemergesunderpressurethroughafirstordernon-structuraltransitionat4Kbar.ThecriticaltemperatureTcfirstincreaseswithpressure,reachingadome-shapedmaximumof38Karound7Kbar,abovewhichTcdrops.Sincenostructuralchangesareobservedunderpressure,theappearanceofsuperconductivityaswellasthedome-shapedTcvs.pressurebehaviormustbeascribedsolelytothevolumecontraction(Ganinetal.,2008).Thisnon-monotonicbehaviorofTcwithpressurefindsnoapparentexplanationwithintheconventionaltheory.

Thebasicandstrikinganomalyofexpandedfulleridesoccursinthecompoundswiththelargestinter-moleculedistances.Inthesematerialsarelativelymodestad-ditionallatticeexpansion(andminorchangeofsym-metryduetointercalatedammonia)isenoughtodra-maticallyturnthemfrommetallicandsuperconduct-ingtoantiferromagneticandinsulating(Durandetal.,2003;IwasaandTakenobu,2003).1Withtemperature,antiferromagneticorderintheammoniatedcompoundNH3K3C60changestoparamagneticdisorderataN´eeltemperatureslightlyabove∼40K(Prassidesetal.,1999).EvenabovetheN´eeltemperature,themicrowaveconductivityinNH3K3C60remainsseveralordersofmag-nitudebelowthatofK3C60(Kitanoetal.,2002),testi-fyingtheMottinsulator(correlationdriven)natureoftheinsulatingphase.ElectronsinalatticegiverisetoaMottinsulatingstatewhenelectronelectronrepulsionstopstheirfreepropagationandthelatticeappearsasacollectionofmolecularions.Correlationsleadtoanen-ergygapintheirspectrum,eveniftheirnumberdensitypercellisodd,insteadofevenasinregularbandinsula-tors(Mott,1990).ProximityofaMottinsulatorphaseinfullerideshadlongbeenadvocatedindifferentcon-texts(BaskaranandTosatti,1991;Chakravartyetal.,1991;ChakravartyandKivelson,1991;Lofetal.,1992)

molecularion.InmolecularC360−

,thestrengthoftheseinteractionshasbeenevaluatedinthepast,andtheJTstrengthhasbeenestimatedtoprevailnarrowlyoverHund’sruleexchange(L¨udersetal.,2002).Thisnar-rowbalancefavorsalow-spingroundstate,witharel-ativelysmall“spingap”–theenergybetweenthelowspingroundstateandthelowesthigh-spinexcitedstate,expectedtobeoftheorderof0.1eV(Caponeetal.,2001;L¨udersetal.,2002).Inagreementwiththisex-pectation,localmomentsindicatethatinantiferromag-neticMottinsulatingNH3K3C60theC60(3−)sitesareinalow-spinstate,S=1/2(Prassidesetal.,1999),theirhighspinstateS=3/2lyingabout100meVhigherinenergy.Alow-spinqualifiestheoverexpandedful-leridesas“Mott-Jahn-Teller”insulators–thatis,MottinsulatorswhosesitesareinaJTstabilizedlow-spinstate(asopposedtoaHund’srulestabilizedhigh-spinstate)(FabrizioandTosatti,1997).Underhydrostaticpressure,NH3K3C60undergoesatransitiontoametallicstatewheresuperconductivityre-emergeswitharatherlargeTc(Prassidesetal.,1999).Itisimportanttonotethatthissuperconductingphasestillbelongstothe“ex-panded”family,assignaledbythefacttheTcherein-creasesfurtherwithincreasingpressure(reaching28Kat14.8kbar(Zhouetal.,1995))atvariancewithnon-expandedfullerides,whereTcdropsunderpressure.Alateral,butrelevantadditionalelementcomesfromtetravalentcompoundsA4C60,whichareinsulatorsornearinsulators.Bycomparisonwiththetrivalentful-lerides,theslightreductionofband-energygainperpar-ticlecausedbyaddingonemoreelectronpermoleculeandbyslightlychangingthecrystalstructureissuffi-cienttoturnthetrivalentmetalsintotetravalentinsu-latorseveninnon-expandedmaterials.Carefuldensity-functionalelectronicstructurecalculationsindicatedthatitisnotpossibletodescribethetetravalentcompoundssuchasK4C60asstaticallydistortedJahn-Tellerbandin-sulators(Caponeetal.,2000).AstaticJTdistortionandtheassociatedorthorhombicstateisactuallypresentonlyinCs4C60(DahlkeandRosseinsky,2002),andinRb4C60aboveacriticalpressure(HuqandStephens,2006),whileitnevershowsupinK4C60(HuqandStephens,2006)(withtheexceptionofmonolayers,seeWachowiaketal.(2005)).Thepersistenceofinsulatingornearinsulat-ingbehaviorandtherecoveryofmolecularsymmetryobservedinthehightemperaturephaseoftetravalentfulleridessuggeststhatthesecompoundstooareMott-Jahn-Tellerinsulators(Caponeetal.,2000;Kluppetal.,2006;KnupferandFink,1997),liketheoverexpanded

trivalentmaterials.ThedynamicJTeffectineachC4−

ionassociatedwithMottlocalizationofcarriersiscru-60cialinexplainingthelowspingroundstateandthespingapofA4C60,exactlyasfortheexpandedtrivalentcom-pounds.

Fromtheabovediscussiononemightbetemptedtoconcludethatstrongcorrelationsplayaroleonlyintetravalentandexpandedtrivalentcompounds,whileface-centeredcubic(f.c.c.)K3C60andRb3C60,wheresu-

4

perconductivitywasoriginallydiscovered,couldstillbeviewedasweaklycorrelatedsystems,andasBCStypesuperconductors.Wedonotbelieveinthisconclusion.Afinal,independentandstronglyunconventionalsignalisprovidedbyNMR.Infact,NMRdatashowdirectev-idenceofaspingapoforder0.1eV,appearingasananomalousactivatedincreaseofinverserelaxationtime.Mostlikelythisgapbetweenalowspingroundstateandahighspinexcitedstatereflectsthemultipletbe-haviorofthelocalizedCn60−

molecularion.Itshowsupubiquitouslyinallalkalidopedfullerides,includingsu-perconductingf.c.c.compounds(Brouetetal.,2002a,b;Thieretal.,1995).Theexistenceofthespingapsig-nifiesthatthemagneticresponseoffulleridesisveryfarfromFermi-liquidbehavior,whichhasnosuchfea-ture.Magnetically,thefulleridesbehaveasiflocalizedmolecularmultipletexcitationscoexistedwithdelocal-izedpropagatingquasiparticles.Asdiscussed,therecov-eryofmolecularphysicsischaracteristicofMottinsu-lators,suggestingthatthefingerprintofMottphysicsisstronglypresentalreadyinthenon-expandedsupercon-ductingf.c.c.compounds.Thissuggeststhatthef.c.c.compoundsaresomehowtheanalogoftheoverdopedcuprates,whereastheexpandedtrivalentmaterialsareanalogoustotheunderdopedcuprates.Theconclusionisthatbotharecrucially,evenifdifferently,influencedbyelectroncorrelations.

