1. 已知等比数列{an}中,a2,a3,a4分别是某等差数列的第5项、第3项、第2项,且
a164,公比q1
(Ⅰ)求an;(Ⅱ)设bnlog2an,求数列{|bn|}的前n项和Tn. 解析:
(1)设该等差数列为{cn},则a2c5,a3c3,a4c2Qc5c32d2(c3c2)
(a2a3)2(a3a4)即:a1qa1q22a1q22a1q3 1q2q(1q),Qq1, 2q1,1(2)bnlog2[64g(2n1q11,a64g()n1 22n(13n) 2)]6(n1)7n,{bn}的前n项和Sn当1n7时,bn0,TnSnn(13n) (8分) 2当n8时,bn0,Tnb1b2Lb7b8b9Lbn
S7(b8b9Lbn)S7(SnS7)2S7Sn42n(13n) 2n(13n)*(1n7,nN)2 Tnn(13n)42(n8,nN*)2
2.已知数列{an}满足递推式an2an11(n2),其中a415. (Ⅰ)求a1,a2,a3;
(Ⅱ)求数列{an}的通项公式; (Ⅲ)求数列{an}的前n项和Sn
解:(1)由an2an11及a415知a42a31, 解得:a37,同理得a23,a11.
(2)由an2an11知an12an12
an12(an11)an1构成以a112为首项以2为公比的等比数列; an1(a11)2n1;an12n, an2n1.为所求通项公式
n (3)an21
Sna1a2a3......an
(211)(221)(231)......(2n1)
2(12n)(222......2)nn2n12n.
12123n
3.已知数列{an}的前n项和为Sn,且有a12,3Sn5anan13Sn1(n2) (1)求数列an的通项公式;
(2)若bn(2n1)an,求数列an的前n项的和Tn。
解:由3Sn3Sn15anan1(n2),2anan1,又Qa12,
an1, an12{an}是以2为首项,
11n11n22n为公比的等比数列,an2()()2 222bn(2n1)22n,Tn121320521LL(2n1)22n (1)
1Tn120321LL(2n3)22n(2n1)21n (2) 2(1)—(2)得Tn22(22LL212012n)(2n1)21n
12[1(21)n1]Tn12(2n3)22n (2n1)21n6(2n3)21n ,即:Tn21212
n*4.已知数列{an}满足a11,且an2an12(n2,且nN).
(Ⅰ)求a2,a3;(Ⅱ)证明数列{
an}是等差数列; 2n(Ⅲ)求数列{an}的前n项之和Sn
32解:(Ⅰ)a22a126,a32a2220.
(Ⅱ)an2an12(n2,且nN), ∴
n*anan1anan1**, 即1(n2,且nN)1(n2,且nN). nn1nn12222ana11是首项为},公差为d1的等差数列.
2122nan1111n∴. (n1)d(n1)1n,a(n)2nn22222∴数列{(Ⅲ)由(Ⅱ)得
Sn1132531222(n)2n(1)2222135112Sn222324(n1)2n(n)2n1(2)22222 2222(n)2n123n(1)(2)得1Sn1222(n)2223n12n11
2(12n)1(n)2n11(32n)2n3. ∴Sn(2n3)2n3 .
122
5.已知数列an满足a13,anan12an11. (1)求a2,a3,a4; (2)求证:数列解: (1)a21是等差数列,并写出an的一个通项。
an1579,a3,a4 357(2)证明:由题设可知an0且an1,nN anan12an11
an11an1an11an1 111 an1an11 11是以为首项,1为公差的等差数列
2an1 故
11122n1n1n an 1an1222n12n1*6.数列an的前n项和为Sn,a11,an12Sn(nN)
(Ⅰ)求数列an的通项an; (Ⅱ)求数列nan的前n项和Tn
解:(Ⅰ)Qan12Sn,Sn1Sn2Sn,Sn13 Snn1*又QS1a11,数列Sn是首项为1,公比为3的等比数列,Sn3(nN)
3n2(n≥2), 当n≥2时,an2Sn12g1, n1, ann23,n≥2.g(Ⅱ)Tna12a23a3Lnan, 当n1时,T11;
306g31L2ng3n2,…………① 当n≥2时,Tn14g3Tn34g316g32L2ng3n1,………………………②
①②得:2Tn242(33L31(12n)g3n1
12n2)2ng3n13(13n2)22g2ng3n1
13Tn11n3n1(n≥2) 又QT1a11也满足上式, 2211n3n1(n≥2) 22Tn
7.a12,a24,bnan1an,bn12bn2. 求证: ⑴数列{bn+2}是公比为2的等比数列;
n1⑵an22n;
n2n(n1)4. ⑶a1a2an2bn122
bn2 b1a2a12 b22b226
解: ⑴ bn122(bn2) 数列{bn+2}是首项为4公比为2的等比数列;
n12n1 ⑵由⑴知 bn242bn2n12 an1an2n12
a2a1222 a3a2232
……
anan12n2
23n上列(n-1)式子累加:an2(222)2n
an2n12n
⑶a1a2an(22223n1)2n(n1). 2a1a2an2n2n(n1)4
8.已知各项都不相等的等差数列{an}的前六项和为60,且a6为a1和a21 的等比中项. (1)求数列{an}的通项公式an及前n项和Sn;
(2)若数列{bn}满足bn1bnan(nN),且b13,求数列{解:(1)设等差数列{an}的公差为d,则
1}的前n项和Tn. bn6a115d60,d2,解得 2a5.a(a20d)(a5d)1111an2n3.
Snn(52n3)n(n4)
2 (2)由bn1bnan,bnbn1an1(n2,nN).
当n2时,bn(bnbn1)(bn1bn2)L(b2b1)b1
an1an2La1b1(n1)(n14)3n(n2).对b13也适合,
bnn(n2)(nN)11111(). bnn(n2)2nn2Tn1111111311(1)() 2324nn222n1n2
3n25n
4(n1)(n2)
9.已知Sn是数列an的前n项和,a1,a22,且Sn13Sn2Sn110,其中
32n2,nN*.
① 求证数列an1是等比数列; ② 求数列an的前n项和Sn.
解:①QSn13Sn2Sn110Sn1Sn2(SnSn1)1 an12an1(n2)
又a1,a22也满足上式,an12an1(nN*)
an112(an1)(nN*)
32数列an1是公比为2,首项为a11(2)由①,an11的等比数列 21n122n2an2n21 2于是Sna1a2...an211201211...2n21
222...2101n22n1n2n
10.已知Sn是数列{an}的前n项和,并且a1=1,对任意正整数n,Sn14an2;设
bnan12an(n1,2,3,).
(I)证明数列{bn}是等比数列,并求{bn}的通项公式; (II)设Cnbn1,Tn为数列{}的前n项和,求Tn. 3log2Cn1log2Cn2解析:(I)Sn14an2,Sn4an12(n2),
两式相减:an14an4an1(n2),
an14(anan1)(n2),bnan12an,bn1an22an14(an1an)2an1,bn12(an12an)2bn(nN*),
bn12, {bn}是以2为公比的等比数列, bnb1a22a1,而a1a24a12,a23a125,b1523,bn32n1(nN*)
(II)Cn
而
bn111, 2n1,nn1log2Cn1log2Cn2log22log22n(n1)311111111111,Tn(1)()()()1.
n(n1)nn122334nn1n1
因篇幅问题不能全部显示,请点此查看更多更全内容