一、平行四边形真题与模拟题分类汇编(难题易错题)
1.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.
(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;
(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;
(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由. 【答案】(1)见解析; (2)存在,理由见解析; (3)不成立.理由如下见解析. 【解析】
试题分析:(1)由b=2a,点M是AD的中点,可得AB=AM=MD=DC=a,又由四边形ABCD是矩形,即可求得∠AMB=∠DMC=45°,则可求得∠BMC=90°;
(2)由∠BMC=90°,易证得△ABM∽△DMC,设AM=x,根据相似三角形的对应边成比例,即可得方程:x2﹣bx+a2=0,由b>2a,a>0,b>0,即可判定△>0,即可确定方程有两个不相等的实数根,且两根均大于零,符合题意;
(3)由(2),当b<2a,a>0,b>0,判定方程x2﹣bx+a2=0的根的情况,即可求得答案.
试题解析:(1)∵b=2a,点M是AD的中点, ∴AB=AM=MD=DC=a,
又∵在矩形ABCD中,∠A=∠D=90°, ∴∠AMB=∠DMC=45°, ∴∠BMC=90°. (2)存在, 理由:若∠BMC=90°, 则∠AMB+∠DMC=90°, 又∵∠AMB+∠ABM=90°, ∴∠ABM=∠DMC, 又∵∠A=∠D=90°, ∴△ABM∽△DMC, ∴
AMAB, CDDM设AM=x,则
xa, abx整理得:x2﹣bx+a2=0, ∵b>2a,a>0,b>0, ∴△=b2﹣4a2>0,
∴方程有两个不相等的实数根,且两根均大于零,符合题意, ∴当b>2a时,存在∠BMC=90°, (3)不成立. 理由:若∠BMC=90°, 由(2)可知x2﹣bx+a2=0, ∵b<2a,a>0,b>0, ∴△=b2﹣4a2<0, ∴方程没有实数根,
∴当b<2a时,不存在∠BMC=90°,即(2)中的结论不成立. 考点:1、相似三角形的判定与性质;2、根的判别式;3、矩形的性质
2.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.
(1)用尺规将图1中的△ABC分割成两个互补三角形; (2)证明图2中的△ABC分割成两个互补三角形;
(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.
①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为
、
、
的三角形,并计算图3中六边形DEFGHI的面积.
②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.
【答案】(1)作图见解析(2)证明见解析(3)①62;②6 【解析】
试题分析:(1)作BC边上的中线AD即可. (2)根据互补三角形的定义证明即可. (3)①画出图形后,利用割补法求面积即可.
②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可. 试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.
(2)如图2中,延长FA到点H,使得AH=AF,连接EH.
∵四边形ABDE,四边形ACGF是正方形, ∴AB=AE,AF=AC,∠BAE=∠CAF=90°, ∴∠EAF+∠BAC=180°,
∴△AEF和△ABC是两个互补三角形. ∵∠EAH+∠HAB=∠BAC+∠HAB=90°, ∴∠EAH=∠BAC, ∵AF=AC, ∴AH=AB,
在△AEH和△ABC中,
∴△AEH≌△ABC, ∴S△AEF=S△AEH=S△ABC. (3)①边长为
、
、
的三角形如图4所示.
∵S△ABC=3×4﹣2﹣1.5﹣3=5.5, ∴S六边形=17+13+10+4×5.5=62.
②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,
∵AM∥CH,CH⊥BC, ∴AM⊥BC,
∴∠EAM=90°+90°﹣x=180°﹣x, ∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x, ∴∠EAM=∠DBI,∵AE=BD, ∴△AEM≌△DBI,
∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°, ∴△DBI和△ABC是互补三角形, ∴S△AEM=S△AEF=S△AFM=2, ∴S△EFM=3S△ABC=6.
考点:1、作图﹣应用与设计,2、三角形面积
3.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC. (1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
【答案】(1)见解析; (2)见解析. 【解析】 【分析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可; (2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明. 【详解】
(1)证明:∵AE∥BC,DE∥AB , ∴四边形ABDE是平行四边形, ∴AE=BD,
∵AD是边BC上的中线, ∴BD=DC, ∴AE=DC,
又∵AE∥BC,
∴四边形ADCE是平行四边形.
(2) 证明:∵∠BAC=90°,AD是边BC上的中线. ∴AD=CD
∵四边形ADCE是平行四边形, ∴四边形ADCE是菱形. 【点睛】
本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.
4.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD. ①求证:四边形BFDE是菱形; ②直接写出∠EBF的度数;
(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.
【答案】(1)①详见解析;②60°.(2)IH=3FH;(3)EG2=AG2+CE2. 【解析】 【分析】
(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.
②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题. (2)IH=3FH.只要证明△IJF是等边三角形即可.
