JournalofIndustrialandEngineeringChemistry
journalhomepage:www.elsevier.com/locate/jiec
ReviewZinc–airfuelcell,apotentialcandidateforalternativeenergyPrabalSapkota,HonggonKim*EnergyandEnvironmentResearchDivision,KoreaInstituteofScienceandTechnology,Hawolgokdong39-1,Seongbukgu,Seoul136-791,RepublicofKoreaARTICLEINFOABSTRACTArticlehistory:
Received8October2008Accepted6January2009Keywords:Zinc–airfuelcellZAFCMetalairfuelcellPowergeneratorElectrochemicalcellAzinc–airfuelcell(ZAFC),whichgenerateselectricitybythereactionbetweenoxygenandzincpalletsinaliquidalkalineelectrolyte,isapotentialcandidateforanalternativeenergygenerator.Itisefficient,completelyrenewable,andcheapinfabricationbecausepreciousmetalcatalystsarenotnecessary.Inaddition,itisenvironmentallybenignbecauseofproducingsolelyrecyclablezincoxidewithoutgasemission.Itisapplicabletoportable,mobile,stationary,andmilitarypurposes.Inspiteofitshighpotentialasanalternativepowersource,itisyetinapreliminarystageofcommercializationbecauseofafewuncertaintiesremained.ThispaperreviewsthepresentstatusoftheZAFCtechnologyandtheproblemstobeovercomeforfurtheradvancementtowardthepotentialnext-generationalternativeenergy.ß2009PublishedbyElsevierB.V.onbehalfofTheKoreanSocietyofIndustrialandEngineeringChemistry.Contents1.2.Introduction............................FundamentalsofvoltagegenerationinaZAFC2.1.Thermodynamics..................2.2.Standardelectrodepotentials.........DesignofaZAFC........................MaterialsforZAFC.......................4.1.Anode...........................4.2.Cathode..........................4.3.Electrolyteandseparator............FactorsaffectingtheperformanceofZAFC....5.1.Ohmiclosses......................5.2.Activationlosses...................5.3.Dendriteformation.................5.4.Carbondioxideabsorption...........Cellperformanceevaluation...............6.1.Powerdensity.....................6.2.Polarizationcurves.................Applications............................Conclusions............................References.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................4444474474484484484484494494494494494494494494504504503.4.5.6.7.8.1.IntroductionTheissueofglobalwarmingandimmensethrustofenergythatisgrowingondaybydayhaveforcedtosearchnewsustainable*Correspondingauthor.Tel.:+8229585858;fax:+8229585859.E-mailaddress:hkim@kist.re.kr(H.Kim).energieswhichcanreplacefossilfuelsandnuclearenergy.Variousalternativeenergiessuchassolar,hydropower,wind,andgeothermalenergiesarealreadyinpractice,andsomeareinthephaseofcommercialization.Thefuelcell,aplausiblenext-generationpowergeneratingsystemwhichisknowntoefficientlyconvertfuelstoelectricitywithproducingenvironmentallybenignbyproducts,isalsounderdevelopmentandnearlyabouttobecommercialized.Varioussizesofthefuelcellcanextendits1226-086X/$–seefrontmatterß2009PublishedbyElsevierB.V.onbehalfofTheKoreanSocietyofIndustrialandEngineeringChemistry.doi:10.1016/j.jiec.2009.01.002446
Table1Varioustypesoffuelcells.FuelcelltypeAlkaline(AFC)Protonexchangemembrane(PEMFC)Directmethanol(DMFC)Phosphoricacid(PAFC)Moltencarbonate(MCFC)Solidoxide(SOFC)Metal–air,zinc–air(ZAFC)P.Sapkota,H.Kim/JournalofIndustrialandEngineeringChemistry15(2009)445–450Operatingtemperature80–908C30–1008C20–908C$2008C6508C500–10008C0–608CFuelH2H2MethanolH2H2,CO2H2Metal,ZnCatalystPt/Pd,Pt/AuPtPt,Pt/RuPtNiPerovskitesMnO2/PtApplicationsSpaceapplicationVehicles,mobile,lowpowereddomesticuseLowpoweredportablesystemDomesticapplicationPowerplant(MW)Powerplant(MW)Mobileandstationaryapplicationsapplicationfrommicropowerdevicestoindustrypurposesincludingmobileandstationaryapplications.Theversatilityofitsapplicationinducesthemostimmenseinterestamongthealternativeenergiespresentlybeingdeveloped.Fuelcellsaretheelectrochemicaldeviceswhichdirectlyconvertchemicalenergyintoelectricalenergy.Abasicfuelcellstructureconsistsofanelectrolytelayersandwichedbetweenaporousanodeandacathode.Eventhoughthefuelcellresemblesquitesimilartoabatteryincomponents,theformerisanenergyconvertingdevicewhereasthelatterisanenergystoragedevice.Inotherwords,thefuelcellcancontinuouslyproduceenergyaslongasthefuel,hydrogeninmostcases,issupplied,whilethebatterycannot.Variousfuelcellsarebeingdevelopedaccordingtotheoperationtemperaturerange,andthemostrepresentativetypesareexampledinTable1[1–4].Therecentresearchonlow-temperaturefuelcellssuchasPEMFC(protonexchangemembranefuelcell)andDMFC(directmethanolfuelcell)formobileandstationaryapplicationsisatapeak.Butissuesofhydrogencompressionandstorageandthemethanolcrossoverhavehinderedtheircommercialization.Ametal–airfuelcell,whichusesthephenomenonthatelectronsaredischargedwhenthemetalisoxidized,canbeacandidateforanenvironmentallybenignalternativeenergygenerator.Itisefficient,environmen-tallysafe,andcompletelyrenewable,butdoesnotrequirepreciousmetalssuchasPtasitscatalyst.Inadditiontoitslowfabricationcostbecauseofcheapfuels,ametalandtheair,itcanalsobewidelyusedforportable,mobileandstationaryapplications.VariousmetalssuchasLi,Ca,Mg,Al,ZnandFecanbeadoptedformetal–airfuelcells.Asfarastheenergydensity,theenergyperunitmass,isconcerned,Alexceedsothermetals.However,itiseasilycorrodedinthealkalineelectrolyte.ThecorrosionrateofZnisslowerthanAlinanaqueousoralkalinesolution.Inaddition,Znishighlyelectro-positiveandabundantlyavailableatlowcost,andacellwithZncanproducehighspecificenergyandhighpowerdensity.Therefore,Znissofarconsideredasthemostreasonablematerialfortheanodeinametal–airfuelcell[5,6].Thezinc–airfuelcell(ZAFC)worksonthebasisofareactionbetweentheatmosphericoxygenandzincpalletsinaliquidalkalineelectrolyte.SincetheZAFCproducesonlyzincoxide,whichisentirelyrecyclable,withoutgasemissionwhilegenerat-ingelectricity,itisconsideredenvironmentallyfriendly.Fig.1showsageneralschematicdiagramofaZAFC.Inanoverallchemistry,zincisconvertedtozincoxidewhenzincpelletsarefedintothechamber.Firstly,whenairoranyoxygensourcesuchasperoxideissuppliedatthecathodeside,oxygeniselectrochemicallyreducedtohydroxideionsbyreactingwithwateronthesurfaceofthegas-permeablecathode.Meanwhile,theoxidationofZntakesplaceatthesurfaceoftheanodecurrentcollector,whereZnisconvertedtozincoxidebyreactingwithhydroxideions.DuringtheconversionofZntoZnO,electronsaredischargedandtransferredtotheanodiccurrentcollector.Theelectronsontheanodepassacrosstheexternalloadandcomebacktothecathodecurrentcollector,wherethereductionofoxygentakesplace.Therefore,theoverallchemicalreactioninaZAFCcanFig.1.SchematicofZAFC.bewrittenas2ZnþO2¼2ZnO(1)Electricity,theoretically1.65V,canbegeneratedfromtheaboveelectrochemicalreactionbetweenzincandoxygen.Thezinc–airsystemintheformofaprimarybatteryhasalreadybeeninpractice.However,inspiteofhavingenormouspotentialasanalternativeenergygenerator,theZAFCsystemisyetinapreliminarystageofcommercializationbecausetherearesomeuncertaintiesforwhichfurtherstudiesanddevelopmentneedtobeaddressed.ThepurposeofthispaperistoreviewthepresentstatusoftheZAFCtechnologyandtheproblemstobeovercomeinordertomaketheZAFCapotentialcandidateforthenext-generationalternativeenergy.2.FundamentalsofvoltagegenerationinaZAFC2.1.ThermodynamicsForgeneratingelectricityfromaZAFC,theoverallreaction(1)shouldbethermodynamicallyfavorable.Itisconvenienttoexpresstheoverallreactionintermsoftheoverallcellelectromotiveforce,Eemf(V),whichisdefinedasthepotentialdifferencebetweenacathodeandananode.TheEemfisrelatedtotheelectricalworkdoneinacell.ElectricalworkdoneðWÞ¼ÀchargeðQÞÂvoltageðEemfÞ(2)whereQ=nF,nisthenumberofelectronswhichtakepartinthechemicalreaction,andFistheFaradayconstant.W¼ÀnFEemf(3)Ifthereisnolossinthesystem,theelectricalworkdoneisequaltotheGibbsfreeenergychange(DGr).EDGremf¼ÀnF(4)P.Sapkota,H.Kim/JournalofIndustrialandEngineeringChemistry15(2009)445–450447
