基于BP与RBF神经网络经济预测模型的研究
作者:白雪冰
来源:《电脑知识与技术》2011年第10期
摘要:该文结合经济预测理论和BP神经网络算法和RBF神经网络的特点,研究浙江省基于BP神经网络算法和RBF神经网络算法的人工神经网络的经济增长预测。实证研究数据结果表明,人工神经网络具有较好的预测精度,但是各种神经网络进行经济增长预测的数据不一样,有些误差非常大。人工神经网络可以为宏观经济部门决策提供很好的参考依据。 关键词:BP人工神经网络;RBF人工神经网络;经济增长预测
中图分类号:TP183文献标识码:A文章编号:1009-3044(2011)10-2345-03
The Study of Forecast of Zhejiang Province's Economic Growth Using BP and RBF Artificial Neural Network BAI Xue-bing
(Zhengjiang University of Technology, Hangzhou 310014, China)
Abstract: Based on existing studies of economic forecasting methods, the article studies the Zhejiang province'sEconomic Growth Forecastusing BP and RBF Artificial Neural Network.Thedata research shows Artificial Neural Network hasgood precision, but different Artificial Neural Network have different behavior, some have big error. Artificial Neural Network can provide good reference for the making policy of sector of economy.
Key words: BP artificial neural network; RBF artificial neural network; economic growth forecast
1 经济预测概论
经济预测是与未来有关的旨在减少不确定性对经济活动影响的一种经济分析。它是对将来经济发展的科学认识活动。经济预测不是靠经验、凭直觉的预言或猜测,而是以科学的理论和方法、可靠的资料、精密的计算及对客观规律性的认识所作出的分析和判断。 2 人工神经网络经济预测技术
由于人工神经网络具有大规模并行处理、容错性、自适应和联想功能强等特点,作为非线性智能预测方法的人工神经网络预测方法成为国内外经济预测研究的一个热点。
龙源期刊网 http://www.qikan.com.cn
人工神经网络不断应用于证券预测分析、企业经济战略预测、经济理论创新、经济预测预警等研究中,都得到了一定的效果。 3 BP与RBF神经网络预测模型分析 3.1 经济增长神经网络设计模型 3.1.1 宏观经济预测指标
经济增长率是判断宏观经济运行状况的一个主要指标。经济增长率指的就是不变价国内生产总值增长率(简称国内生产总值增长率。因此,判断宏观经济运行状况要落脚到对国内生产总值的核算上。在本文中我们采用GDP的增长率来作为预测目标。 3.1.2 神经网络设计模型经济模型的设计 本论文采用两种模型对经济进行预测。
1) 第一种 GDP预测模型:第n年的一、二、三产业的增长率作为输入,第n+1年GDP增长率作为输出。
2) 第二种预测模型。第n-3、n-2、n-1、n年的经济增长率作为输入,第n-1、n、n+1年经济增长率作为输出。
这里还要说明两个问题。第一我们用到的数据来自2009年 浙江省统计年鉴,它的网址是http://tjj.zj.gov.cn 。 3.1.3 神经网络模型结构
设计经济预测神经网络模型前,首先需要确定神经网络的结构,主要包括如下内容:网络的层数,每层的神经元数和激活函数等。采用的神经网络结构如图1。
3.2 使用BP在以浙江省过去的每年的GDP增长指数的基础上进行BP神经网络预测 3.2.1 学习样本的选择
本次实验使用Matlab 软件采用3层BP神经网络建立浙江省经济发展的的预测模型。输入层节点数为n=4,输出层节点m=3.而隐含层节点数的选择是人工神经网络最为关键的一步,它直接影响网络队复杂问题的映射能力,实验中我们采用试凑法来确定最佳节点数。现设置较少的隐节点训练网络,然后逐渐增加网络节点数,用同一样本进行训练,从中确定网络误差最小时对应的节点数,隐层、输出层神经元的转移函数,隐含层和输出层转移函数分别采用tansig和logsig,训练函数选择traindx。
龙源期刊网 http://www.qikan.com.cn
3.2.2 数值归一化处理
对于浙江省经济增长序列Q=(Q1,Q2…,Qt)。设序列的最大值、最小值分别为Qmax、Qmin。对时间序列的值作归一化处理。 令xi=(Qi-Qmin)/(Qmax-Qmin) 3.2.3 样本数据训练和数据预测
采用1978~2003年的数据样本在MatLab7.0软件中对输入网络进行训练.隐层节点数先从4开始训练,逐步增加到12时,当数值 为10时预测结果较好。允许误差为0.001,训练3217次达到训练要求。
采用1978~2004年的数据作为第一组训练数据,2005-年数据作为仿真预测数据,通过神经网络预测GDP。采用1978~2005年的数据作为第一组训练数据,2006年数据作为仿真预测数据,通过神经网络预测GDP, 采用1978~2006年的数据作为第一组训练数据,2007-年数据作为仿真预测数据,通过神经网络预测GDP,依次类推,产生结果如表1所示。 3.2.4 数据分析