(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题. 【详解】
(1)①证明:如图1中,
∵四边形ABCD是矩形, ∴AD∥BC,OB=OD, ∴∠EDO=∠FBO, 在△DOE和△BOF中,
EDO=FBO , OD=OBEOD=BOF∴△DOE≌△BOF, ∴EO=OF,∵OB=OD, ∴四边形EBFD是平行四边形, ∵EF⊥BD,OB=OD, ∴EB=ED,
∴四边形EBFD是菱形. ②∵BE平分∠ABD, ∴∠ABE=∠EBD, ∵EB=ED, ∴∠EBD=∠EDB, ∴∠ABD=2∠ADB, ∵∠ABD+∠ADB=90°, ∴∠ADB=30°,∠ABD=60°, ∴∠ABE=∠EBO=∠OBF=30°, ∴∠EBF=60°. (2)结论:IH=3FH.
理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.
∵四边形EBFD是菱形,∠B=60°, ∴EB=BF=ED,DE∥BF, ∴∠JDH=∠FGH, 在△DHJ和△GHF中,
DHG=GHF , DH=GHJDH=FGH∴△DHJ≌△GHF, ∴DJ=FG,JH=HF, ∴EJ=BG=EM=BI, ∴BE=IM=BF, ∵∠MEJ=∠B=60°, ∴△MEJ是等边三角形, ∴MJ=EM=NI,∠M=∠B=60° 在△BIF和△MJI中,
BI=MJB=M, BF=IM∴△BIF≌△MJI,
∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF, ∴IH⊥JF,
∵∠BFI+∠BIF=120°, ∴∠MIJ+∠BIF=120°, ∴∠JIF=60°, ∴△JIF是等边三角形,
在Rt△IHF中,∵∠IHF=90°,∠IFH=60°, ∴∠FIH=30°, ∴IH=3FH.
(3)结论:EG2=AG2+CE2.
理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,
∵∠FAD+∠DEF=90°, ∴AFED四点共圆,
∴∠EDF=∠DAE=45°,∠ADC=90°, ∴∠ADF+∠EDC=45°, ∵∠ADF=∠CDM,
∴∠CDM+∠CDE=45°=∠EDG, 在△DEM和△DEG中,
DE=DEEDG=EDM , DG=DM∴△DEG≌△DEM, ∴GE=EM,
∵∠DCM=∠DAG=∠ACD=45°,AG=CM, ∴∠ECM=90° ∴EC2+CM2=EM2, ∵EG=EM,AG=CM, ∴GE2=AG2+CE2. 【点睛】
考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.
5.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”. 性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.
理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.
应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.
(1)求证:△AOB和△AOE是“友好三角形”;
(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.
探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.
【答案】(1)见解析;(2)12;探究:2或2【解析】
.
试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;
(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、
△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.
探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.
试题解析:(1)∵四边形ABCD是矩形, ∴AD∥BC, ∵AE=BF,
∴四边形ABFE是平行四边形, ∴OE=OB,
∴△AOE和△AOB是友好三角形. (2)∵△AOE和△DOE是友好三角形, ∴S△AOE=S△DOE,AE=ED=AD=3, ∵△AOB与△AOE是友好三角形, ∴S△AOB=S△AOE, ∵△AOE≌△FOB, ∴S△AOE=S△FOB, ∴S△AOD=S△ABF,
∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12. 探究:
解:分为两种情况:①如图1,
∵S△ACD=S△BCD. ∴AD=BD=AB,
∵沿CD折叠A和A′重合, ∴AD=A′D=AB=×4=2,
∵△A′CD与△ABC重合部分的面积等于△ABC面积的, ∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC, ∴DO=OB,A′O=CO,
∴四边形A′DCB是平行四边形, ∴BC=A′D=2, 过B作BM⊥AC于M, ∵AB=4,∠BAC=30°, ∴BM=AB=2=BC, 即C和M重合, ∴∠ACB=90°, 由勾股定理得:AC=
∴△ABC的面积是×BC×AC=×2×2②如图2,
, =2
;
∵S△ACD=S△BCD. ∴AD=BD=AB,
∵沿CD折叠A和A′重合, ∴AD=A′D=AB=×4=2,
∵△A′CD与△ABC重合部分的面积等于△ABC面积的, ∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC, ∴DO=OA′,BO=CO,
∴四边形A′BDC是平行四边形, ∴A′C=BD=2, 过C作CQ⊥A′D于Q, ∵A′C=2,∠DA′C=∠BAC=30°,
∴CQ=A′C=1,
∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2; 即△ABC的面积是2或2考点:四边形综合题.
.
6.问题情境
在四边形ABCD中,BA=BC,DC⊥AC,过点D作DE∥AB交BC的延长线于点E,M是边AD的中点,连接MB,ME. 特例探究
(1)如图1,当∠ABC=90°时,写出线段MB与ME的数量关系,位置关系; (2)如图2,当∠ABC=120°时,试探究线段MB与ME的数量关系,并证明你的结论; 拓展延伸
(3)如图3,当∠ABC=α时,请直接用含α的式子表示线段MB与ME之间的数量关系.
tan【答案】(1)MB=ME,MB⊥ME;(2)ME=3MB.证明见解析;(3)ME=MB·【解析】 【分析】
(1)如图1中,连接CM.只要证明△MBE是等腰直角三角形即可; (2)结论:EM=3MB.只要证明△EBM是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan【详解】
(1) 如图1中,连接CM.
. 22.证明方法类似;
∵∠ACD=90°,AM=MD, ∴MC=MA=MD, ∵BA=BC, ∴BM垂直平分AC,
∵∠ABC=90°,BA=BC,
1∠ABC=45°,∠ACB=∠DCE=45°, 2∵AB∥DE,
∴∠ABE+∠DEC=180°, ∴∠DEC=90°,
∴∠DCE=∠CDE=45°, ∴EC=ED,∵MC=MD,
∴EM垂直平分线段CD,EM平分∠DEC, ∴∠MEC=45°,
∴△BME是等腰直角三角形, ∴BM=ME,BM⊥EM.
故答案为BM=ME,BM⊥EM.
∴∠MBE=(2)ME=3MB.
证明如下:连接CM,如解图所示.
∵DC⊥AC,M是边AD的中点, ∴MC=MA=MD. ∵BA=BC, ∴BM垂直平分AC. ∵∠ABC=120°,BA=BC,
1∠ABC=60°,∠BAC=∠BCA=30°,∠DCE=60°. 2∵AB∥DE,
∴∠ABE+∠DEC=180°, ∴∠DEC=60°,
∴∠DCE=∠DEC=60°, ∴△CDE是等边三角形, ∴EC=ED. ∵MC=MD,
∴EM垂直平分CD,EM平分∠DEC,
∴∠MBE=∴∠MEC=
1∠DEC=30°, 2∴∠MBE+∠MEB=90°,即∠BME=90°. 在Rt△BME中,∵∠MEB=30°, ∴ME=3MB.
(3) 如图3中,结论:EM=BM•tan
. 2
理由:同法可证:BM⊥EM,BM平分∠ABC, 所以EM=BM•tan【点睛】
本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
2.
7.在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF.
(1)说明△BEF是等腰三角形; (2)求折痕EF的长.
【答案】(1)见解析;(2)【解析】 【分析】
.
(1)根据折叠得出∠DEF=∠BEF,根据矩形的性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;
(2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可. 【详解】
(1)∵现将纸片折叠,使点D与点B重合,折痕为EF,∴∠DEF=∠BEF.
∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF
是等腰三角形;
(2)过E作EM⊥BC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM. ∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF. ∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°. 在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE===BM,∴FM=
﹣=.
=
.
=DE=BF,AE=8﹣DE=8﹣
在Rt△EMF中,由勾股定理得:EF=故答案为:
.
【点睛】
本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.
8.已知ABC,以AC为边在ABC外作等腰ACD,其中ACAD. (1)如图①,若ABAE,DACEAB60,求BFC的度数. (2)如图②,ABC,ACD,BC4,BD6.
30,60,AB的长为______.
②若改变,的大小,但90,ABC的面积是否变化?若不变,求出其值;
①若若变化,说明变化的规律.
【答案】(1)120°;(2)①25;②25 【解析】
试题分析:(1)根据SAS,可首先证明△AEC≌△ABD,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC的度数;
(2)①如图2,在△ABC外作等边△BAE,连接CE,利用旋转法证明△EAC≌△BAD,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt△BCE中,由勾股定理求BE即可;
②过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK,仿照(2)利用旋转法证明△EAC≌△BAD,求得EC=DB,利用勾股定理即可得出结论. 试题解析:
解:(1)∵AE=AB,AD=AC, ∵∠EAB=∠DAC=60°,
∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC, ∴∠EAC=∠DAB,
AEAB在△AEC和△ABD中{EACBAD
ACAD∴△AEC≌△ABD(SAS), ∴∠AEC=∠ABD,
∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE, ∴∠BFC=∠AEB+∠ABE=120°, 故答案为120°;
(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.
由(1)可知△EAC≌△BAD. ∴EC=BD. ∴EC=BD=6,
∵∠BAE=60°,∠ABC=30°, ∴∠EBC=90°.
在RT△EBC中,EC=6,BC=4, ∴EB=EC2BC2=6242=2
∴AB=BE=25.