InthecaseofaZAFC,n=2.SotheequationbecomesEGremf¼ÀD2F(5)2.2.StandardelectrodepotentialsTheoverallelectrochemicalreactiontakingplaceintheZAFCcanbeanalyzedbyconsideringtheanodeandthecathodereactionsinseparate.Anode:Znþ4OHÀ¼ZnðOHÞ2À4þ2eÀðEo¼À0:625VÞZnðOHÞ2À4¼ZnOþ2OHÀþH2O(6)Cathode:O2þ2H2Oþ4eÀ¼4OHÀðEo¼þ0:40VÞ(7)Theoverallreactioncanbeexpressesas2ZnþO2¼2ZnOðEo¼1:65VÞ(8)Intheaboveequations,Eorepresentsthestandardelectrodepotentialofeachreactionwithrespecttothestandardhydrogenelectrodeatthestandardtemperatureandpressure.TheoverallcellelectromotiveforceiscalculatedasEemf¼EoðcathodeÞÀEoðanodeÞ(9)sothattheoverallcellelectromotiveforceofaZAFCshouldbetheoretically1.65VasshowninEq.(8).TheEemfisathermodynamicvaluewhichdoesnotincludeinternallosses.Theopencircuitvoltage(OCV)isobtainedatnoloadconditionandshouldtheoreticallybeequaltotheEemf.However,theactualopencircuitvoltageofapracticalZAFCisalwayslessthanthetheoreticalvalueduetovariouspotentiallossesandfoundtobearound1.45V[1].PossiblereasonsforthepotentiallosswillbediscussedinSection5.3.DesignofaZAFCVariousconfigurationswereproposedforZAFCs.Inthebeginningstage,azinc–airsystemwithmechanicallyrefuelableanodesshowninFig.2wasproposed[7].Thissystemcanbeconsideredasazinc–airrefuelablebatteryratherthanaZAFC.AZnplatewhichisreplaceableisplacedinthemiddleasananode,andthesurfacesoftwosidesfacetheoxygen-reductioncathodes,whichareoftencalledair-cathodes.AqueousKOHisusedasanelectrolytefortransferringions.Thetwoelectricallyoppositesides,theanodeandthecathode,areseparatedbyamembraneFig.2.Zinc–airsystemwithmechanicallyrefuelableanode.whichisionicallyconductivebutelectricallynon-conductive.Forbeingafuelcell,asystemshouldcontinuouslyproducetheelectricalenergyaslongasthefuelissupplied.Soelectricallydischargingandmechanicallyrefuelingoftheabovesystemdoesnotsupporttheexactdefinitionofafuelcell.Howevertheworkingprincipleandtheconceptaresameasthoseofafuelcell.SeveralapproachesforZAFCshavebeenproposedbydifferentresearchgroups.SincethesolidZnandzincoxideparticlesarehandledinaZAFC,thecloggingproblemofunreactedzinc,solidproducts,andbyproductsintheelectrolyteissevere.Someoftheresearchworkstosolvethisproblemwereconductedinafluidizedbedsystemorastaticbedsystem.TheMetallicPowerdevelopeda36Vfuelcelldeliveringapproximately6kWhbyadoptingtheconceptofthefluidizedbedsystem[8].However,thecloggingproblemstillremainedinthiscase.Thecloggingproblembyunreactedzincpelletscouldbesolvedbyatapered-endstructure[9].AsanexampleshowninFig.3,twonon-parallelsurfacesareplacedwithasmallverticalanglewhichproducesadifferencebetweentwoends,thelowerandupperends.Inthisapproach,thepreferableverticalangleisca.0.1–38.Acontinuousflowofelectrolyteismaintainedfromthetoptothebottomofthecell.Theupperportionofacelliselectrochemicallyactiveandcalledahopperwhichactsasareservoirforthezincpelletsorparticles.Oncethecellstartstodischargetheelectricity,thepelletsreducetheirsizesbythechemicalreactionandflowdownwardsbynaturalmovement.Solidproductsandbyproductsaswellassmall-sizeunreactedzincparticlesescapeoutfromthecellalongwiththeeffluentofelectrolyte.Themajordisadvantagesofthistapered-endapproacharethepresenceofinactivevolumeinthehopperwhichunnecessarilyincreasestheweightofacellandmakesitbulky,arelativelylongfillingtimeofzincpelletsinthehopper,andthehighshuntcurrentflowingbetweenthecellsduringrefuelingviaafeedtube.Plutoetal.suggestedanadvanceddesignofZAFCtoovercometheproblemsencounteredinthetapered-endstructure[10].Intheirdesign,aslightlyleanedanodecurrentcollectorandaverticalpermeablecathodewhichaircanpassthroughareplacedonthetwooppositesidesofthecellwhichcovertheentirecellarea.Andthefuelispumpedfromtheadjacenttanksothatalmostallspaceinthecellframeactivelyworkselectrochemically.Thisarrange-Fig.3.ZAFCwithatapered-endstructure.448P.Sapkota,H.Kim/JournalofIndustrialandEngineeringChemistry15(2009)445–450Fig.4.ZAFCcelldesignedbyPlutoetal.mentseemsusefulinreducingtheshuntcurrentbetweenunitcells.Furthermore,itmaintainsaconstantlevelofzincparticlesinsidethecell.InFig.4,theliquidelectrolytecontainingzincparticlesispumpedandsuppliedtothecell.Theverticalbaffleshelptodirectthepelletmovementinthecell.Oncetheactivespaceofthecellisfull,theelectrolytecontainingzincpelletsflowsalongthepathsandreturnsbacktothefueltankviaanoverflowexitline.Asthecellelectricallydischarges,zincpelletsgetsmallerandmovedownwards.Theelectrolytecontainingzincoxideparticles,theproduct,andsmallamountofunreactedzincpelletspassesthroughagridmeshplacedatthebottomofthecellandispumpedtotherecycletank.Thevacantspaceintheupperpartisoccupiedbynewzincpelletswhicharefedfromtheinletstream.SmedleyandZhangusedthisconceptintheirresearchworkwitha12cell-stackproviding1.8kW[11].4.MaterialsforZAFC4.1.AnodeInaZAFC,theanodematerialiszinc.Theshapeandsizeofzincdependonthecelldesign.Inthemechanicallyrefuelablezinc–airsystem,asinglezincplatewithacurrentcollectingelementembeddedinitisusedasananode.Duringrefueling,thewholeanodeassemblyisreplacedbyanewsetwithacurrentcollectingelement.AccordingtotheElectricFuelLtd.,refuelingofZnforZAFC-poweredvehiclescanbedoneinashorttimebyanautomaticrefuelingmachineinarefuelingstationjustlikethatinagasolinerefuelingstation[12].Inthecaseofthecellswithtaperedends,propersizesofzincpelletsarerequiredinordertocontinuouslychargethesolidfuel.Propershapeandsizeofzincpelletsdependontheshapeandsizeofthecellcomponents.Thecurrentcollectingelementontheanodesidecanbemadeofanymaterialhavinghighelectricalconductivityandhighanti-corrosiontotheelectrolytematerial.Nickel,copper,silver,andstainlesssteelarecommonlyusedfortheanode.Relativelyfewresearchworkshavebeendoneforimprovingtheanode.Furthermore,mostresearchworksontheanodefocusedontheelectricallyrechargeablezinc–airbatteriesandthemechanicallyrefuelablezinc–airsystemsratherthanZAFCs.Inthecaseofanelectricallyrechargeablesystem,irreversibilityofthesystemandcorrosionoftheelementsarethemajorproblems.Thesecouldbealleviatedbyusingazincoxideelectrodeoramodifiedelectrodecontainingzincoxideandleadoxide[13].Buttheharmlessnessofleadoxideontheenvironmentisnotyetproven.TheperformanceofzincanodecanbefurtherimprovedbyadoptinganalloyofNi(7.5%),Zn(90%)andIr(2.5%)[14].Althoughtheproblemassociatedwiththezincanodeseemstoplayasignificantroleinthecaseofelectricallyrechargeablebatteries,itismollifiedinthecasesofmechanicallyrefuelablezinc–airsystemsandcontinuousZAFCsystems.4.2.CathodeOneofthemajorfactorsdeterminingtheperformanceofaZAFCisanaircathodewheretheoxygenreductiontakesplace.AtypicalZAFCcathodeconsistsofthreelayers:acurrentcollectinglayer,adiffusionlayer,andacatalyticallyactivelayer.Thecurrentcollectinglayerissimplythemetalmeshsandwichedbetweenthediffusionlayerandthecatalyticallyactivelayer.Thereisnospecificmetal,butitshouldbenon-corrosiveandhighlyelectricallyconductive.Metalsmostcommonlyusedarenickel,gold,silver,copper,silver-platednickel,silver-platedornickel-platediron.Thediffusionlayercomposedofcarbonparticlesandhydro-phobicparticlesneedstobeair-permeablebutwater-impermeable.Graphiteforcarbonparticlesandpolytetrafluoroethylene(PTFE)forhydrophobicparticlesarebondedtogetherwithorwithoutepoxyresin[15].Aproperratiocanbechoseninarangeof30–70wt.