of
MATHEMATICSBialystok,2005
13,Number3,Pages413–416
OnthePartialProductofSeriesand
RelatedBasicInequalities
FuguoGe
QingdaoUniversityofScience
andTechnology
China
XiquanLiang
QingdaoUniversityofScience
andTechnology
China
Summary.Thisarticledescribesdefinitionofpartialproductofseries,
introducedsimilarlytoitsrelatedpartialsum,aswellasseveralimportantin-equalitiestrueforchosenspecialseries.
MMLidentifier:SERIES3,version:7.5.014.39.921
Thenotationandterminologyusedinthispaperareintroducedinthefollowingarticles:[1],[9],[10],[5],[2],[4],[6],[7],[8],and[3].
Forsimplicity,weadoptthefollowingconvention:a,b,carepositiverealnumbers,m,x,y,zarerealnumbers,nisanaturalnumber,ands,s1,s2,s3,s4,s5aresequencesofrealnumbers.
Letusconsiderx.Notethat|x|isnonnegative.Wenowstateanumberofpropositions:
x+m
(1)Ify>xandx≥0andm≥0,thenxy≤y+m.√b
≥a·b.(2)a+2b
+a(3)ab≥2.y2
(4)(x+2)≥x·y.
yx+y2
≥((5)x+22).
(6)x2+y2≥2·x·y.
2
22
2
y
(7)x+≥x·y.2(8)x2+y2≥2·|x|·|y|.(9)(x+y)2≥4·x·y.
(10)x2+y2+z2≥x·y+y·z+x·z.
413
c
2005UniversityofBialystokISSN1426–2630
414fuguogeandxiquanliang
(11)(x+y+z)2≥3·(x·y+y·z+x·z).(12)a3+b3+c3≥3·a·b·c.(13)
a3+b3+c3
≥a·b·c.3b3c3b3(ab)+(c)+(√a)≥a(14)
a
+cb+c.
(15)a+b+c≥3·3a·b·c.√a+b+c
≥3a·b·c.(16)31
(17)Ifx+y+z=1,thenx·y+y·z+x·z≤3.
(18)Ifx+y=1,thenx·y≤14.
1(20)Ifa+b=1,then(1+a)·(1+1b)≥9.1
.(19)Ifx+y=1,thenx2+y2≥21.(21)Ifx+y=1,thenx3+y3≥4(22)Ifa+b=1,thena3+b3<1.(24)If|x|≤a,thenx2≤a2.(26)||x|−|y||≤|x|+|y|.(27)Ifa·b·c=1,then
1
(23)Ifa+b=1,then(a+a)·(b+1b)≥25
4.
(25)If|x|≥a,thenx2≥a2.
1a+
1b+
1c(28)Ifx>0andy>0andz<0andx+y+z=0,then(x2+y2+z2)3≥
6·(x3+y3+z3)2.(29)Ifa≥1,then
ab
+ac
(30)Ifa≥bandb≥c,thenaa·bb·cc≥(a·b·c)
an+bn
2bn
≥(a+2).
≥
√
a+
√
b+
√
c.≥2·a
√
b·c.
a+b+c
3.
(31)(a+b)n+2≥an+2+(n+2)·an+1·b.(32)
(33)Ifforeverynholdss(n)>0,thenforeverynholds(κα=0s(α))κ∈N(n)>
0.
(34)Ifforeverynholdss(n)≥0,thenforeverynholds(κα=0s(α))κ∈N(n)≥
0.
(35)Ifforeverynholdss(n)<0,then(κ=0s(α))κ∈N(n)<0.α(36)Ifs=s1s1,thenforeverynholds(κα=0s(α))κ∈N(n)≥0.(37)Ifforeverynholdss(n)>0ands(n)>s(n−1),then(n+1)·s(n+1)>
κ
(α=0s(α))κ∈N(n).(38)Ifs=s1s2andforeverynholdss1(n)≥0ands2(n)≥0,
κ
thenforeverynholds(κs(α))(n)≤(κ∈Nα=0α=0(s1)(α))κ∈N(n)·κ
(α=0(s2)(α))κ∈N(n).(39)Ifs=s1s2andforeverynholdss1(n)<0ands2(n)<0,then
κκκ
(α=0s(α))κ∈N(n)≤(α=0(s1)(α))κ∈N(n)·(α=0(s2)(α))κ∈N(n).
