StandardPracticefor
OperatingXenonArcLightApparatusforExposureofNon-MetallicMaterials1ThisstandardisissuedunderthefixeddesignationG155;thenumberimmediatelyfollowingthedesignationindicatestheyearoforiginaladoptionor,inthecaseofrevision,theyearoflastrevision.Anumberinparenthesesindicatestheyearoflastreapproval.Asuperscriptepsilon(e)indicatesaneditorialchangesincethelastrevisionorreapproval.
1.Scope
1.1Thispracticecoversthebasicprinciplesandoperatingproceduresforusingxenonarclightandwaterapparatusintendedtoreproducetheweatheringeffectsthatoccurwhenmaterialsareexposedtosunlight(eitherdirectorthroughwindowglass)andmoistureasrainordewinactualuse.Thispracticeislimitedtotheproceduresforobtaining,measuring,andcontrollingconditionsofexposure.Anumberofexposureproceduresarelistedinanappendix;however,thispracticedoesnotspecifytheexposureconditionsbestsuitedforthematerialtobetested.
NOTE1—PracticeG151describesperformancecriteriaforallexposuredevicesthatuselaboratorylightsources.ThispracticereplacesPracticeG26,whichdescribesveryspecificdesignsfordevicesusedforxenon-arcexposures.TheapparatusdescribedinPracticeG26iscoveredbythispractice.
1.6ThispracticeistechnicallysimilartothefollowingISOdocuments:ISO42-2,ISO11341,ISO105B02,ISO105B04,ISO105B05,andISO105B06.
2.ReferencedDocuments2.1ASTMStandards:2D3980PracticeforInterlaboratoryTestingofPaintandRelatedMaterials
D5870PracticeforCalculatingPropertyRetentionIndexofPlastics
E691PracticeforConductinganInterlaboratoryStudytoDeterminethePrecisionofaTestMethod
G26PracticeforOperatingLight-ExposureApparatus(Xenon-ArcType)WithandWithoutWaterforExposureofNonmetallicMaterials
G113TerminologyRelatingtoNaturalandArtificialWeatheringTestsforNonmetallicMaterials
G151PracticeforExposingNonmetallicMaterialsinAc-celeratedTestDevicesThatUseLaboratoryLightSources2.2CIEStandards:
CIE-Publ.No.85:RecommendationsfortheIntegratedIrradianceandtheSpectralDistributionofSimulatedSolarRadiationforTestingPurposes32.3InternationalStandardsOrganizationStandards:
ISO1134,PaintandVarnishes—ArtificialWeatheringEx-posuretoArtificialRadiationtoFilteredXenonArcRadiation4ISO105B02,Textiles—TestsforColorfastness—PartB02ColorfastnesstoArtificialLight:XenonArcFadingLampTest4ISO105B04,Textiles—TestsforColorfastness—PartB04ColorfastnesstoArtificialWeathering:XenonArcFadingLampTest4ISO105B05,Textiles—TestsforColorfastness—PartB05
ForreferencedASTMstandards,visittheASTMwebsite,www.astm.org,orcontactASTMCustomerServiceatservice@astm.org.ForAnnualBookofASTMStandardsvolumeinformation,refertothestandard’sDocumentSummarypageontheASTMwebsite.3AvailablefromAmericanNationalStandardsInstitute,11W.42dSt.,13thFloor,NewYork,NY10036).4AvailablefromAmericanNationalStandardsInstitute(ANSI),25W.43rdSt.,4thFloor,NewYork,NY10036.
21.2Testspecimensareexposedtofilteredxenonarclightundercontrolledenvironmentalconditions.Differenttypesofxenonarclightsourcesanddifferentfiltercombinationsaredescribed.
1.3SpecimenpreparationandevaluationoftheresultsarecoveredinASTMmethodsorspecificationsforspecificmaterials.GeneralguidanceisgiveninPracticeG151andISO42-1.Morespecificinformationaboutmethodsfordeter-miningthechangeinpropertiesafterexposureandreportingtheseresultsisdescribedinPracticeD5870.