Webelievethattheaboveelementsarestrongenoughtocallforanewphysicalpictureforthewholefam-ilyofA3C60superconductors.ProximityoftheMottinsulatorstronglysuggeststhattheanomaliesofex-pandedfullerenesuperconductorsmostlikelyoriginatefromstrongrepulsiveelectroncorrelationinthenarrowt1ubands.TheprevalenceintheMottlocalizedstateofmolecularphysics,withitsorbitaldegeneracy,JTef-fectandintra-molecularexchangemustbetakenintoac-countalongwithitinerantelectronbandphysics.Uponexpandingthecellvolume,theintermolecularhoppingofelectronweakens,whereasalltheon-sitecorrelationterms–Coulombandexchangeelectron-electroninter-actionsaswellasmolecularJTeffect–arelikelytobe-comeincreasinglyrelevant.WeareledtoapicturewheretheMottinsulatorphysicsofweaklycoupledmolecularionsprogressivelyprevailsoverbandphysicsforincreas-inglatticeexpansion.Inparticular,superconductorsthatoperateinthisregimeareboundtodeviatefromthestandardMigdal-Eliashbergscenario,themoresoasthelatticespacingincreases.Toinvestigatethatregime,weneedtostartwithabroadertheoreticalschemefortriva-lentfullerides,capableofdescribingtheirbehaviorunderlatticeexpansionandneartheMotttransition.Whilethathasbeenthescopeofourworkforseveralyears,previousworkwasforpracticaltechnicalreasonslim-itedtotetravalentsystems(Caponeetal.,2002,2000,2001).ThestudyofA3C60systems,computationallymuchheavierduetothesimultaneousrelevanceofmag-neticandorbitalordering,hasonlynowbeencompleted,andweofferhereanoutlineofthemainresults.

5

III.MODELANDINTERACTIONS

Ourtheoreticalmodeloftrivalentfulleridesassumesalatticeofmolecularsites,eachrepresentingaC60molecule.TheC60t1uthreefolddegenerateLUMOcanforallpurposesbetreatedasanatomicplevel.Anaver-ageofthreeelectronspermoleculearedonatedbyalkaliatomsandpartiallyfilltheseorbitals,whichcanhostuptosixelectrons.Theelectronshopfromsitetositegiv-ingrisetohalf-filledbandsofwidthW∼0.6eV.OneachsitetheelectronsexperienceaHubbardrepulsionU∼1eV(correspondingtotheSlaterintegralF0∝U),

HU=

U

2

L·L󰀊

+

5

6

semicircular.Thisisareasonabledescriptionofarealis-ticthree-dimensionaldensityofstatesdevoidofacciden-talfeaturessuchasvan-Hovesingularities.Itismoreoverparticularlyconvenientsinceitleadstoaverysimpleandtransparentformoftheself-consistencycondition.TheBethelatticeisthez→∞limitofaCayleytreeofcoor-dinationz,scalingthenearest-neighborhoppingineach√oneofthezdirectionsast/

iωn−εka

,(4)

toberelatedtothelocalinteractingGreen’sfunction,Ga(iωn),notonlythroughtheDysonequationfortheAIM

−11G0(iωn)a=G−a(iωn)+Σa(iωn),

whichrequiresthefullsolutionoftheimpuritymodel,

butalsobytheadditionalselfconsistencyequation

−12G0a(iωn)=(iωn+µ)−tG(iωn)a.

(5)

DMFTforagivenmodelthusamountstosolveit-erativelytheAIMuntiltheimpurityGreen’sfunction

satisfiesEq.(5).Inthiswork,wesolvedthethreefolddegenerateAIMbyexactdiagonalization.ThatrequirestruncatingthesumoverkinEqs.(3)and(5)toafi-niteandrelativelysmallnumberofbathsNb,sothattheHamiltoniancanbediagonalizedinthefiniteresultingHilbertspace.WegenerallyusedNb=4foreachor-bital.Mostoftheresultsweshallpresentareatzerotemperature,wherewecanusetheLanczosalgorithmtocalculatetheGreen’sfunctionwithoutfullydiagonalizingtheHamiltonian.ThefinitetemperatureresultsforthespecificheatanditsjumpatTcreportedinSec.Varetheexception.Theyareobtainedbymeansofthefinite-temperatureextensionofLanczos(Caponeetal.,2007),wherethethermalGreen’sfunctionisexpressedasasumoverthelow-lyingeigenvectors|n󰀔andeigenvaluesEnoftheimpuritymodel

Gaσ(iωn)=

1

Em−En−iωn

+

󰀅󰀅2

󰀅󰀁󰀅󰀓n|p†|m󰀔aσ

n

consistencyconditionis

G−01(iωn)σA=(iωn+µ)−t2G(iωn)σB,

(10)

whichbecomesEq.(5)ifGσAWhenthesystem≡GσB,i.e.ifthesystem

isnonmagnetic.isantiferromagnetic,thenGσA≡G−σB.ThuswecaneliminatethesublatticeBfromEq.(10),andobtainthefollowingresultfortheself-consistencyequation:

G−01(iωn)σA=(iωn+µ)−t2G(iωn)−σA.

(11)

ThisequationisvalidforaBethelatticewithnearest

neighborhopping,acasewithperfectnestingthatisratherexceptionalinrealisticantiferromagnets.Awaytosimulateimperfectnestingtypicalofmorerealisticsit-uations,whilestilltakingadvantageoftheBethe-latticesimplifications,′istoaddanext-nearest-neighborhoppingt/zintheCayleytree(merelyadevicetoeliminatenest-ing,notmeanttosuggestnextnearestneighborhopping,smallinfullerides).Inthelimitz→∞oftheBethelat-tice,theself-consistencyequationbecomes

G−2

01(iωn)σA=(iωn+µ)−t2G(iωn)σB−t′G(iωn)σA

=(iωn+µ)−t2G(iωn)−σA−t′2G(iωn)(12)σA.

Forbothbroken-symmetryphases,ifthediagonalel-ementsoftheself-energymatrixatlowMatsubarafre-quenciesfollowtheconventionalFermi-liquidbehavior–whichwealwaysfindtobethecase,

Σ󰀉

1

diagonal(iωn)≃1−

7

N

󰀁a↓i

a=󰀁

x,y,z

󰀓p††

ia↑pi󰀔,

(14)

whereNisthenumberofmoleculesandp†iaσcreatesanelectrononmoleculei,withspinσandinorbitala=x,y,z.TheFermi-liquidscatteringamplitudeintheCooperchannel,measuringthestrengthoftheef-fectiveattraction,isA=−10J/3.Wenotethatow-ingtofairlystrongJTinteractions(Auerbachetal.,1994;Gunnarssonetal.,1995),ifHund’sexchangeJHwereneglected,thedimensionlessJTcouplingconstantoffullerenecontrollingsuperconductivitywouldbenu-mericallyverylarge,λ=ρ0ρ0(≃2.4eV−1)isthebaredensity|A|≃of0.6states−1.0,perwherespinandorbital.TurningonaweakCoulombrepulsionUontopofthatwillreducethepairingattractioninthisregime.PerturbativelyoneobtainsforsmallUthatA=−10J/3+U.SinceJisinsensitivetoexpansionwhileU/Wincreases,thisimpliesthatinthispicture,whereHund’sruleexchangeisneglected,Tcshouldal-waysdecreaseuponexpansion,apredictionwhichisatoddswithexperiments.