从2000-2004的拟合数据来看,相对误差比较小,BP网络对整个模拟数据的拟合程度还是比较好的,但是从2005-2009的预测数据来看预测数据的误差还是比较大的,这也说明对未来的预测是很难的。各种不确定的因素在起作用。 3.3 三种产业增加率BP确定法预测GDP 3.3.1 样本数据训练
将1978-2004年数据对输入网络进行训练。然后把需要预测的样本2000-2004年的样本数据输入网络,得到结果,然后用反归一化公式获得结果。在Matlab7.0中调用newff函数,建立一个3个输入节点、18个隐含层节点、一个输出结点的BP神经网络,隐含层和输出层转移函数分别采用tansig和logsig,训练函数选择traindx,允许误差为0.001,训练1748次达到训练要求。
采用1978~2004年的数据作为第一组训练数据,2005年数据作为仿真预测数据,通过神经网络预测GDP。采用1978~2005年的数据作为第一组训练数据,2006年数据作为仿真预测数据,通过神经网络预测GDP, 采用1978~2006年的数据作为第一组训练数据,2007年数据作为仿真预测数据,通过神经网络预测GDP,依次类推,产生结果如表2所示。 3.3.2 数据分析
龙源期刊网 http://www.qikan.com.cn
从预测数据来看预测数据的误差尽管比上一种类型的数据要好,但是误差还是比较大的,但是考虑到预测的能力 ,数据还是可以接受的 。但是数据误差还是比较大的,这也说明对未来的预测是很难的,不是十分确定的,有些文章的数据精确度挺高的,但我想应该是不太可能的,也许有故意凑数据的嫌疑。如果预测一年的话,可以通过调整参数获得近似结果,但是很多年就很困难。
3.4 使用RBF在以浙江省过去的每年的GDP增长指数的基础上进行RBF神经网络预测. 3.4.1 RBF 神经网络模型设计
该种方式与第一种BP神经网络预测方法类似, 以以前四年的GDP增长率作为输入,后两年加以预测的年作为输出。输入层节点数为n=4,输出层节点m=3.而隐含层节点数的选择是采用matlab的newrbe自动来设置.然后用同一样本进行训练。 3.4.2 样本数据训练和数据预测
1) 采用1978~2004年的数据作为第一组训练数据,2005年数据作为仿真预测数据,通过神经网络预测GDP。采用1978~2005年的数据作为第一组训练数据,2006年数据作为仿真预测数据,通过神经网络预测GDP,依次类推,产生结果如表3所示。这儿采用newrbe函数,spread参数为0.25。这是因为通过测试采用0.25获得的数据结果较好。 3.4.3 数据分析
从实验数据看,RBF对整个模拟数据的曲线拟合程度是相当完美,但是从2005-2009的预测数据来看预测数据的误差还是比较大的,这也说明RBF神经网络尽管曲线的拟合程度比BP网络好 ,但是从预测的能力来讲,并不比BP网络好,反而通过试验显得更差一些。这仍然表明对未来的预测是很难的。各种不确定的因素在起作用。神经网络的预测也只能作为参考之用,不能对各种的突发事件进行预测。
3.5 使用RBF三种产业增加率确定法预测GDP 3.5.1 RBF神经网络模型设计
该种方式与对应的BP神经网络预测方法类似, 以一年的三种产业增长率作为输入,后一年的GDP增长率预测作为输出。本次实验采用RBF神经网络建立浙江省经济发展的的预测模型。输入层节点数为n=3,输出层节点m=1.而隐含层节点数的选择采用RBF自动的newrbe方法实现。
3.5.2 数据处理
龙源期刊网 http://www.qikan.com.cn
1) 采用1978~2004年的数据作为第一组训练数据,2005年数据作为仿真预测数据,通过神经网络预测GDP。采用1978~2005年的数据作为第一组训练数据,2006年数据作为仿真预测数据,通过神经网络预测GDP, 采用1978~2006年的数据作为第一组训练数据,2007-年数据作为仿真预测数据,通过神经网络预测GDP,依次类推,产生结果如表4所示。 3.5.3 数据分析
但是从2005-2009的预测数据来看预测数据的误差比上一组得RBF的误差还要大,几乎有点难以接受。这也说明RBF神经网络尽管曲线的拟合程度比BP网络好,但是从预测的能力来讲,并不比BP网络好,反而我通过试验更差一些。2009年的数据变得极为不合理,从而导致数据的偏差性很高。,从测试数据可看出,但是由于经济运行的复杂性,以及不可预知性,特别是由于2008的美国金融导致的世界范围的经济危机,导致经济数据的不可靠性大大增加,历史数据变得用处不太大。2009年的数据变得极为不合理,从而导致数据的偏差性很高。 4 总结与归纳
从我们的试验来看,各种神经网络的确可以对未来进行预测,但是精度多高却有一些问题,从我们的试验来看BP神经网络的数据要比RBF神经网络的数据要好,但是也只在一定范围内 ,四种检测方法,只有一种数据还略微能够接受。神经网络预测仍然需要不断的完善。 参考文献:
[1] 张德丰.Matlab神经网络应用设计[M].北京:机械工业出版社,2009. [2] 高隽.人工神经网络原理及仿真实例[M].2版.北京:机械工业出版社,2007. [3] 韩力群.人工神经网络理论、设计与应用[M].2版.北京:化学工业出版社,2007. [4] 施彦,韩力群.神经网络设计方法与实例分析[M].北京:北京邮电大学出版社,2009. [5] 傅荟璇.Matlab神经网络应用设计[M].北京:机械工业出版社,2010.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务