1.4ThevaluesstatedinSIunitsaretoberegardedasthestandard.
1.5Thisstandarddoesnotpurporttoaddressallofthesafetyconcerns,ifany,associatedwithitsuse.Itistheresponsibilityoftheuserofthisstandardtoestablishappro-priatesafetyandhealthpracticesanddeterminetheapplica-bilityofregulatorylimitationspriortouse.
1.5.1Shouldanyozonebegeneratedfromtheoperationofthelamp(s),itshallbecarriedawayfromthetestspecimensandoperatingpersonnelbyanexhaustsystem.
ThispracticeisunderthejurisdictionofASTMCommitteeG03onWeatheringandDurabilityandisthedirectresponsibilityofSubcommitteeG03.03onSimulatedandControlledExposureTests.
CurrenteditionapprovedOct.1,2005.PublishedNovember2005.Originallyapprovedin1997.Lastpreviouseditionapprovedin2005asG155–05.
1Copyright©ASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,UnitedStates.
1
G155–05a
DetectionandAssessmentofPhotochromism4ISO105B06,Textiles—TestsforColorfastness—PartB06ColorfastnesstoArtificialLightatHighTemperatures:XenonArcFadingLampTest4ISO42-1,Plastics—MethodsofExposuretoLaboratoryLightSources,Part1,GeneralGuidance4ISO42-2,Plastics—MethodsofExposuretoLaboratoryLightSources,Part2,Xenon-ArcSources42.4SocietyofAutomotiveEngineers’Standards:
SAEJ1885,AcceleratedExposureofAutomotiveInteriorTrimComponentsUsingaControlledIrradianceWaterCooledXenonArcApparatus5SAEJ1960,AcceleratedExposureofAutomotiveExteriorMaterialsUsingaControlledIrradianceWaterCooledXenonArcApparatus5SAEJ2412,AcceleratedExposureofAutomotiveInteriorTrimComponentsUsingaControlledIrradianceXenon-ArcApparatus5SAEJ2527AcceleratedExposureofAutomotiveExteriorMaterialsUsingaControlledIrradianceXenon-ArcAp-paratus53.Terminology
3.1Definitions—ThedefinitionsgiveninTerminologyG113areapplicabletothispractice.
3.2DefinitionsofTermsSpecifictoThisStandard:
3.2.1Asusedinthispractice,thetermsunlightisidenticaltothetermsdaylightandsolarirradiance,globalastheyaredefinedinTerminologyG113.
4.SummaryofPractice
4.1Specimensareexposedtorepetitivecyclesoflightandmoistureundercontrolledenvironmentalconditions.
4.1.1Moistureisusuallyproducedbysprayingthetestspecimenwithdemineralized/deionizedwaterorbycondensa-tionofwatervaporontothespecimen.
4.2Theexposureconditionmaybevariedbyselectionof:4.2.1Lampfilter(s),
4.2.2Thelamp’sirradiancelevel,4.2.3Thetypeofmoistureexposure,
4.2.4Thetimingofthelightandmoistureexposure,4.2.5Thetemperatureoflightexposure,
4.2.6Thetemperatureofmoistureexposure,and4.2.7Thetimingofalight/darkcycle.
4.3Comparisonofresultsobtainedfromspecimensexposedinthesamemodelofapparatusshouldnotbemadeunlessreproducibilityhasbeenestablishedamongdevicesforthematerialtobetested.
4.4Comparisonofresultsobtainedfromspecimensexposedindifferentmodelsofapparatusshouldnotbemadeunlesscorrelationhasbeenestablishedamongdevicesforthematerialtobetested.
5.SignificanceandUse
5.1Theuseofthisapparatusisintendedtoinducepropertychangesassociatedwiththeenduseconditions,includingthe
AvailablefromSocietyofAutomotiveEngineers(SAE),400CommonwealthDr.,Warrendale,PA15096-0001.