%PTFEandthebalancedamountofconductivecarbon[16].ThecatalyticallyactivelayeristhemostimportantpartintheaircathodeforaZAFC.Thisistheplacewherethecatalyticreductionofoxygentakesplacesothatalargeractiveareaisdesirablefromthereactionpointofview.Theactiveareaconsistsofcatalystsmixedincarbonparticles.OneadvantageoftheZAFCisthatitdoesnotrequirepreciousandcostlymetalsforcatalysts.Inexpensivenon-noblemetaloxidessuchasMnO2canbeusedasaZAFCcatalyst[17].Aperovskitetype(La0.6Ca0.4CoO3)dopedwithmetaloxidescanbeusedforanoxygenreducingcatalyst[18].Carbonparticlessupportingthecatalystprovidenotonlyahighsurfaceareaforthereactionbutalsoelectricalpathstoelectrons.Thecellperformancedependsonthetypeandtheporesizeofcarbon.Activatedcarbonwithalargenumberofmacropores(>50nm)ormesopores(2–50nm)giveshighperformance[19].Chaoetal.suggestedtheadditionofclayintheaircathodeinordertoenhancethedispersionofcarbonparticlesandcatalyst[20].ShunandLousuggestedanadvancedcatalyticlayerconsistingofcarbonparticles,highsurfaceareaparticulatessuchasmolecularsieveorzeolite,hydrophobicparticles,andmetalhydroxideascatalystsuchasnickelhydroxide,cobalthydroxide,ironhydroxide,ceriumhydro-xide,manganesehydroxide,lanthanumhydroxideandchromiumhydroxide[15].Theactivelayercanalsobepreparedbysprayingacatalystmaterialonthecommerciallyavailablecarbonpapersorcarbonclothswhichareusedasgasdiffusionlayers.Zhuetal.proposedathinaircathodeof0.13–0.50mmthicknesswhichispreparedbyputtingcarbonparticlesinasinter-lockedmetalfibernetwork[21].Thiscouldreducethecathodethicknessby30–75%ofcommercialaircathodes.WangChendevelopedanaircathodewithmulti-layersinordertominimizethemoisturetransferfromtheinnerelectrolytetotheoutsideairandtopreservetheconstantwatercontentofzincanode[22].ThiscathodewascomposedofametallicmeshasasubstratewhichissandwichedbytwodiffusionlayersofcarbonandPTFEbinder.Differenttypesofcatalystsarecoatedonadiffusionlayeronebyonetoformamulti-layeredcatalyticsurface.Forexample,athree-layeredactivesurfacecanbepreparedbycoating1mg/cm2ofMnO2,CoOandMnO2inthefirst,thesecondandthethirdlayers,respectively.Desirablethicknessoftheaircathodeischosenintherangeof0.01and20mmaccordingtotheconfigurationandthenumberoflayers.ThenoblePtcanbeusedasacatalystmaterial,butitsuseincreasesthecostofacell.4.3.ElectrolyteandseparatorTheelectrolyteplaysanimportantroleinthetransportationofions.LiquidalkalinesareusedforZAFCelectrolytes.ThemostP.Sapkota,H.Kim/JournalofIndustrialandEngineeringChemistry15(2009)445–450449
commonlyusedonesarepotassiumhydroxide(KOH),sodiumhydroxide(NaOH)andlithiumhydroxide(LiOH).Somearticlessuggestedtousethehydroponicsgelasanelectrolytegellingagentduetoitsenormouscapabilityofstoringsolution[23,24].Aseparatororamembraneneedstobehighlyionicallyconductivebutelectricallynon-conductive.Organicpolymerssuchasacopolymerofpolyvinylalcoholandpolyvinylacetatehavebeenusedfortheseparator[25].CommerciallyavailableNafion(DuPontCo.),asulfonatedperfluoropolymer,hasbeenwidelyusedasionexchangemembranebecauseofitshighionexchangecapabilityandchemicalstability[26,27].However,becauseNafionsarefarmoreexpensivethanhydrocarbonseparators,Dewietal.suggestedtheuseofpolysulfoniummembrane,whichcanpreventthepermeationofzinccationsandonlyallowhydroxideanionstopassthrough[28].Ahydrophilicpolyestersulfonefilmwithmicroporesof0.45mmporesizewasalsoproposed[29].Wuetal.suggestedthepolypropylenemembrane(Celgard)treatedwithsulfuricacid,whichisusuallyusedinlithiumbatteries,asaseparatorforzinc–airelectrochemicalcells[30].5.FactorsaffectingtheperformanceofZAFCEventhoughthetheoreticallyavailablevoltageofaZAFCis1.65VanditsOCVis1.45V,thepracticallyattainablevalueisalwayslessthanthem.Thereareseveralfactorsresponsibleforthelowvoltagesduringoperation.5.1.OhmiclossesOhmiclossesoccurduetotheelectricalresistancesofelectrodesandinterconnections,andtheresistancetotheflowofionsintheelectrolyte.Theamountofvoltagedrop(V)dependsonthecurrent(i)andtheresistancesofcomponents(R).ThiscanbeexpressedasV¼iRTheohmiclossescanbeminimizedbyusingtheelectrodeswithhighelectricalconductivityandtheelectrolytewithhighionicconductivity.AqueousNaOH,KOHorLiOHispreferredasagoodelectrolyte[31].5.2.ActivationlossesActivationlossesresultfromtheslownessofreactionstakingplaceonthesurfaceoftheelectrodes.Inlow-temperaturefuelcells,theaircathodeisprimarilyresponsiblefortheactivationloss[2].Theactivationlossincreasesasthecurrentdensityincreases.Anditcanbereducedbyincreasingtheactivesurfaceareaofcathodes,thecatalyticactivity,ortheroughnessoftheelectrodes.IncreasingtheoxygenconcentrationbyusingpureO2insteadofaircanalsoreducetheactivationloss,butthisisnotfavorablebecauseofthehighcostofO2andthedifficultyinoxygencompressionandstorageforsmallportabledevices.5.3.DendriteformationInthecellstackswheretheelectrolyteisshared,ashuntcurrentappears.Thisshuntcurrentisresponsiblefortheformationofzincdendrite.Eventhoughitisslowlyformed,iteventuallyblockstheflowofelectrolyteandzincparticlesintothecell.Colbonsuggestedtheconstructionofdendriteeliminationzonetopreventtheaccumulationofzincparticlesinthiszone[32].Useofanacidicelectrolyteinsteadofanalkalinecouldminimizethedendriteformation[33].Additionofasmallamountofcellulose(1–10%tozincelectrode)showedapositiveeffecttoreducetheformationofzincdendriteinthecaseofrechargeablezinc–airbatteries[34,35].5.4.CarbondioxideabsorptionAsthesystemisoperatedwithairinsteadofpureoxygen,CO2presentintheairdissolvesintheelectrolyteformingcarbonate.Theformationofcarbonateincreasestheviscosityoftheelectrolyteanddecreasesitsionicconductivity.InaZAFC,thiscanbeminimizedbycontinuouslysupplyingafreshelectrolytesolution.Useofpureoxygeninsteadofaircandecreasetheformationofcarbonatebutincreasetheoperationcost.Theproblemofcarbonateformationcanpossiblybereducedifanacidicelectrolyteisadoptedinsteadofanalkaline[33].6.CellperformanceevaluationInmostcasesofelectrochemicaldevices,theperformanceisusuallyexpressedintermsofpowerdensityandapolarizationcurveeventhoughtherearediversetypesofmethodsandbases.Theevaluationofacellnormallystartsfromitsopencircuitvoltage(OCV).TheOCVofaZAFCissofarknowntobeca.1.45V.6.1.PowerdensityThepowerdensityisaspecificpowernormalizedtotheprojectedactiveareaofanelectrodeortothevolumeofasystem.P¼PAorPPdd¼VwherePdisthepowerdensity,Pisthetotalpowerexpressedinwattormilliwatt,Aistheareaofanelectrodeincm2,andVisthevolumeofasystemincm3.ForaZAFCsystem,theaircathodeareaisusuallytakenastheactiveareawheretheelectrochemicalreactionseemstotakeplace.6.2.PolarizationcurvesPolarizationoccurswhentheelectricalresistancearoundtheelectrodesabruptlyincreases.Inatypicalpolarizationcurvewhichcanrepresenttheperformanceofthecellorcanindicatecertainchangeinthecell,thevoltagechangeisexpressedintermsofthecurrentchangeorthecurrentdensitychange.ThepolarizationcurveexampledinFig.5canbedividedintothreezonesasfollows:(i)ActivationlosszonerangingfromtheOCVatzerocurrenttotheinitialsteepdecreaseofvoltage.(ii)Ohmiclosszonewherethevoltageslowlydrops.(iii)Concentrationlosszonewherethemasstransporteffectisdominantandthevoltagerapidlyfallsathighcurrentdensities.Fig.5.TypicalpolarizationcurveofZAFC.450P.Sapkota,H.Kim/JournalofIndustrialandEngineeringChemistry15(2009)445–450InaZAFC,theactivationlossdominantlyoccursintheinitialstage,andtheohmiclossoccursmoderately.Themostsignificantlossoccurswhenahighcurrentdensityisapplied.IftheZAFCisoperatedinamiddlerangeofcurrentdensity,itsteadilydischargesaconstantvoltage.InaZAFCwellmodifiedsofar,ahighcurrentdensityof360mA/cm2couldbesustainedfor1000h[11].