Infact,asanticipated,Hund’sruleexchangeisnotnegligible,anditseffectistointroduceasubstantialcancellationinJleadingtoalargelyreducedeffectivecouplingλeff≃10

2

Sincegaugesymmetryisbroken,weareallowedtoassumePSCreal

(a)(b)

FIG.2Superconductingsolution(triangles)andantiferro-magneticsolution(squares)zero-frequencyanomalousself-energies∆(0)asfunctionofU/W.Solidsymbolsareusedwhenthecorrespondingsymmetrybrokenphaseisstable,whileopensymbolswhenitismetastable,i.e.haslowerenergythentheotherphase.Thefirst-ordertransitionbe-tweenthetwophasesisindicatedbyaverticallineseparatingthesuperconductorfromtheantiferromagneticMottinsula-tor.Panel(b)correspondstothecaseinthepresenceofafrustratingnext-nearestneighborhoppingt′=0.3t,absentin(a).

andbeyond.Intheconventionalweaklycorrelatedpic-tureUwouldprovideintheelectronpairingproblemarepulsive“Coulombpseudopotential”whosebarevalueisµ∗=Uρ0barevaluesof≃λ3and(Parks,µ∗we1969).shouldSimplyconcludecomparingthats-wavetheseBCSsuperconductivityinfullerenesissimplyimpossible(withtheobviousprovisothatforsmallUanunretardedtreatmentofJTphononinteractionsisnotreallyjusti-fied).

ThefullDMFTsolutionofthemodelforJ=0.05WandincreasingU/WyieldsthephasediagraminFig.2.WhileconfirmingtheaboveexpectationsformoderateU,ithasasurpriseinreserveatlargerUvalues,wheretheMotttransitionisapproached.

Fig.3showsthezerofrequencyanomaloussingle-particleself-energiescalculatedwithinDMFTforthesu-perconductingandfortheantiferromagneticsolution.AtU=0,themodelisans-waveBCSsuperconductor,withanexponentiallysmallsuperconducting∆(0).Itistoosmalltobevisibleinthefigure,sincetheeffec-tiveexchange-reducedλ∼0.2isaswassaidveryweak.Beginningfromzero,theincreaseofUfirstrapidlyde-stroystheweakBCSsuperconductivity.Thesupercon-ducting∆(0)vanishesatroughlythemean-fieldvalueU=10/3J,andabovethisvalueofUthegroundstatebecomesanormalmetalasexpected.Uponfurtherin-creasingU/Wthemodelremainsanormalmetal–nosuperconductivity,noantiferromagnetism.However,theimportanceofelectroncorrelationsincreaseswithU,assignaledforexampleintheDMFTspectralfunction(notshown)bythegradualformationofincoherentHubbardbandsonbothsidesoftheFermilevel.ThemetalliccharacterpersistsuntilahypotheticallycontinuousMott

8

transitioneventuallyreachednearU/W∼1.5,whereZ=0andthemetalliccharacterisextinguished.

Beforethishappenshowever,s-wavesuperconductiv-ityre-entersfromthenormalmetalstate.Theanomalousselfenergy∆(0),proportionaltothesuperconductingorderparameterhas,asafunctionofU,abell-shapedbehavior–a“superconductingdome”asitiscalledincuprates–hittingalargemaximumbeforedroppingagain.There-entrantsuperconductivebehaviorisaclearrealizationofphonon-inducedstronglycorrelatedsuper-conductivity(SCS)(Caponeetal.,2002).ThesharplyrisingorderparameteredgewithincreasingU/WcaninourviewexplainthestrongriseofTcuponlatticeex-pansioninnon-expandedcompounds,previously(andwebelieveincorrectly)attributedtoaBCS-likeincreaseofdensityofstatesuponbandnarrowing.Pastthedomemaximum,anduponincreasingexpansion,theSCSsu-perconductingorderparameterdeclines,andwouldeven-tuallydroptozeroatthecontinuousmetalinsulatortransitionnearU/W∼1.5.Thiscontinuousdeclineofsuperconductivityispreemptedbyafirstordertransi-tiontoalowerenergyantiferromagneticMottinsulatingphase,withorderparameter

PAFM=

1

0.20.50.15Z∆0.4SCZ∆AFM∆SC0.1∆0.3AFM0.20.050.1000.40.81.2000.40.81.20.50.50.40.4P0.3SCP0.30.2AFM0.20.10.1000.40.81.2000.40.81.2U/WU/WFIG.3Superconductingsolution(SC,left)andantiferromag-neticsolution(AFM,right)anomalousself-energies(top)andorderparameters(bottom)asafunctionofU/W.Thetoppanelsalsoshow(greendiamonds)thespectralgapsobtainedmultiplying∆bythequasiparticleweightZofeachsolution.ThegapsareinunitsofthebandwidthW(theorderparam-etersarebydefinitiondimensionless).Dashedverticallinesmarkthefirst-orderphasetransitionbetweenthetwosolu-tions.

spin-1/2antiferromagneticinsulator.Besidesspinrota-tionalsymmetry,thiskindofstatealsobreaksorbitalrotationalsymmetry,signalingthatspinorderingmustbegenerallyaccompaniedbyorbitalordering.Inam-moniatedfulleridesthatagainisconsistentwithexperi-ment(IwasaandTakenobu,2003).Weconcludethat,inspiteofstrongsimplifyingassumptions,ourmodelseemsabletoreproduceveryimportantfeaturesofthephasediagramofexpandedfullerides.Inthefollowingweshalldiscussinmoredetailthestronglycorrelatedsupercon-ductingphaseneartheMotttransition,andalsoproposeexperimentsthatmightdistinguishitfromastandardBCSstate.

IV.UNDERSTANDINGSTRONGLYCORRELATEDSUPERCONDUCTIVITYFROMDMFTANDTHEIMPURITYMODEL

There-emergenceofphonon-drivensuperconductivityclosetotheMotttransition–StronglyCorrelatedSu-perconductivity(SCS)–wasdiscussedinCaponeetal.(2002)intermsofFermi-liquidtheory.Akeypointofthatphenomenonistherenormalizationoftheeffectivebandwidthandthusoftheeffectivemass,bothcon-trolled(inaBethelattice)bythequasiparticleweightZ,Eq.(13).Z(U)decreasesasafunctionofU/Wandvan-ishesatthecontinuousmetalinsulatortransitionpointU=Uc,wheretheeffectivemassm∗/m=1/Z(U)di-verges,andtheeffectivequasiparticlebandwidthW∗=ZWvanishes.Anestimateoftheinteractionbetweenchargedquasiparticlesrequirestheevolutionoffluctua-tionsthattakeplaceinchargespace.Becausecharge

9

fluctuationsaregraduallyfrozenawayneartheMotttransition,theeffectiverepulsionbetweenquasiparticlesisalsorenormalizeddowntosomesmallervalueU∗∼1,themaineffectofUisto

suppresssuperconductivity,aswasnotedearlier.How-ever,ifUisclosetothecriticalmetal-insulatorvalueUc,thenZ∼(Ucturnsnegative−Uin)/Ucspite≪of1andalargethescatteringU.Thisisamplitudequalita-tivelythereasonfortheSCSre-entranceofsupercon-ductivity(thoughinthisregionofcoursetheactualpairscatteringamplitudemightdeviatefromthissimplefor-mula(Caponeetal.,2002)).