5effectsofsunlight,moisture,andheat.Theseexposuresmayincludeameanstointroducemoisturetothetestspecimen.Exposuresarenotintendedtosimulatethedeteriorationcausedbylocalizedweatherphenomena,suchasatmosphericpollu-tion,biologicalattack,andsaltwaterexposure.Alternatively,theexposuremaysimulatetheeffectsofsunlightthroughwindowglass.Typically,theseexposureswouldincludemois-tureintheformofhumidity.
NOTE2—Caution:RefertoPracticeG151forfullcautionaryguidanceapplicabletoalllaboratoryweatheringdevices.
5.2Variationinresultsmaybeexpectedwhenoperatingconditionsarevariedwithintheacceptedlimitsofthispractice.Therefore,noreferenceshallbemadetoresultsfromtheuseofthispracticeunlessaccompaniedbyareportdetailingthespecificoperatingconditionsinconformancewiththeReportSection.
5.2.1Itisrecommendedthatasimilarmaterialofknownperformance(acontrol)beexposedsimultaneouslywiththetestspecimentoprovideastandardforcomparativepurposes.Itisrecommendedthatatleastthreereplicatesofeachmaterialevaluatedbeexposedineachtesttoallowforstatisticalevaluationofresults.6.Apparatus
6.1LaboratoryLightSource—Thelightsourceshallbeoneormorequartzjacketedxenonarclampswhichemitradiationfrombelow270nmintheultravioletthroughthevisiblespectrumandintotheinfrared.Inorderforxenonarcstosimulateterrestrialdaylight,filtersmustbeusedtoremoveshortwavelengthUVradiation.Filterstoreduceirradianceatwavelengthsshorterthan310nmmustbeusedtosimulatedaylightfilteredthroughwindowglass.Inaddition,filterstoremoveinfraredradiationmaybeusedtopreventunrealisticheatingoftestspecimensthatcancausethermaldegradationnotexperiencedduringoutdoorexposures.
6.1.1Thefollowingfactorscanaffectthespectralpowerdistributionoffilteredxenonarclightsourcesasusedintheseapparatus:
6.1.1.1DifferencesinthecompositionandthicknessoffilterscanhavelargeeffectsontheamountofshortwavelengthUVradiationtransmitted.
6.1.1.2Agingoffilterscanresultinchangesinfiltertransmission.Theagingpropertiesoffilterscanbeinfluencedbythecomposition.AgingoffilterscanresultinasignificantreductionintheshortwavelengthUVemissionofaxenonburner.
6.1.1.3Accumulationofdepositsorotherresidueonfilterscaneffectfiltertransmission.
6.1.1.4Agingofthexenonburneritselfcanresultinchangesinlampoutput.Changesinlampoutputmayalsobecausedbyaccumulationofdirtorotherresidueinorontheburnerenvelope.
6.1.2Followthedevicemanufacturer’sinstructionsforrecommendedmaintenance.
2
G155–05a
TABLE1RelativeUltravioletSpectralPowerDistributionSpecificationforXenonArcwithDaylightFiltersA,BSpectralBandpassWavelengthlinnml<290
290#l#320320 300#l#320320 BenchmarkSolarRadiationPercentD,E,F5.840.0.2 MaximumPercentC0.157.940.067.5 MinimumPercentC0.123.862.5 WindowGlassFilteredSolarRadiationPercentD,E,F0.0#0.534.265.3 MaximumPercentC0.292.835.576.1 DatainTable1aretheirradianceinthegivenbandpassexpressedasapercentageofthetotalirradiancefrom290to400nm.ThemanufacturerisresponsiblefordeterminingconformancetoTable1.AnnexA1stateshowtodeterminerelativespectralirradiance.BThedatainTable1arebasedontherectangularintegrationof112spectralpowerdistributionsforwaterandaircooledxenon-arcswithdaylightfiltersofvariouslotsandages.Thespectralpowerdistributiondataisforfiltersandxenon-burnerswithintheagingrecommendationsofthedevicemanufacturer.Theminimumandmaximumdataareatleastthethreesigmalimitsfromthemeanforallmeasurements.CTheminimumandmaximumcolumnswillnotnecessarilysumto100%becausetheyrepresenttheminimumandmaximumforthedataused.Foranyindividualspectralpowerdistribution,thecalculatedpercentagefortheband-passesinTable1willsumto100%.Foranyindividualxenon-lampwithdaylightfilters,thecalculatedpercentageineachbandpassmustfallwithintheminimumandmaximumlimitsofTable1.Testresultscanbeexpectedtodifferbetweenexposuresusingxenonarcdevicesinwhichthespectralpowerdistributionsdifferbyasmuchasthatallowedbythetolerances.Contactthemanufacturerofthexenon-arcdevicesforspecificspectralpowerdistributiondataforthexenon-arcandfiltersused.DThebenchmarksolarradiationdataisdefinedinASTMG177andisforatmosphericconditionsandaltitudechosentomaximizethefractionofshortwavelengthsolarUV.Thisdataisprovidedforcomparisonpurposesonly.EPreviousversionsofthisstandardusedsolarradiationdatafromTable4ofCIEPublicationNumber85.SeeAppendixX4formoreinformationcomparingthesolarradiationdatausedinthisstandardwiththatforCIE85Table4.FForthebenchmarksolarspectrum,theUVirradiance(290to400nm)is9.8%andthevisibleirradiance(400to800nm)is90.2%expressedasapercentageofthetotalirradiancefrom290to800nm.ThepercentagesofUVandvisibleirradiancesonsamplesexposedinxenonarcdevicesmayvaryduetothenumberandreflectancepropertiesofspecimensbeingexposed. 6.1.3SpectralIrradianceofXenonArcwithDaylightFilters—Filtersareusedtofilterxenonarclampemissionsinasimulationofterrestrialsunlight.Thespectralpowerdistri-butionofxenonarcswithneworpre-agedfilters6,7shallcomplywiththerequirementsspecifiedinTable1. 6.1.4SpectralIrradianceofXenonArcWithWindowGlassFilters—Filtersareusedtofilterxenonarclampemissionsinasimulationofsunlightfilteredthroughwindowglass.8Table2showstherelativespectralpowerdistributionlimitsforxenonarcsfilteredwithwindowglassfilters.Thespectralpowerdistributionofxenonarcswithneworpre-agedfiltersshallcomplywiththerequirementsspecifiedinTable2. 6.1.5SpectralIrradianceofXenonArcWithExtendedUVFilters—FilterthattransmitmoreshortwavelengthUVaresometimesusedtoacceleratetestresult.Althoughthistypeoffilterhasbeenspecifiedinsometests,theytransmitsignificant DatainTable2aretheirradianceinthegivenbandpassexpressedasapercentageofthetotalirradiancefrom300to400nm.ThemanufacturerisresponsiblefordeterminingconformancetoTable2.AnnexA1stateshowtodeterminerelativespectralirradiance.BThedatainTable2arebasedontherectangularintegrationof36spectralpowerdistributionsforwatercooledandaircooledxenon-arcswithwindowglassfiltersofvariouslotsandages.Thespectralpowerdistributiondataisforfiltersandxenon-burnerswithintheagingrecommendationsofthedevicemanufacturer.Theminimumandmaximumdataareatleastthethreesigmalimitsfromthemeanforallmeasurements.CTheminimumandmaximumcolumnswillnotnecessarilysumto100%becausetheyrepresenttheminimumandmaximumforthedataused.Foranyindividualspectralpowerdistribution,thecalculatedpercentagefortheband-passesinTable2willsumto100%.Foranyindividualxenon-lampwithwindowglassfilters,thecalculatedpercentageineachbandpassmustfallwithintheminimumandmaximumlimitsofTable2.Testresultscanbeexpectedtodifferbetweenexposuresusingxenonarcdevicesinwhichthespectralpowerdistribu-tionsdifferbyasmuchasthatallowedbythetolerances.Contactthemanufacturerofthexenon-arcdevicesforspecificspectralpowerdistributiondataforthexenon-arcandfiltersused.DThewindowglassfilteredsolardataisforasolarspectrumwithatmosphericconditionsandaltitudechosentomaximizethefractionofshortwavelengthsolarUV(definedinASTMG177)thathasbeenfilteredbywindowglass.TheglasstransmissionistheaverageforaseriesofsinglestrengthwindowglassestestedaspartofaresearchstudyforASTMSubcommitteeG3.02.8Whilethisdataisprovidedforcomparisonpurposesonly,itisdesirableforaxenon-arcwithwindowglassfilterstoprovideaspectrumthatisaclosematchtothiswindowglassfilteredsolarspectrum.EPreviousversionsofthisstandardusedwindowglassfilteredsolarradiationdatabasedonTable4ofCIEPublicationNumber85.SeeAppendixX4formoreinformationcomparingthesolarradiationdatausedinthestandardwiththatforCIE85Table4.FForthebenchmarkwindowglassfilteredsolarspectrum,theUVirradiance(300to400nm)is8.2%andthevisibleirradiance(400to800nm)is91.8%expressedasapercentageofthetotalirradiancefrom300to800nm.ThepercentagesofUVandvisibleirradiancesonsamplesexposedinxenonarcdeviceswithwindowglassfiltersmayvaryduetothenumberandreflectancepropertiesofspecimensbeingexposed,andtheUVtransmissionofthewindowglassfiltersused. Ketola,W.,Skogland,T.,Fischer,R.,“EffectsofFilterandBurnerAgingontheSpectralPowerDistributionofXenonArcLamps,”DurabilityTestingofNon-MetallicMaterials,ASTMSTP1294,RobertHerling,Editor,ASTM,Philadelphia,1995.7Searle,N.D.,Giesecke,P.,Kinmonth,R.,andHirt,R.C.,“UltravioletSpectralDistributionsandAgingCharacteristicsofXenonArcsandFilters,”AppliedOptics,Vol.No.8,19,pp.923–927.8Ketola,W.,Robbins,J.S.,“UVTransmissionofSingleStrengthWindowGlass,”AcceleratedandOutdoorDurabilityTestingofOrganicMaterials,ASTMSTP1202,WarrenD.KetolaandDouglasGrossman,Editors,ASTM,Philadelphia,1993. 6radiantenergybelow300nm(thetypicalcut-onwavelengthforterrestrialsunlight)andmayresultinagingprocessesnotoccurringoutdoors.ThespectralirradianceforaxenonarcwithextendedUVfiltersshallcomplywiththerequirementsofTable3. 6.1.6Theactualirradianceatthetester’sspecimenplaneisafunctionofthenumberofxenonburnersused,thepowerappliedtoeach,andthedistancebetweenthetestspecimensandthexenonburner.Ifappropriate,reporttheirradianceandthebandpassinwhichitwasmeasured. 6.2TestChamber—Thedesignofthetestchambermayvary,butitshouldbeconstructedfromcorrosionresistantmaterialand,inadditiontotheradiantsource,mayprovideformeansofcontrollingtemperatureandrelativehumidity.Whenrequired,provisionshallbemadeforthesprayingofwateronthetestspecimen,fortheformationofcondensateontheexposedfaceofthespecimenorfortheimmersionofthetestspecimeninwater. 6.2.1Theradiationsource(s)shallbelocatedwithrespecttothespecimenssuchthattheirradianceatthespecimenfacecomplieswiththerequirementsinPracticeG151. 3 G155–05a TABLE3RelativeUltravioletSpectralPowerDistributionSpecificationforXenonArcwithExtendedUVFiltersA,BSpectralBandpassWavelengthlinnm250290320360 AMinimumPercentC0.15.032.352.0 BenchmarkSolarRadiationPercentD,E,F5.840.0.2 MaximumPercentC0.711.037.062.0 #l<290#l#320 6.3InstrumentCalibration—Toensurestandardizationandaccuracy,theinstrumentsassociatedwiththeexposureappa-ratus(thatis,timers,thermometers,wetbulbsensors,drybulbsensors,humiditysensors,UVsensors,radiometers)requireperiodiccalibrationtoensurerepeatabilityoftestresults.Wheneverpossible,calibrationshouldbetraceabletonationalorinternationalstandards.Calibrationscheduleandprocedureshouldbeinaccordancewithmanufacturer’sinstructions.6.4Radiometer—Theuseofaradiometertomonitorandcontroltheamountofradiantenergyreceivedatthespecimenisrecommended.Ifaradiometerisused,itshallcomplywiththerequirementsinPracticeASTMG151. 