Eitherapotentiostatoravariableresistorboxcanbeusedtosetvariableexternalloads.Thevoltagechangeismeasuredwhentheloaddecreases(orincreases)periodically.ThecurrentorthecurrentdensityiscalculatedusingOhmslaw.Whentheexternalresistanceisvaried,thechangesofcurrentandvoltageshouldbecountedafteratemporarypseudo-steadystateconditionisestablishedinafewminutes.7.ApplicationsDuetoitshighspecificenergy,highpowerdensity,cheapandabundantlyavailablefuel,nouseofpreciousmetalsascatalysts,andnoissueofdifficultyinfuelstorageandtransportation,theZAFCisdefinitelyonepromisingoptionforbothstationaryandmobileapplications.Zinc–airbatteriesarealreadyinpracticeasaprimarybatteryinsmalldeviceslikehearingaids.Itcanreplacealkalineormercurybatteriesbecauseitsenergydensityisuptofivetimesofthesebatteries.Asthezinc–airbatteries,theZAFCissuitablyappliedfortheareaswhereahighenergydensity,theenergyperweight,iscontinuouslyrequired.Recently,severalcompaniesareinvolvedindevelopmentandcommercializationofZAFCsforelectricvehicles,indoorpowergenerators,industrialfacilities,andmilitarypurposes.However,fewresearchgroupsandcompaniesaresofarworkingonthedevelopmentofZn–airsystemsthroughouttheworld.TheElectricFuel,Ltd.hasworkedonazinc–airbatterysystemforelectricvehicles,demonstratedthesystemsforvans,andbeendevelopingthesystemsforbuses.Thecompanyisalsoworkingontheprimaryandsecondarybatteriesformilitaryuses[12,36–41].ThePowerZinchascommercializedzinc–airbatteriesformilitaryusesandelectricvehicles,anddevelopedfirst-stagemodelsofZAFCproducts[42].ThePowerAirCo.hasproducedvariousZAFCsystemsformobiledevicepowerpacks,backuppowerapplicationsandindoorgenerators,andhascurrentlydemonstrateditsninthgenerationZAFCsystemin2007[43].TheMetallicPowerInc.producesZAFCsasalternativebackuporemergencyelectricalsourcesforthegeneratorswhichuseinternalcombustionengines[6].8.ConclusionsEventhoughthezinc–airfuelcellsystemisoneofthepotentialcandidatestofulfilltheworld’senergyrequirements,severalproblemsincludingfullexploitationandmodificationofzincasasourcefortheenvironmentallybenignenergyproductionneedtobesolvedforitscommercialization.ThemainproblemassociatedwiththeZAFCsofaristheperformanceofanaircathode.Amulti-layeredcatalystelectrodecanbeaplausibleoption.ImprovementofthecellperformancecanalsobeachievedbychangingtheconfigurationofacellassemblyinsuchamannerthatOHÀionscantravelashortdistance.Theadditionofionicallyconductivematerialsintotheelectrolytecanhopefullyhelptosolvetheproblemsofdendriteformation,carbonateformationandcorro-sionofelectrodes.Inordertoimprovethelife-timeofacell,severalfactorsneedtobesolvedsimultaneously.Afterall,thedevelop-mentandcommercializationofaZAFCisoneoftheinterestingresearchfieldsforthescientistsandengineerswhowishtodevotetotheexcavationoffutureenergies.References
[1]N.J.Cherepy,R.Krueger,J.F.Cooper,14thannualBatteryConferenceonApplica-tionsandAdvances,IEEE,1999,11–13.
[2](a)J.Larminie,A.Dicks,FuelCellSystemsExplained,2ndedn,Wiley,England,
2005;
(b)M.C.Jo,G.H.Kwon,W.Li,A.M.Lane,J.Ind.Eng.Chem.15(2009)336.
[3](a)EGandGTechnicalServices,FuelCellHandbook,6thedn,USDepartmentof
Energy,WestVirginia,2002;
(b)S.Uhm,J.K.Lee,S.T.Chung,J.Y.Lee,J.Ind.Eng.Chem.14(2008)493.[4]Technical/OCMPrimarySystem,Duracell,Procter&Gamble,2005.[5]G.Koscher,K.Kordesch,J.PowerSources136(2004)215.[6]M.J.Riezenman,IEEESpectrum38(2001)55.