Inaddition,theFermi-liquidargumentsuggestsanex-planationforthelargevalueofsuperconductingorderparameter,implyingalargeTc,intheSCSregime,seeFig.2,comparedtotheU=0BCSvalues.Infact,whenA∗particleattraction≃ZW,andA∗Zwillisatdroppingsomepointsharply,U=theU∗quasi-equalthecoherentquasiparticlebandwidthZW.Thatveryuncommonsituation,ofmetallicquasiparticleswithanpairattractionequaltotheirenergybandwidth,isknowntoyieldmaximumsuperconductivityforagivenattrac-tion.Asshownbystudiesofpurelyattractivemod-els(Micnasetal.,1990),themaximumsuperconductingtemperaturekBTcattainableinthatcaseisabout7%ofthepairattractionenergyitself.Inourmodeloftrivalentfullerides,thisestimateyieldskBTcwhichhasthecorrectmagnitudeofroughly∼0.07A∗40K∼for0.2J|J∼|,20meV–avalueinturnfullyconsistentwiththeob-servedspingap0.1eV∼5J.Whilethiscoincidenceofnumbersisprobablyfortuitous,itdoesindicatethator-dersofmagnitudeimpliedbyourmodelwithrealisticpa-rametersarequiteconsistentwithexperimentalfacts.Atfacevalue,italsosuggeststhat0.07|J|=0.07(JJTinfullerides.−JH)couldbethemaximumattainablekBTcWeconcludethatstrongcorrelationsplayacrucialroleinbringingthesuperconductinggapmagnitudetotheright

0.050.04W0.03/cs∆Z0.020.01000.20.40.6U/W0.811.21.4FIG.4QuasiparticlesuperconductingenergygapinunitsofthebandwidthW≃0.6eVandonalargerscalethanFig.3,computedthroughtheanomalousself-energy,panel(a)inFig.2,multipliedbythequasiparticleresidueZ(U).Noticethat,aboveU/W≃1.1,thesuperconductingsolutionismetastablesincetheantiferromagneticonehasloweren-ergy,seeFig.2.WenotethatthemaximumgapZ∆c≃0.045W≃27meV.

rangeofvaluesascomparedwiththeexperimentalones,seeFig.4.SuchvaluesandlargecriticaltemperatureswouldneverbeattainedwithinconventionalBCStheoryusingavalueofλ≃0.16−0.2,includingasitshouldthelargecancellationofJTbyexchange.Theycouldinpointoffactbeattainedifthecancellationduetoex-changewere(incorrectly)neglected;butthenalatticeexpansionshouldalwaysleadtoadecreaseofTc,con-trarytoexperiment.

Toappreciatefurthertheeffectofexchange-JTcan-cellation,itisinstructivetoconsider,aswasdoneforasimplifiedmodelbyCaponeetal.(2004),thebehav-iorwithU/Wofthesuperconductingself-energy∆(0)(proportionaltotheT=0gap,androughlyspeakingtoTc)startingwithpureJTandwithoutexchange,andthenproceedingtoturnonexchangeandgradualcan-cellation,seeFig.5.ForthebareJT,λ≃1(astrongcouplingvalue)thesuperconductingself-energydecreasesmonotonicallywithincreasingU,inagreementwiththeMigdal-EliashbergpredictionofanincreasingCoulombpseudo-potential.Aboveacriticalvalue,thesystemturnsdirectly,viaasecond-orderorweaklyfirst-orderphasetransition,toaMottinsulatingphase.ThisresultisfullyconsistentwithpreviouscalculationsbyHansletal.(Hanetal.,2003),wherethesametypeofHub-bardmodelwasstudiedwithinDMFTatfinitetemper-ature.Treatingexplicitlytheelectron-phononcoupling(includingthefullphonondynamics)withλ=0.6andneglectingexchangetheyobtainedasuperconductorwithmonotonicallydecreasinggap.

Throughaprogressivereductionofλ(mimickingJTcancellationbyexchange)wefindthatanon-monotonicsuperconductingbehaviormakesitsappearanceasafunctionofU.Initiallythereisstillasinglesuper-conductingphaseforallU/Wvalues;buttwodiffer-

100,4J=0.02W0,3J=0.05WJ=0.1WJ=0.2W∆SC0,20,1000,40,81,21,6U/WFIG.5Anomalousself-energy∆(0)(relatedtothesupercon-ductinggapbyafactorZ−1)forthesuperconductingsolutionanddifferentvaluesofthecouplingparameterJ=0.02,0.05,0.1and0.2,whichcorrespondtoλ=0.09,0.21,0.42,0.85,respectively.NotethatforlargeJ,correspondingtoacasewheretheJahnTellercouplingisnotcanceledbyHund’sruleexchange,superconductivityisstrongestatU=0.Forincreasingcancellation(decreasingJ),twoseparatesuper-conductingpocketsemerge,aBCSpocketnearU=0,andaSCSpocketneartheMottinsulator.Whenthecancellationisnearlycomplete,SCSismanyordersofmagnitudesstrongerthanBCS.Thisisthesituationweproposeinourmodeloffullerides.SimilarphysicswasdescribedforasimplermodelinCaponeetal.(2004).

entregionsnearzeroandnearUcbegintomaterialize.(NotethatUcsimultaneouslyshiftstohigherUasλdecreases).Whenthecancellationissostrongthatλisstillpositivebutsmall,thetwosuperconductingre-gionsbreakaparttoformtwoseparatepockets,leav-inganormalmetalphaseinbetween.IntheleftmostpocketnearU/W=0theanomalousself-energyhasaBCS-likeexponentialdependenceonλandindeedsu-perconductivityinthiscornerisBCS.Superconductivityintherightmostpocketnearthemetalinsulatortransi-tionbehavesquitedifferently.Heretheλdependenceofsuperconductivityismuchweaker,andthesuperconduc-tivegapmuchstronger,thanintheBCSpocket.Super-conductivityinthispocketcaninfactbecharacterizedasSCS(Caponeetal.,2002),duetonarrowquasipar-ticlepairingasdescribedabove.AsimilarbehaviortoFig.5,withtwoseparateBCSandSCSregimesemergingfromasingleinitialonewhentheeffectivepairingattrac-tionisprogressivelyweakenedbyexchange,wasderivedandillustratedinasimplertwofolddegeneratemodelinCaponeetal.(2004).

TheSCSsuperconductingpocketneartheMotttran-sitionisexpectedtodifferfromtheBCSpocketeveninitsnormalstateproperties.Thenormalstateunderly-ingaBCSsuperconductorisFermi-liquid-like.Ontheotherhand,previousanalysissuggestthattheFermi-liquidpictureislikelytobreakdowninourmodelwhentheMotttransitionisapproached.ThekeyreasonforthebreakdownoftheFermi-liquidispreciselythat,when

11

Z→0,theattractionbetweenquasiparticlesmusteven-tuallyreachandexceedinmagnitudethequasiparticlebandwidthZW,asituationdifficulttosustain.3Pos-sibledeviationsfromtheFermi-liquidparadigmwereinfactoverlookedinRef.(Caponeetal.,2002)astheyarerelatedtothevery-lowenergybehaviorofthenormalphaseclosetotheMotttransition,notexploredinthatwork.Later,thenon-Fermi-liquidbehaviorwasdiscov-eredinthetwo-orbitalmodelwherethephysicsisverysimilar(Caponeetal.,2004).