6.5Thermometer—Eitherinsulatedorun-insulatedblackorwhitepanelthermometersmaybeused.ThermometersshallconformtothedescriptionsfoundinPracticeG151.Thetypeofthermometerused,themethodofmountingonspecimenholder,andtheexposuretemperatureshallbestatedinthetestreport. 6.5.1Thethermometershallbemountedonthespecimenracksothatitssurfaceisinthesamerelativepositionandsubjectedtothesameinfluencesasthetestspecimens. 6.5.2Somespecificationsmayrequirechamberairtempera-turecontrol.Positioningandcalibrationofchamberairtem-peraturesensorsshallbeinaccordancewiththedescriptionsfoundinPracticeG151. 4 6.6Moisture—Thetestspecimensmaybeexposedtomois-tureintheformofwaterspray,condensation,immersion,orhighhumidity. 6.6.1WaterSpray—Thetestchambermaybeequippedwithameanstointroduceintermittentwatersprayontothefrontorthebackofthetestspecimens,underspecifiedconditions.Thesprayshallbeuniformlydistributedoverthespecimens.Thespraysystemshallbemadefromcorrosionresistantmaterialsthatdonotcontaminatethewateremployed. 6.6.1.1QualityofWaterforSpraysandImmersion—Spraywatermusthaveaconductivitybelow5µS/cm,containlessthan1-ppmsolids,andleavenoobservablestainsordepositsonthespecimens.Verylowlevelsofsilicainspraywatercancausesignificantdepositsonthesurfaceoftestspecimens.Careshouldbetakentokeepsilicalevelsbelow0.1ppm.Inadditiontodistillation,acombinationofdeionizationandreverseosmosiscaneffectivelyproducewateroftherequiredquality.ThepHofthewaterusedshouldbereported.SeePracticeG151fordetailedwaterqualityinstructions. 6.6.1.2Condensation—Aspraysystemdesignedtocoolthespecimenbysprayingthebacksurfaceofthespecimenorspecimensubstratemayberequiredwhentheexposurepro-gramspecifiesperiodsofcondensation. 6.6.2RelativeHumidity—Thetestchambermaybeequippedwithameanstomeasureandcontroltherelativehumidity.Suchinstrumentsshallbeshieldedfromthelampradiation. 6.6.3WaterImmersion—Thetestchambermaybeequippedwithameanstoimmersespecimensinwaterunderspecifiedconditions.Theimmersionsystemshallbemadefromcorro-sionresistantmaterialsthatdonotcontaminatethewateremployed. 6.7SpecimenHolders—Holdersfortestspecimensshallbemadefromcorrosionresistantmaterialsthatwillnotaffectthetestresults.Corrosionresistantalloysofaluminumorstainlesssteelhavebeenfoundacceptable.Brass,steel,orcoppershallnotbeusedinthevicinityofthetestspecimens. 6.7.1Thespecimenholdersaretypically,butnotnecessar-ily,mountedonarevolvingcylindricalrackthatisrotatedaroundthelampsystemataspeeddependentonthetypeofequipmentandthatiscenteredbothhorizontallyandverticallywithrespecttotheexposurearea. 6.7.2Specimenholdersmaybeintheformofanopenframe,leavingthebackofthespecimenexposed,ortheymayprovidethespecimenwithasolidbacking.Anybackingusedmayaffecttestresultsandshallbeagreeduponinadvancebetweentheinterestedparties. 6.7.3Specimenholdersmayrotateontheirownaxis.Whentheseholdersareused,theymaybefilledwithspecimensplacedbacktoback.Rotationoftheholderonitsaxisalternatelyexposeseachspecimentodirectradiationfromthexenonburner. 6.8ApparatustoAssessChangesinProperties—UsetheapparatusrequiredbytheASTMorotherstandardthatdescribesdeterminationofthepropertyorpropertiesbeingmonitored. 7.TestSpecimen 7.1RefertoPracticeG151. G155–05a 8.TestConditions 8.1Anyexposureconditionsmaybeusedaslongastheexactconditionsaredetailedinthereport.AppendixX1listssomerepresentativeexposureconditions.Thesearenotneces-sarilypreferredandnorecommendationisimplied.Theseconditionsareprovidedforreferenceonly. 9.Procedure 9.1Identifyeachtestspecimenbysuitableindeliblemark-ing,butnotonareastobeusedintesting. 9.2Determinewhichpropertyofthetestspecimenswillbeevaluated.Priortoexposingthespecimens,quantifytheappropriatepropertiesinaccordancewithrecognizedinterna-tionalstandards.Ifrequired(forexample,destructivetesting),useunexposedfilespecimenstoquantifytheproperty.SeePracticeD5870fordetailedguidance. 9.3MountingofTestSpecimens—Attachthespecimenstothespecimenholdersintheequipmentinsuchamannerthatthespecimensarenotsubjecttoanyappliedstress.Toassureuniformexposureconditions,fillallofthespaces,usingblankpanelsofcorrosionresistantmaterialifnecessary. NOTE3—Evaluationofcolorandappearancechangesofexposedmaterialsmustbemadebasedoncomparisonstounexposedspecimensofthesamematerialwhichhavebeenstoredinthedark.Maskingorshieldingthefaceoftestspecimenswithanopaquecoverforthepurposeofshowingtheeffectsofexposureononepanelisnotrecommended.Misleadingresultsmaybeobtainedbythismethod,sincethemaskedportionofthespecimenisstillexposedtotemperatureandhumiditythatinmanycaseswillaffectresults. 9.7ApparatusMaintenance—Thetestapparatusrequiresperiodicmaintenancetomaintainuniformexposureconditions.Performrequiredmaintenanceandcalibrationinaccordancewithmanufacturer’sinstructions. 9.8Exposethetestspecimensforthespecifiedperiodofexposure.SeePracticeG151forfurtherguidance. 9.9Attheendoftheexposure,quantifytheappropriatepropertiesinaccordancewithrecognizedinternationalstan-dardsandreporttheresultsinconformancewithPracticeG151. NOTE4—Periodsofexposureandevaluationoftestresultsaread-dressedinPracticeG151. 10.Report 10.1ThetestreportshallconformtoPracticeG151.11.PrecisionandBias11.1Precision: 11.1.1Therepeatabilityandreproducibilityofresultsob-tainedinexposuresconductedaccordingtothispracticewillvarywiththematerialsbeingtested,thematerialpropertybeingmeasured,andthespecifictestconditionsandcyclesthatareused.Inround-robinstudiesconductedbySubcommitteeG03.03,the60°glossvaluesofreplicatePVCtapespecimensexposedindifferentlaboratoriesusingidenticaltestdevicesandexposurecyclesshowedsignificantvariability.Thevari-abilityshownintheseround-robinstudiesrestrictstheuseof“absolutespecifications”suchasrequiringaspecificpropertylevelafteraspecificexposureperiod. 11.1.2Ifastandardorspecificationforgeneraluserequiresadefinitepropertylevelafteraspecifictimeorradiantexposureinanexposuretestconductedaccordingtothispractice,thespecifiedpropertylevelshallbebasedonresultsobtainedinaround-robinthattakesintoconsiderationthevariabilityduetotheexposureandthetestmethodusedtomeasurethepropertyofinterest.Theround-robinshallbeconductedaccordingtoPracticeE691orPracticeD3980andshallincludeastatisticallyrepresentativesampleofalllabo-ratoriesororganizationswhowouldnormallyconducttheexposureandpropertymeasurement. 