[7]J.Goldstein,I.Brown,B.Koretz,J.PowerSources80(1999)171.[8]S.Smedley,IEEEAerosp.Electron.Syst.Mag.15(2000)19.[9]J.F.Cooper,USPatent5,434,020(1995).
[10]M.Pinto,S.Smedley,J.A.Colborn,USPatent6,706,433B2(2004).[11]S.I.Smedley,X.G.Zhang,J.PowerSources165(2007)7.
[12]J.R.Goldstein,I.Gektin,B.Koretz,ElectricFuelLtd,Presentedinthe1995Annual
MeetingoftheAppliedElectrochemistryDivisionoftheGermanChemicalSociety,Duisburg,Germany,1995.
[13]C.W.Lee,S.W.Eom,K.Sathiyanarayanan,M.S.Yun,Electochim.Acta52(2006)
1588.
[14]C.W.Lee,K.Sathiyanarayanan,S.W.Eom,M.S.Yun,J.PowerSources160(2006)
1436.
[15]Y.-K.Shun,C.-L.Lou,USPatent6,127,061(2000).[16]Y.Kiros,WO/2002/075827(2002).
[17]G.Q.Zhang,X.G.Zhang,Electrochim.Acta49(2004)873.
[18]X.Wang,P.J.Sebastian,M.A.Smit,H.Yang,S.A.Gamboa,J.PowerSources124
(2003)278.
[19]S.W.Eoma,C.W.Lee,M.S.Yun,Y.K.Sun,Electrochim.Acta52(2006)1592.[20]W.K.Chao,C.M.Leea,S.Y.Shieua,C.C.Chou,F.S.Shieu,J.PowerSources177(2008)
637.
[21]W.H.Zhu,B.A.Poole,D.R.Cahela,B.J.Tatarchuk,J.Appl.Electrochem.33(2003)
29.
[22]K.Y.W.Chen,USPatent0,044,0A1(2008).
[23]R.Othman,W.J.Basirun,A.H.Yahaya,A.K.Arof,J.PowerSources103(2001)34.[24]A.A.Mohamad,J.PowerSources159(2006)752.
[25]J.Treger,S.Sargeant,J.Licata,USPatent6,514,637B2(2003).[26]H.Kato,USPatent7,125,626B2(2006).
[27]W.K.Chao,C.M.Lee,S.Y.Shieu,C.C.Chou,F.S.Shieu,J.PowerSources177(2008)
637.
[28]E.L.Dewi,K.Oyaizu,H.Nishide,E.Tsuchida,J.PowerSources115(2003)149.[29]R.Jiang,Rev.Sci.Instrum.78(2007)072209.
[30]G.M.Wu,S.J.Lin,J.H.You,C.C.Yang,Mater.Chem.Phys.(inpress).[31]T.Burchardt,WO2007/144357(2007).[32]J.A.Colbon,USPatent6,153,328(2000).[33]R.Clarke,WO2004/001879(2004).
[34]S.Muller,F.Holzerm,O.Hass,J.Appl.Electrochem.28(1998)5.
[35]C.W.Lee,K.Sathiyanarayanan,S.W.Eom,H.S.Kim,M.S.Yun,J.PowerSources160
(2006)1436.
[36]B.Koretz,Y.Harats,J.Goldstein,M.Korall,ElectricFuelLtd,PresentedinBatterien
undBatteriemanagementConference,Essen,Germany,1995.
[37]B.Koretz,Y.Harats,J.Goldstein,ElectricFuelLtd,Presentedin12thInternational
SeminaronPrimaryandSecondaryBatteryTechnologyandApplication,Deerfieldbeach,Florida,USA,1995.
[38]B.Koretz,J.R.Goldstein,ElectricFuelLtd,Presentedinthe32ndIntersociety
EnergyConversionEngineeringConference,Honolulu,Hawaii,1997.
[39]B.Koretz,N.Naimer,ElectricFuelLtd,Presentedinthe32ndIntersocietyEnergy
ConversionEngineeringConference,Honolulu,Hawaii,1997.
[40]J.Wartman,I.Brown,ElectricFuelLtd,Presentedinthe15thInternationalElectric
VehicleSymposiumandExhibition(EVS-15),Brussels,Belgium,1998.
[41]J.Goldstein,I.Brown,B.Koretz,ElectricFuelLtd,Presentedinthe21stInterna-tionalPowerSourcesSymposium,Brighton,UK,1999.
[42]OfficialwebsiteofPowerZinc,http://www.powerzinc.com.
[43]OfficialwebsiteofPowerAirCorporation,http://www.poweraircorp.com.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务