A.AndersonImpurityWithaRigidBath

TheDMFTcalculationsdescribedaboveinvolvedtwosteps,onesolvingtheAndersonimpuritymodel(AIM),theothermakingthatselfconsistentwiththebath.Fol-lowingareasoningproposedbyFabrizioetal.(2003),onemaystartoffwiththefirststepalone,namelyanalyz-ingthebareAIMwithoutimposinganyself-consistencyconstraint.Theconductionbathcanbeassumedtohaveaflatdensityofstates,andthebath-impurityhy-bridizationtobestructureless,asituationwhichavoidsnumericaluncertaintiesandyieldsaccuratelow-energyproperties.ThiskindofanalysisappliedtotheAIM(3)shows(DeLeoandFabrizio,2005)thattwodiffer-entimpurityphasesarestabilizedaccordingtothera-tiobetweentheattractionJ,andtheKondotempera-tureTK(Hewson,1997).BelowthistemperatureandwhenJ=0,thespinofanimpuritycoupledtoaFermiseaisscreenedoutandabsorbedintheconductionsea(Hewson,1997).InthelatticecontextwithinDMFT,theKondoscalemeasuresmetalliccoherenceandcorre-spondstotherenormalizedquasiparticlebandwidthZW.ForfiniteJ=0butsmallerthanTK,Kondoscreen-ingremains,thusstillimplyingaFermi-liquidbehavior

inDMFT.Infullerides,theimpurityrepresentstheC360ion,carryingthreeorbitalsandthreespins.IntheKondophaseeachofthethreespinsisseparatelyscreenedbythebathandthusincorporatedintheFermisea.Conversely,whenJ>TKtheKondoscreeningislost,andthatwasshowntoimplyanonFermi-liquidphasecharacterizedbyapseudogapinthesingle-particlespectrumandbyseveralothersingularproperties(DeLeoandFabrizio,2005).Averyqualitativedescriptionofthisphaseisthat,unliketheKondophase,twospinsoutofthreepairoffantiferromagneticallyatanygiventime,leavingoutasinglespin1/2availableforKondoscreening.How-ever,sinceorbitaldegeneracyisunbroken,thisresidual

anarrowresonanceintheFermi-liquidregion,andtoanequallynarrowspectraldensitydip(the“pseudogap”)inthepseudogapphase(DeLeoandFabrizio,2005).Sinceinthisphasetheimpuritystillcarriesaresidualspin-1/2,thereremainsafinitevalueofthespectralfunctionatthechemicalpotential,andthegapisnotcomplete.ThepseudogapwidensifJisincreased,andthecusp-likedipintheimpurityspectralfunctionsmoothlyturnsintoacusp-likepeak,thevalueatthechemicalpotentialstayingfixedandconstant.ThisbehaviorisshownbythedottedcurveinFig.6correspondingtoaverylargepseudogap(seetopinset),possessingaverytinypeakatthechemicalpotential.ThisindicatestheexistenceofyetanotherenergyscalebesidesT+andT−thatsetsthewidthofthecusppeak.

B.AndersonImpuritywithaSelf-ConsistentBathinDMFT

TherigidbathAIMbehavioranditscriticalpointbrieflyreviewedaboveprovideaguidetotheDMFTre-sultsoncetheimpurity-bathcouplingisself-consistentlydetermined.Firstofall,sinceTKcoincideswithinDMFTwiththerenormalizedZWwhichinturnvanisheswhenthecontinuousMotttransitionisapproached,theimpu-ritycriticalpointisinevitablymetbeforethemetalinsu-latortransitionasU/Wisincreased,atsomeUcp<∼Uc.Thisentailsseveralimportantconsequences:

•ThelowthenormalcontinuousstatemaymetalbeainsulatorFermiliquidtransition,onlyfarsuchbe-asperhapsmaybethecaseinthenon-expandedfullerides.ExpandedcompoundsontheotherhandareexpectedtohaveanonFermi-liquidnormalstate,andeventuallyapseudogap,possiblydevel-opingbeforethefirstordertransitiontotheanti-ferromagneticinsulator.

•ThetransitionSCSsuperconductingreflectstheleadingpocketinstabilitynearofthetheMottim-puritycriticalpoint.InotherwordsSCSsuper-conductivityisthewayinwhichthelatticemodelrespondstoimpuritycriticalityandavoidsit.•Theicalpoint,lowerenergyT−=scale0.HerevanishesT+astheonlyenergyscalecontrolling≃rightJatthecrit-thethusmagnituderemainsofthesuperconductingenergygap.AwayfromU=Ucp,T−perconducting=gap0,shouldandthedecreaseamplitudemonotonicallyofthesu-with(T+cut-offsthe−T−)/T+(Caponeetal.,2004),sinceT−localpairinginstability.Thereforethegapshouldbemaximumrightattheimpuritycrit-icalpoint(thetopofthedome).

•EvenwelldefinedthoughBogoliubovthenormalquasiparticlesphaseisnon-Fermishouldliquid,existinsidetheSCSsuperconductingpocket.

120.8DDDrude (Normal)superfluid(Super)0.6∆/W0.40.200.40.60.8U/W11.21.4FIG.7Calculatedweightsofthezero-frequencydelta-functioncontributiontotheopticalconductivityforthesu-perconductingphase(superfluidstiffness,squares)andthenormalphase(Drudeweight,circles).Thezero-frequencyanomalousself-energyisalsoplotted.NotethehighervaluesintheSCSsuperconductor,relativetothenonsuperconduct-ingmetalphase.

Thelaststatementcomesfromthefactthat,attheim-puritycriticalpoint,superconductivityprovidesanewscreeningchannelwhichhelpsthesystemgetridofthefiniteresidualentropyatthecriticalpoint,thuseliminat-ingnon-Fermiliquidsingularities(DeLeoandFabrizio,2005;Schir`oetal.,2008).

Theroleofsuperconductivityasanovelscreeningchannelclosetotheimpuritymodelcriticalpointshouldreflect,inthelatticemodel,intoagainofbandenergy(thetightbinding“kineticenergy”)attheonsetofsu-perconductivity.Owingtoasumruleconnectingkineticenergyandzero-frequencyopticalconductivity(some-timesreferredtoas“Drudeweight”)(Scalapinoetal.,1993)theonsetofSCSsuperconductivityclosetotheMotttransitionshouldleadtoaDrudeweightincrease.ThispredictioniswellborneoutbythefullDMFTso-lutionofourHamiltonian.InFig.7weplottheω=0(d.c.)opticalconductivityofourmodelsuperconductor(whereitcoincideswiththesuperfluidstiffness),definedby(Toschietal.,2005)

Ds=−Ekin+χjj(q→0,Ω=0),

(16)

whereEkinisthekineticenergyandχjjthestaticlimitoftheparamagneticpartoftheelectromagnetickernel

χjj=

2

0-0.001-0.002-0.003∆ E -0.004 ∆ Ekinpot-0.0050.40.60.8U/W11.21.4FIG.8Energeticbalance∆Epot=ESpot−EN

underlyingsuperconductivity.potisthedifferencebetweenthepoten-tialenergiesofthesuperconductingwhile∆Ekin=ESkin−EN

andthenormalsolution,

ofthekinisthesamedifferencebetweenthekineticenergiestwosolutions.

thisstatemeanttoprovideacartoonoftherealnormalphaseaboveTc.TheDrudeweightisgivenbyEq.(16)and(17)withF(ǫ,ωn)≡0.UponenteringtheSCSdomefromthelowU/Wside,thesuperconductingphaseini-tiallyloseskineticenergyoverthenormalstateasinordinaryBCStheory.However,uponincreasingU/Watandbeyondthedomemaximum,thelossrevertsovertoagain,andindeedmostoftheSCSsuperconductingpocketispredictedtohavealargerweightofthezero-frequencyopticalabsorptionthanthenonsuperconduct-ingstate.Thesamebehaviorisdisplayed(Fig.8)bytheenergybalancebetweenthetwosolutions.Onlyfarbe-lowtheMotttransitionthesuperconductorisstabilizedbyapotentialenergygain,asisthecaseinBCStheory.Inthepseudogapregime,correspondingtotheexpandedfulleridesneartheMotttransition,thestabilizationisassociatedwithakineticenergygain.