κ
(40)Foreverynholds|(κs(α))(n)|≤(κ∈Nα=0α=0|s|(α))κ∈N(n).
onthepartialproductofseriesandrelated...
(41)(
κ
κ
s(α))(n)≤(κ∈Nα=0α=0|s|(α))κ∈N(n).
415
Letusconsiders.Thepartialproductofsyieldingasequenceofreal
numbersisdefinedbytheconditions(Def.1).
(Def.1)(i)(Thepartialproductofs)(0)=s(0),and
(ii)foreverynholds(thepartialproductofs)(n+1)=(thepartialproductofs)(n)·s(n+1).
Wenowstateanumberofpropositions:
(42)Ifforeverynholdss(n)>0,then(thepartialproductofs)(n)>0.(43)Ifforeverynholdss(n)≥0,then(thepartialproductofs)(n)≥0.(44)Supposethatforeverynholdss(n)>0ands(n)<1.Letgivenn.Then
(thepartialproductofs)(n)>0and(thepartialproductofs)(n)<1.(45)Ifforeverynholdss(n)≥1,thenforeverynholds(thepartialproduct
ofs)(n)≥1.
(46)Supposethatforeverynholdss1(n)≥0ands2(n)≥0.Letgivenn.
Then(thepartialproductofs1)(n)+(thepartialproductofs2)(n)≤(thepartialproductofs1+s2)(n).
2·n+1
(47)Ifforeverynholdss(n)=2·n+2,then(thepartialproductofs)(n)≤
√1.3·n+4(48)Ifforeverynholdss1(n)=1+s(n)ands(n)>−1ands(n)<0,then
foreverynholds1+(κα=0s(α))κ∈N(n)≤(thepartialproductofs1)(n).(49)Ifforeverynholdss1(n)=1+s(n)ands(n)≥0,thenforeverynholds
κ
1+(α=0s(α))κ∈N(n)≤(thepartialproductofs1)(n).
(50)Ifs3=s1s2ands4=s1s1ands5=s2s2,thenforeverynholds
κ
2≤(κ(s)(α))(κ(s)(α))(n)(n)·(34κ∈Nκ∈Nα=0α=0α=0(s5)(α))κ∈N(n).
(51)Ifs4=s1s1ands5=s2s2andforeverynholdss1(n)≥
0ands2(n)≥0ands3(n)=(s1(n)+s2(n))2,thenforev-κκerynholds((s)(α))(n)≤(κ∈Nα=03α=0(s4)(α))κ∈N(n)+κ(α=0(s5)(α))κ∈N(n).(52)Ifforeverynholdss(n)>0ands(n)>s(n−1),then
κ
n+1
(thepartialproductofs)(n).(α=0s(α))κ∈N(n)≥(n+1)·
References
[1]GrzegorzBancerek.Theordinalnumbers.FormalizedMathematics,1(1):91–96,1990.
[2]CzeslawByli´nski.Thecomplexnumbers.FormalizedMathematics,1(3):507–513,1990.[3]CzeslawByli´nski.Functionsfromasettoaset.FormalizedMathematics,1(1):153–164,
1990.[4]JaroslawKotowicz.Realsequencesandbasicoperationsonthem.FormalizedMathemat-ics,1(2):269–272,1990.[5]RafalKwiatek.FactorialandNewtoncoefficients.FormalizedMathematics,1(5):887–890,
1990.
[6]LibraryCommitteeoftheAssociationofMizarUsers.Binaryoperationsonnumbers.To
appearinFormalizedMathematics.
416fuguogeandxiquanliang
[7]KonradRaczkowskiandAndrzejN¸edzusiak.Realexponentsandlogarithms.Formalized
Mathematics,2(2):213–216,1991.[8]KonradRaczkowskiandAndrzejN¸edzusiak.Series.FormalizedMathematics,2(4):449–
452,1991.
[9]AndrzejTrybulec.Subsetsofcomplexnumbers.ToappearinFormalizedMathematics.[10]AndrzejTrybulecandCzeslawByli´nski.Somepropertiesofrealnumbers.Formalized
Mathematics,1(3):445–449,1990.
ReceivedJuly6,2005
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务