②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,
以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK. ∵AH⊥BC于H, ∴∠AHC=90°. ∵BE∥AH, ∴∠EBC=90°. ∵∠EBC=90°,BE=2AH, ∴EC2=EB2+BC2=4AH2+BC2. ∵K为BE的中点,BE=2AH, ∴BK=AH. ∵BK∥AH,
∴四边形AKBH为平行四边形. 又∵∠EBC=90°,
∴四边形AKBH为矩形.∠ABE=∠ACD, ∴∠AKB=90°.
∴AK是BE的垂直平分线. ∴AB=AE.
∵AB=AE,AC=AD,∠ABE=∠ACD, ∴∠EAB=∠DAC,
∴∠EAB+∠EAD=∠DAC+∠EAD, 即∠EAC=∠BAD, 在△EAC与△BAD中
ABAE{EACBAD ACAD∴△EAC≌△BAD. ∴EC=BD=6.
在RT△BCE中,BE=EC2BC2=25, ∴AH=
1BE=5, 21BC•AH=25 2∴S△ABC=
考点:全等三角形的判定与性质;等腰三角形的性质
9.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,
折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,求证:△PDH的周长是定值; (3)当BE+CF的长取最小值时,求AP的长.
【答案】(1)证明见解析.(2)证明见解析.(3)2. 【解析】
试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值. 试题解析:(1)解:如图1,
∵PE=BE, ∴∠EBP=∠EPB. 又∵∠EPH=∠EBC=90°, ∴∠EPH-∠EPB=∠EBC-∠EBP. 即∠PBC=∠BPH. 又∵AD∥BC, ∴∠APB=∠PBC. ∴∠APB=∠BPH.
(2)证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH, 又∵∠A=∠BQP=90°,BP=BP, 在△ABP和△QBP中,
,
∴△ABP≌△QBP(AAS), ∴AP=QP,AB=BQ, 又∵AB=BC, ∴BC=BQ.
又∠C=∠BQH=90°,BH=BH, 在△BCH和△BQH中,
,
∴△BCH≌△BQH(SAS), ∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8. ∴△PDH的周长是定值.
(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
又∵EF为折痕, ∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°, ∴∠EFM=∠ABP. 又∵∠A=∠EMF=90°, 在△EFM和△BPA中,
,
∴△EFM≌△BPA(AAS). ∴EM=AP. 设AP=x
在Rt△APE中,(4-BE)2+x2=BE2. 解得BE=2+, ∴CF=BE-EM=2+-x, ∴BE+CF=-x+4=(x-2)2+3. 当x=2时,BE+CF取最小值, ∴AP=2.
考点:几何变换综合题.
10.如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.
(1)过D作DHAB,垂足为H,若DH=
FP;
,BE=AB,求DG的长;
(2)连接CP,求证:CP
(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第(2)问的结论成立吗?若成立,求出【解析】
试题分析:(1)根据菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,则
∠DAH=∠ABC=60°,根据DH⊥AB得出∠DHA=90°,根据Rt△ADH的正弦值得出AD的长度,然后得出BE的长度,然后证明△PDG≌△PEF,得出DG=EF,根据EF∥AD,AD∥BC
的值;若不成立,请说明理由.
.
【答案】(1)1;(2)见解析;(3)
得出EF∥BC,则说明△BEF为正三角形,从而得出DG的长度;(2)连接CG、CF,根据△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF的平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.
试题解析:(1)解:∵四边形ABCD为菱形 ∴DA∥BC CD=\"CB\" ∠CDG=∠CBA=60° ∴∠DAH=∠ABC=60°
∵DH⊥AB ∴∠DHA=90° 在Rt△ADH中 sin∠DAH=
∴AD=
∴BE=AB=
×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE的中点 ∴PD=PE
∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC ∴∠FEB=∠CBA=60° ∵BE=EF ∴△BEF为正三角形 ∴EF=BE=1 ∴DG=EF=1 、证明:连接CG、CF
由(1)知 △PDG≌△PEF ∴PG=PF
在△CDG与△CBF中 易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF ∴CG=CF ∵PG=PF ∴CP⊥GF (3)如图:CP⊥GF仍成立
理由如下:过D作EF的平行线,交FP延长于点G
连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC ∴∠ADP=∠PEC
∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60° ∴∠CDG=∠ADC+∠GDA=120° ∵∠CBF=180°-∠EBF=120° ∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF ∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP
∵∠DCP=180-∠ABC=120° ∴∠DCG+∠GCE=120° ∴∠FCE+∠GCE=120° 即∠GCE=120° ∴∠FCP=∠GCE=60° 在Rt△CPF中 tan∠FCP=tan60°=考点:三角形全等的证明与性质.
=
因篇幅问题不能全部显示,请点此查看更多更全内容