Asimilarphenomenoniswellknownintheopticalconductivityofhigh-Tccopperoxides(Carboneetal.,2006).Ourcalculationsshowthatanincreaseinthezero-frequencyopticalconductivityorakineticenergygaindonotactuallyexcludeanelectron-phononpairingmechanism,butratherdemonstratesthekeyimportanceofstrongelectroniccorrelations.Thankstopairing,themotionofcarriersinthesuperconductingphaseisfacili-tatedwithrespecttothepseudogapnonsuperconductingmetal.Inthatanomalousmetal–anonFermiliquid–theinteractionconstraintsjamthefreepropagationofquasiparticles,causingakineticenergycost,partlyre-leasedwiththeonsetofsuperconductivity.Itwouldbeofextremeinterestiftheopticalconductivityincreasedemonstratedincupratescouldbeinvestigatedinful-lerides,bothregularandexpanded,sincethatwouldhelpdiscriminatebetweenconventionalBCSandSCS.

13

V.DISCUSSIONOFEXPERIMENTALPROBES

Inthefollowingwediscusswhetherandhowthedom-inanceofstrongcorrelationweproposeforthesuper-conductingfulleridescanbereconciledwiththelistofexperimentalfactsgivenearlier,apparentlysupportingaconventionalBCSbehavior.Thefirstquantitywedis-cussisthespecificheatjumpatTc.WithinBCStheory,thespecificheatjump∆CVatTcisapproximately

∆CV

4

AsmentionedinSec.III.A,forthepresentthree-orbitalmodelithasnotbeenpracticaltoincludeinEq.(6)anumberofex-citedstatessufficienttomakethetruncationerrorintheGreen’sfunctionnegligible.ForthedatareportedinFig.9wehaveanaverageerrorof3-4%whichdoesnotallowustodetermineTcwithsufficientaccuracy.Yet,thejumpofthespecificheatrela-tivetoTcturnsouttobealmostindependentonthetruncationerrorandonthedetailsofthecalculations.

604 χ/χ2000.5U/W11.5FIG.10Normal-phaseuniformmagneticsusceptibilityχnormalizedtothenon-interactingvalueχ0.ForU=0,χ≃χ0,thedifferencebeingextremelysmallsinceJ≪W.TheplateaubetweenU/W=0.5and1signalstheeffectivecrossoverfromaFermiliquidwithS=3/2persite,toanonFermiliquidwithS=1/2persite.

stantaround4γ0uptotheMotttransition,despiteadiverging1/Z(SeeFig.9).Thisshowsthattheenergyscalethatcontrolsthesuperconductinginstabilityiscon-stantneartheMotttransition,consistentwiththesingle-impuritypredictionthatthisscaleshouldbeidentifiedbyT+,aquantityoforderJ.Thebottomlineconclusionhereisthatanormallysizedspecific-heatjumpdoesnotimplyBCSsuperconductivityinfullerides.

Anotherphysicalquantitywhichseeminglypointedto-wardsweakcorrelationsinfulleridesisthemagneticsus-ceptibilitymeasuredinthenormalphase,apparentlycon-sistentwithaweaklycorrelatedaFermiliquidandaStonerenhancementofaboutafactor2to3.Thisargu-mentagainbecomesinconclusiveoncetheFermi-liquidscenarioisabandoned.InFig.10weplotasfunctionofU/WtheuniformmagneticsusceptibilityinthenormalphasecalculatedbyDMFT.AfteraninitialStoneren-hancementatsmallU/W,thesusceptibilityflattensoutandremainsalmostconstantbeforearapidgrowthwhichtakesplacesextremelyclosetotheMotttransition.Intheplateauregionthesusceptibilityenhancementofafactorbetween2and3withrespecttoU=0,surpris-inglyclosetotheexperimentalenhancement,coveringthewholesuperconductingdomain.Physically,theori-ginofthissusceptibilityplateauforincreasingUisquiteinstructive.ItcorrespondstothegradualcrossoverofthemaximumspinavailableateachsitefromS=3/2intheFermiliquidatsmallUUcp,whereFermiliquidbehaviorislost.Inessence,atlargeUeachmoleculeisef-fectivelyina(dynamically)JTdistortedstate,wheretwooutofthreeelectronsarespinpaired(Auerbachetal.,1994).WearethusledtoconcludethattherelativelyweakobservedenhancementofsusceptibilitydoesnotcorrespondatalltoaStonerenhanced,weaklycorre-latedFermiliquid–infactquasiparticlesdonotevenexistinmostoftheplateauregion.

Finally,wewishtoaddresssignaturesofthestrongly

14

correlatedscenariowhichweexpectshouldshowupinimportantspectroscopiesincludingthetunnelingI-Vcharacteristicsandangleresolvedphotoemissionspec-troscopy(ARPES).Thisisinitiallyembarrassingontwoaccounts.First,ARPESspectroscopiesarek-vectorre-solved,whereasinDMFTwedonothaveaccesstoanyspatialstructure.Second,tunnelingspectroscopiesareextremelywellresolvednearzerovoltage,whereasourLanczosmethodyieldsamuchpoorerspectralfunctionresolutioninthisregion.

Letusaddressingtunnelingfirst.AlthoughFig.6

referstotheimpurityC360−

molecule,webelievethatsimilarfeatureswouldremainafterfullDMFTself-consistencyinthenormalphase–ifweonlyhadabet-terlow-frequencynumericalresolutionthanwepresentlyhave.Hence,wesuggestthattunnelingI-Vspectraofexpandedfulleridesbemeasuredandexamined,inor-dertobringouttheexpectedrichstructureofthekindsketchedinFig.6.

Next,letusconsiderphotoelectronspectroscopy.Againaccordingtothesingle-impurityanaly-sis(DeLeoandFabrizio,2005),theimaginarypartofthesingle-particleself-energyshouldbefiniteandoforderT+almosteverywhereinthenon-Fermiliquidnor-malphaseaboveTc.ThishasthefollowingimplicationsforARPES:

•thet1ufulleridebandsdispersingphotoemissioninthespectrumBrillouinshouldzoneshowwithnonzerobandwidth,governedbytheenergyscaleT+.ThevalueofT+decreaseswithincreasingU/W(increasingexpansion),fromWatU=0to(largerthan)JattheMotttransition;•therethesameshouldorderbeofamagnitudespectralpeakT+broadeningastheappar-ofentk-resolvedbanddispersion.InparticularthebroadeningshouldremainconstantapproachingtheFermisurface–unlikeaFermiliquidphasewherequasi-particlepeaksbecomenarrowerandnarrower.

Themomentum-independenceoftheDMFTself-energyimpliesthat,inthisapproximation,thek-modulationoftheelectronicdispersionisassumedtore-mainunaffectedbyinteractions.Withinthisassumptionandwithoutrequiringtoohighfrequency-accuracy,wecancomputeatoyk-resolvedspectralfunctionaccord-ingto

A(k,ω)=−

1

ω−εk−Σ(19)

DMFT(ω)

,

whereεkisthenoninteractingdispersionandΣDMFT(ω)istheDMFTself-energycalculatedwithafinitenumberofbaths.Theeffectofthelocalself-energywillbetochangetheeffectivebandwidthandtogiverisetofinitelifetimeeffects,evenifthek-modulationofthedispersionisunrenormalized.ForourBethelattice,

εε = -W/2ε= -W/4 = 0PESεε = W/4 = W/2IPES-0,1-0,05ω00,050,1-0,1-0,05ω00,050,1FIG.11SimulatedphotoemissionspectraelaboratedformtheDMFTresultinthenormalphase.TheleftpanelreferstoU/W=1.1(correspondingtounexpandedfullerides),whiletherightpanelisforU/W=1.3(correspondingtoexpandedfullerides).

thereisnostraightforwarddefinitionofmomentum,andweremedythatbycomputingA(ε,ω),whichcorrespondstoEq.(19)withεkInFig.11weshow→theoreticalε.

