AppliedMathematicsandComputationjournalhomepage:www.elsevier.com/locate/amcExistenceandglobalexponentialstabilityofperiodicsolutionforimpulsiveCohen–Grossberg-typeBAMneuralnetworkswithcontinuouslydistributeddelays
XiaodiLi
SchoolofMathematicalSciences,XiamenUniversity,Xiamen361005,PRChinaarticleinfoabstract
ThispaperisconcernedwiththeexistenceandglobalexponentialstabilityofperiodicsolutionforaclassofimpulsiveCohen–Grossberg-typeBAMneuralnetworkswithcontin-uouslydistributeddelays.SomesufficientconditionsensuringtheexistenceandglobalexponentialstabilityofperiodicsolutionarederivedbyconstructingasuitableLyapunovfunctionandanewdifferentialinequality.TheproposedmethodcanalsobeappliedtostudytheimpulsiveCohen–Grossberg-typeBAMneuralnetworkswithfinitedistributeddelays.Theresultsinthispaperextendandimprovetheearlierpublications.Finally,twoexampleswithnumericalsimulationsaregiventodemonstratetheobtainedresults.Ó2009ElsevierInc.Allrightsreserved.Keywords:Cohen–Grossberg-typeBAMneuralnetworksImpulseExistenceGlobalexponentialstabilityPeriodicsolutionContinuouslydistributeddelays1.IntroductionInrecentyears,considerableattentionhasbeenpaidtoinvestigatethedynamicsofartificialneuralnetworksbecauseoftheirimportantapplicationsindifferentfieldssuchasimageprocessing,automaticcontrol,engineering,patternrecognition,andoptimizationproblems.Manyimportantandinterestingresultshavebeenobtainedin[1–14,17,18,38–41]andrefer-encestherein.TheCohen–Grossberg-typeBAMneuralnetworksmodel(i.e.,theBAMmodelthatpossessesCohen–Grossbergdynamics),initiallyproposedbyCohenandGrossberg[4],havetheirpromisingpotentialforthetasksofparallelcomputa-tion,associativememoryandhavegreatabilitytosolvedifficultoptimizationproblems.Insuchapplications,itisofprimeimportancetoensurethattheequilibriumpointofdesignedneuralnetworksarestable[7].Nowtherehavebeenmanyre-sultsonthestabilityandconvergenceofequilibriumpointofCohen–Grossberg-typeBAMneuralnetworkswithdelays,see[19–23].Forexample,byconstructingsomesuitableLyapunovfunctionals,FengandPlamondon[19]investigatedtheasymptoticstabilityofaclassofCohen–Grossberg-typeBAMneuralnetworkswithconstantdelays.In[20],CaoandSongfurtherinvestigatedtheglobalexponentialstabilityforCohen–Grossberg-typeBAMneuralnetworkswithtime-varyingde-laysbyusingLyapunovfunction,M-matrixtheoryandinequalitytechnique.Inaddition,theresearchofneuralnetworkswithdelaysinvolvesnotonlythedynamicanalysisofequilibriumpointbutalsothatofperiodicoscillatorysolution.Inpractice,thedynamicbehaviorofperiodicoscillatorysolutionisveryimportantinlearningtheory[11,12],whichismotivatedbythefactthatlearningusuallyrequiresrepetition.Moreover,itiswellknownthatanequilibriumpointcanbeviewedasaspecialperiodicsolutionofneuralnetworkswitharbitraryperiod.Inthissense,theanalysisofperiodicsolutionsofneuralnetworkswithdelaystobemoregeneralthanthatofequilibriumpoint.SeveralimportantresultsforperiodicsolutionsofneuralnetworkswithdelayshavebeenobtainedinRefs.[24–37].Asiswellknown,impulsiveeffectswidelyexistinmanydynamicalsystemsinvolvingsuchareasaspopulationdynamics,automaticcontrol,drugadministrationandsoon.Forexample,inimplementationofelectronicnetworksinwhichstateisE-mailaddress:sodymath@163.com0096-3003/$-seefrontmatterÓ2009ElsevierInc.Allrightsreserved.doi:10.1016/j.amc.2009.05.005X.Li/AppliedMathematicsandComputation215(2009)292–307293subjecttoinstantaneousperturbationsandexperiencesabruptchangeatcertainmoments,whichmaybecausedbyswitch-ingphenomenon,frequencychangeorothersuddennoise,thatis,doesexhibitimpulsiveeffects,see[13–17,21–27].Inpar-ticular,periodicimpulsiveeffectsisalsolikelytoexistinsomedynamicalsystems.Forexample,intheprocessofpartialdischargeonlineMonitoringofhigh-voltagetransformer,periodicimpulsiveinterferencewilloccursunavoidablyduetothefrequentswitchingofSiliconControlledRectifiertriggerandtheinfluenceofunknownfactorsingroundnetwork[15,16]andanumberofmodelsinengineeringcanbeformulatedasnon-autonomoussystemswithperiodicimpulsiveef-fects[24,26,27].Eveninbiologicalneuralnetworks,periodicimpulsiveeffectsmaybeunavoidable.Forexample,whenastimulifromthebodyortheexternalfactorsisreceivedbyreceptorsinaperiodicenvironment,theelectricalimpulseswillbeconveyedtotheneuralnetandperiodicimpulsiveeffectsarisenaturallyinthenet[10].Someinterestingresultsontheexistenceandstabilityofperiodicsolutionsofartificialneuralnetworkswithperiodicimpulsiveeffectshavebeengained,see[24,25,31]andreferencestherein.However,tothebestofourknowledge,fewauthorshaveconsideredtheproblemsofexistenceandglobalexponentialstabilityofperiodicsolutionofCohen–Grossberg-typeBAMneuralnetworkswithcon-tinuouslydistributeddelaysandperiodicimpulsiveeffects.Motivatedbytheabovediscussion,inthispaper,wearetoinvestigatetheexistenceandglobalexponentialstabilityofperiodicsolutionofCohen–Grossberg-typeBAMneuralnetworkswithcontinuouslydistributeddelaysandperiodicimpul-siveeffects.ByconstructingasuitableLyapunovfunctionandanewdifferentialinequality,somesufficientconditionscon-cerningexistenceandglobalexponentialstabilityofperiodicsolutionareobtained.Moreover,wealsoobtainsomesufficientconditionsfortheexistenceandglobalexponentialstabilityofperiodicsolutionforimpulsiveCohen–Grossberg-typeBAMneuralnetworkswithfinitedistributeddelaysbyusingtheproposedmethod.Theresultsinthispaperextendandimprovetheearlierpublications[28,30,33].Finally,twoexampleswithnumericalsimulationsaregiventodemonstratetheeffective-nessoftheobtainedresults.2.PreliminariesLetRdenotethesetofrealnumbers,Rnthen-dimensionalrealspaceequippedwiththeEuclideannormjÁj;RþthesetofpositivenumbersandZþthesetofpositiveintegralnumbers.Inthispaper,wewillinvestigatetheexistenceandglobalexponentialstabilityofperiodicsolutionforimpulsiveCohen–Grossberg-typeBAMneuralnetworkswithcontinuouslydistributeddelaysasfollows:8>dxiðtÞ>>>dt>>>>>>>>>>>>>>>>>>>>>>>>> fðt0Þ:LettH¼infft2½t0;t1Þ;LðtÞ>LðtHÞ¼fðt0Þ;LðtÞ6fðt0Þ;t2½t0Àmaxfr;sg;tHandDþLðtHÞP0:ð4ÞSupposethatfðhtHÞ¼suptHÀs6s6tHfðsÞ;htH2½tHÀs;tH:CalculatingtheupperrightDini-derivativeDþLðtÞalongthesolutionof(2),by(3)and(4),wegetDþLðtÞjt¼tH¼DþfðtHÞekðtÀt0ÞþkfðtHÞekðtÀt0Þ !ZrHHHH6ÀpfðtÞþqfðhtHÞþrkðsÞfðtÀsÞdsekðtÀt0ÞþkfðtHÞekðtÀt0Þ !ZrHHH6ðkÀpÞfðtÞþqfðhtHÞþrkðsÞfðtÀsÞdsekðtÀt0Þ00HH<ÀqefðtÞeþrZr0ksHkðtHÀt0ÞþqekðtHÀhtHÞfðhtHÞedsHkðhtHÀt0ÞÀrfðtÞeHkðtHÀt0ÞZr0kðsÞeksdskðsÞeksfðtHÀsÞekðtHksHÀsÀt0Þ6ÀqeLðtÞþqeLðhtHÞÀrLðtÞ6ÀqeLðtÞþqefðt0ÞÀrLðtÞksHksHksZr0kðsÞedsþrksksZr0kðsÞeksLðtHÀsÞdskðsÞeksds¼0;ð5ÞZr0kðsÞedsþrfðt0ÞZr0whichcontradicts(4).SowehaveprovenLðtÞ6fðt0Þforallt2½t0;t1Þ.NowweassumethatLðtÞ6fðt0ÞNÀ1Ym¼0ÈÉ:max1;amþbmeks¼WNÀ1;t2½tNÀ1;tNÞforsomeN2Zþ;whichimpliesthatLðtÞ6WNÀ1forallt2½t0Àmaxfs;rg;tNÞ:ThenwegetÂÃkðtÀtÞÀksÀksLðtNÞ¼fðtNÞekðtNÀt0Þ6aNfðtÀÞþbfðtÀsÞeN0¼aNLðtÀNNNNÞþbNeLðtNÀsÞ6ðaNþbNeÞWNÀ1ÈÉ6max1;aNþbNeksWNÀ1¼WN:NextweshallshowthatLðtÞ6WN;t2½tN;tNþ1Þ:Supposeforthesakeofcontradictionthatthereexistssomet2½tN;tNþ1ÞsuchthatLðtÞ>WN.LettHH¼infft2½tN;tNþ1Þ;LðtÞ>WNg;thentHHPtN;LðtHHÞ¼WN;LðtÞ 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务