ARPESresultsforsomechoicesofεobtainedbyusingtheDMFTself-energyfortemperaturesaboveTc,bothforavalueofU/W=1.1whichliesclosetothemaximumofthesuperconductingdome,butstillonthelesscorrelatedside,correspond-ingtounexpanded(ormoderatelyexpanded)fullerides,andforavaluewhichliesinthedownwardbranchofthedome(U/W=1.3),correspondingtoaveryexpandedfulleride.Wenoteinbothcasestheexistenceofaninco-herentlow-energyfeaturedispersingwithareducedbutnonzeroelectronbandwidthof0.1W.Intheexpandedcasethepseudogapfeatureisclearlypresent.

RecentphotoemissionspectraofK3C60(Goldoni,2007)indicateanoveralldispersionbandwidthofabout160meV,aboutaquarterofthebarecalculatedband-widthinthelocal-densityapproximation.Theexper-imentalspectralpeakdoesnotshowtheusualFermi-liquid-likenarrowingonapproachingtheFermilevel,afactwhichisinagreementwithourexpectationforanonFermiliquid(althoughanonexpandedfulleridelikeK3C60probablyliesatthebeginningoftheSCSdome,wheredeviationsfromFermiliquidarenotmassive).ExperimentallythepeakdoesnotappeartocrosstheFermilevel,andtheintensityinsteaddrops,suggestiveofapseudogap.Unfortunatelythespectrumshowsverystrongvibroniceffects,reflectingtheretardedstrongelec-tronJahnTellercoupling.Thisaspectisnotcoveredbyourunretardedapproximation,butitheavilyaffectsthelineshapeandhamperstheextractionofpurelyelec-tronicfeatures.Treatmentofthevibroniceffects,andaquantitativedescriptionofdispersion,willrequireaban-doninginthefutureourapproximationofinfinitelyfastphonondynamics,aswellasapossibleextensiontoclus-terextensionsofDMFTwhichallowfordifferentrenor-malizationsofdifferentmomenta(Hettleretal.,2000).

15

VI.CONCLUSIONS

Summarizing,weaddressedtheapparentlycontradic-torypropertiesofexpandedtrivalentfulleridessupercon-ductorsandinsulators–andtosomeextentofthewholefamilyoffullerides–andpresentedatheoreticalscenarioemphasizingtheroleofstrongelectroncorrelations.Thatisespeciallydesignedandappropriateforthemoreex-pandedmembersofthefamily,suchas(NH3)xNaK2C60,Li3C60,Cs3−xKxC60andCs3−xRbxC60,andtherecentlydiscoveredA15Cs3C60thatarenearorpasttheMotttransition.

Ourmodelexplainsthedome-shapedincreaseandsub-sequentdecreaseofTcuponexpansionofthelatticespac-inginfullerides;thecoexistenceofmetallicbehaviorandofMottinsulatorfeaturessuchasthelargeNMRspingapinallfullerides,andtheS=1/2spininthein-sulatingstate(identifiedasaMott-Jahn-Tellerinsula-tor).Itexplainswhythes-waveTccanbeashighas40KeventhoughtheCoulombinteractionstrengthisprohibitive,andwhyTcdoesnotautomaticallydecreaseuponincreaseofU/W.Italsoaccountsformorestan-dardobservations,suchasregularspecificheatjumpsandmoderatelyhighspinsusceptibilities,factsthatweresofarconstruedasevidenceforconventionalBCSsuper-conductivity.

BesidesthoselistedinthepreviousSection,onecananticipateanumberofadditionalexperimentsthatcouldprovide“smokinggun”evidenceforstronglycorrelatedsuperconductivityinfullerides.ThetunnelingI-Vchar-acteristicsobservable,e.g.,byascanningtunnelingspec-troscopytipshould,inanexpandedfulleride,developthelowenergyfeaturestypicaloftheKondoimpurityspectralfunction.Theisotopeeffectuponcarbonsub-stitutionshouldalsobehaveveryunconventionally,andeventuallygetsmallerasthesuperconductingdomeispassedandtheMotttransitionisapproacheduponex-pansion.Inthisregime,asthequasiparticlebandwidthZWgraduallyfallsbelowthetypicalenergyh¯ωofanincreasingfractionoftheeightHgJahnTellermodes,theassociatedretardationeffectshouldinfactdisap-pear.Theexpandedfulleridesandrelatedmaterials,clearlynotenoughinvestigatedsofar,deserveinourviewthestrongestexperimentalattention.Theycom-bineelementsthatmakethemmembersatlargeofthehightemperaturesuperconductorfamily.TheycombineneighborhoodoftheMotttransitionandpredominanceofstrongelectroncorrelations,withconventionalelementssuchaselectron-phonons-wavepairing,thataretypicalofBCSsystems.OurstudyidentifiesapseudogapandotherfeaturesintheIVtunnelingspectrum,anincreaseofzero-frequencyopticalweightintheopticalresponseofthesuperconductingphase,andtheemergenceoftwoseparateenergyscalesinARPESasthemosturgentex-perimentalundertakingsthatcouldconfirmoffalsifyourclaims.

Acknowledgments

E.T.thanksKosmasPrassides,AndreaGoldoni,andMauroRicco’forinformationanddiscussionaboutful-leridesandagainK.P.forprovidinguswithFig.1.M.C.acknowledgesdiscussionswithA.Toschi.WorkinSISSAwassponsoredbyPRINCofin2006022847,aswellasbyINFM/CNR“Iniziativatrasversalecalcoloparallelo”.WorkinRomewassponsoredbyPRINCofin200522492.

References

Abrikosov,A.A.,L.P.Gor’kov,,andI.E.Dzyaloshin-skii,1965,Quantumfieldtheoreticalmethodsinstatisticalphysics(Pergamon).

Anderson,P.W.,1987,Science235,1196.

Auerbach,A.,N.Manini,andE.Tosatti,1994,Phys.Rev.B49,12998.

Bardeen,J.,L.N.Cooper,andJ.R.Schrieffer,1957a,Phys.Rev.106,162.

Bardeen,J.,L.N.Cooper,andJ.R.Schrieffer,1957b,Phys.Rev.108,1175.

Baskaran,G.,andE.Tosatti,1991,Curr.Sci.61,33.

Bennemann,K.H.,andJ.B.Ketterson(eds.),2008,Super-conductivity(Springer).

Brouet,V.,H.Alloul,S.Garaj,andL.Forr´o,2002a,Phys.Rev.B66,155122.

Brouet,V.,H.Alloul,S.Garaj,andL.Forr´o,2002b,Phys.Rev.B66,155124.

Burkhart,G.J.,andC.Meingast,1996,Phys.Rev.B54,R6865.

Capone,M.,M.Fabrizio,C.Castellani,andE.Tosatti,2002,Science296,2364.

Capone,M.,M.Fabrizio,C.Castellani,andE.Tosatti,2004,Phys.Rev.Lett.93,047001.

Capone,M.,M.Fabrizio,P.Giannozzi,andE.Tosatti,2000,Phys.Rev.B62,7619.

Capone,M.,M.Fabrizio,andE.Tosatti,2001,Phys.Rev.Lett.86,5361.

Capone,M.,L.de’Medici,andA.Georges,2007,Phys.Rev.B76,245116.

Cappelluti,E.,C.Grimaldi,L.Pietronero,andS.Str¨assler,2000,Phys.Rev.Lett.85,4771.

Carbone,F.,A.B.Kuzmenko,H.J.A.Molegraaf,E.vanHeumen,E.Giannini,andD.vanderMarel,2006,Phys.Rev.B74,024502,andreferencestherein.

Chakravarty,S.,M.Gelfand,,andS.Kivelson,1991,Science254,970.

Chakravarty,S.,andS.Kivelson,1991,Phys.Rev.B64,064511.

Dahlke,P.,M.S.Denning,P.F.Henry,andM.J.Rosseinsky,2000,J.Am.Chem.Soc.122,12352.

Dahlke,P.,andM.J.Rosseinsky,2002,Chem.Mater.14,1285.

DeLeo,L.,andM.Fabrizio,2005,Phys.Rev.Lett.94,236401.

Durand,P.,G.R.Darling,Y.Dubitsky,A.Zaopo,andM.J.Rosseinsky,2003,NatureMaterials2,605.

Eliashberg,G.M.,1960,Zh.Eksp.Teor.Fiz.38,966,;ibid.39,1437(1960)[Sov.Phys.JETP11,696(1960);12,1000(1960)].

16

Erwin,S.C.,1993,inBuckminsterfullerenes,editedbyW.BillupsandM.Ciufolini(VHC,NewYork),p.217.Fabrizio,M.,A.F.Ho,L.DeLeo,andG.E.Santoro,2003,Phys.Rev.Lett.91(24),246402.

Fabrizio,M.,andE.Tosatti,1997,Phys.Rev.B55,13465.Ganin,A.Y.,Y.Takabashi,Y.Z.Khimyak,S.Margadonna,A.Tamai,M.J.Rosseinsky,andK.Prassides,2008,NatureMaterials7,367.

Georges,A.,G.Kotliar,W.Krauth,andM.J.Rozenberg,1996,Rev.Mod.Phys.68,13.Goldoni,A.,2007,unpublished.

Granath,M.,andS.Ostlund,¨2003,Phys.Rev.B68,205107.

Gunnarsson,O.,1997,Rev.Mod.Phys.69,575.

Gunnarsson,O.,2004,Alkali-dopedFullerides.Narrow-bandsolidswithunusualproperties(WorldScientific,Singa-pore).

Gunnarsson,O.,H.Handschuh,P.S.Bechthold,B.Kessler,G.Ganter¨or,andW.Eberhardt,1995,Phys.Rev.Lett.74,1875.

Gutzwiller,M.C.,1963,Phys.Rev.Lett.10,159.

Han,J.E.,O.Gunnarsson,andV.H.Crespi,2003,Phys.Rev.Lett.90,167006.

Hettler,M.H.,M.Mukherjee,M.Jarrell,andH.R.Krishna-murthy,2000,Phys.Rev.B61,12739.

Hewson,A.,1997,TheKondoProblemtoHeavyFermions(CambridgeUniversityPress).

Huq,A.,andP.W.Stephens,2006,Phys.Rev.B74,075424.Iwasa,Y.,andT.Takenobu,2003,J.Phys.:Condens.Matter15,R495,andreferencestherein.

Kitano,H.,R.Matsuo,K.Miwa,A.Maeda,T.Takenobu,Y.Iwasa,andT.Mitani,2002,Phys.Rev.Lett.88,096401.Klupp,G.,K.Kamar´as,N.M.Nemes,C.M.Brown,andJ.Le˜ao,2006,Phys.Rev.B73,085415.

Knupfer,M.,andJ.Fink,1997,Phys.Rev.Lett.79,2714.Kortan,A.R.,M.J.Rosseinsky,S.J.Duclos,A.M.Mu-jsce,R.C.Haddon,D.W.Murphy,A.V.Makhija,S.M.Zahurak,andK.B.Lyons,1992,Phys.Rev.Lett.68,1058.Landau,L.D.,andE.M.Lifshitz,1958,QuantumMechanics:non-relativistictheory(PergamonPress,Inc.,NewYork).Lannoo,M.,G.Baraff,M.Schluter,andD.Tomanek,1991,Phys.Rev.B44,12106.

Lof,R.,M.vanVeenendaal,B.Koopmans,H.Jonkman,andG.Sawatzky,1992,Phys.Rev.Lett.68,3924.L¨uders,M.,A.Bordon,N.Manini,A.D.Corso,M.Fabrizio,andE.Tosatti,2002,Phil.Mag.B82,1611.

Martin,R.L.,andJ.P.Ritchie,1993,Phys.Rev.B48,4845.Micnas,R.,J.Ranninger,andS.Robaszkiewicz,1990,Rev.Mod.Phys.62,113.

Migdal,A.B.,1958,Zh.Eksp.Teor.Fiz.34,1438,[Sov.Phys.JETP7,996(1958)].

Mott,N.F.,1990,MetalInsulatorTransition(TaylorandFrancis,London).

Onnes,H.K.,1911,LeidenComm.120b,122b,124c.

Palstra,T.T.M.,O.Zhou,Y.Iwasa,P.E.Sulewski,R.M.Fleming,andB.R.Zegarski,1995,Sol.St.Comm.93,327.Parks,R.D.(ed.),1969,Superconductivity(MarcelDekker,NewYork).

Prassides,K.,S.Margadonna,D.Arcon,A.Lappas,H.Shi-moda,andY.Iwasa,1999,J.Am.Chem.Soc.121,11227.Ramirez,A.P.,1994,SuperconductivityReview1,1.Ricc´o,M.,G.Fumera,T.Shiroka,O.Ligabue,C.Bucci,andF.Bolzoni,2003,Phys.Rev.B68,035102.

Robert,J.,P.Petit,T.Yildirim,andJ.E.Fischer,1998,Phys.Rev.B57,1226.

17

Satpathy,S.,V.P.Antropov,O.K.Andersen,O.Jepsen,O.Gunnarsson,andA.I.Liechtenstein,1992,Phys.Rev.B46(3),1773.

Scalapino,D.J.,S.R.White,andS.Zhang,1993,Phys.Rev.B47(13),7995.Schir`o,M.,M.Capone,M.Fabrizio,andC.Castellani,2008,Phys.Rev.B77,104522.

Thier,K.-F.,G.Zimmer,M.Mehring,andF.Rachdi,1995,inPhysicsandChemistryofFullerenesandDerivatives,editedbyH.Kuzmany,O.Fink,M.Mehring,andS.Roth(WorldScientific,Singapore),p.432.

Toschi,A.,M.Capone,andC.Castellani,2005,Phys.Rev.

B72,235118.

Varma,C.,J.Zaanen,andK.Raghavachari,1991,Science254,989.

Wachowiak,A.,R.Yamachika,K.H.Khoo,Y.Wang,M.Gro-bis,D.-H.Lee,S.G.Louie,andM.F.Crommie,2005,Science310,468.

Yildirim,Y.,J.E.Fisher,R.Dinnebier,P.W.Stephens,andC.L.Lin,1995,Sol.St.Comm.93,295.

Zhou,O.,T.T.M.Palstra,Y.Iwasa,R.M.Fleming,A.F.Hebard,andP.E.Sulewski,1995,Phys.Rev.B52,483.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top