11.1.3Ifastandardorspecificationforusebetweentwoorthreepartiesrequiresadefinitepropertylevelafteraspecifictimeorradiantexposureinanexposuretestconductedaccord-ingtothispractice,thespecifiedpropertylevelshallbebasedonstatisticalanalysisofresultsfromatleasttwoseparate,independentexposuresineachlaboratory.Thedesignoftheexperimentusedtodeterminethespecificationshalltakeintoconsiderationthevariabilityduetotheexposureandthetestmethodusedtomeasurethepropertyofinterest. 11.1.4Theround-robinstudiescitedin11.1.1demonstratedthattheglossvaluesforaseriesofmaterialscouldberankedwithahighlevelofreproducibilitybetweenlaboratories.Whenreproducibilityinresultsfromanexposuretestconductedaccordingtothispracticehavenotbeenestablishedthroughround-robintesting,performancerequirementsformaterialsshallbespecifiedintermsofcomparison(ranked)toacontrolmaterial.Thecontrolspecimensshallbeexposedsimulta-neouslywiththetestspecimen(s)inthesamedevice.Thespecificcontrolmaterialusedshallbeagreeduponbythe 5 9.4ExposuretoTestConditions—Programtheselectedtestconditionstooperatecontinuouslythroughouttherequirednumberofrepetitivecycles.Maintaintheseconditionsthroughouttheexposure.Interruptionstoservicetheapparatusandtoinspectspecimensshallbeminimized. 9.5SpecimenRepositioning—Periodicrepositioningofthespecimensduringexposureisnotnecessaryiftheirradianceatthepositionsfarthestfromthecenterofthespecimenareaisatleast90%ofthatmeasuredatthecenteroftheexposurearea.IrradianceuniformityshallbedeterminedinaccordancewithPracticeG151. 9.5.1Ifirradianceatpositionsfarthestfromthecenteroftheexposureareaisbetween70and90%ofthatmeasuredatthecenter,oneofthefollowingthreetechniquesshallbeusedforspecimenplacement. 9.5.1.1Periodicallyrepositionspecimensduringtheexpo-sureperiodtoensurethateachreceivesanequalamountofradiantexposure.Therepositioningscheduleshallbeagreeduponbyallinterestedparties. 9.5.1.2Placespecimensonlyintheexposureareawheretheirradianceisatleast90%ofthemaximumirradiance. 9.5.1.3Tocompensatefortestvariability,randomlypositionreplicatespecimenswithintheexposureareathatmeetstheirradianceuniformityrequirementsasdefinedinsection9.5.1.9.6Inspection—Ifitisnecessarytoremoveatestspecimenforperiodicinspection,takecarenottohandleordisturbthetestsurface.Afterinspection,thetestspecimenshallbereturnedtothetestchamberwithitstestsurfaceinthesameorientationaspreviouslytested. G155–05a concernedparties.Exposereplicatesofthetestspecimenandthecontrolspecimensothatstatisticallysignificantperfor-mancedifferencescanbedetermined. 11.2Bias—Biascannotbedeterminedbecausenoaccept-ablestandardweatheringreferencematerialsareavailable. 12.Keywords 12.1accelerated;acceleratedweathering;durability;expo-sure;laboratoryweathering;light;lightfastness;non-metallicmaterials;temperature;ultraviolet;weathering;xenonarc ANNEX A1.DETERMININGCONFORMANCETORELATIVESPECTRALPOWERDISTRIBUTIONTABLES (MandatoryInformationforEquipmentManufacturers) A1.1Conformancetotherelativespectralpowerdistribu-tiontablesisadesignparameterforxenon-arcsourcewiththedifferentfiltersprovided.Manufacturersofequipmentclaimingconformancetothisstandardshalldetermineconformancetothespectralpowerdistributiontablesforalllamp/filtercom-binationsprovided,andprovideinformationonmaintenanceprocedurestominimizeanyspectralchangesthatmayoccurduringnormaluse. A1.2Therelativespectralpowerdistributiondataforthisstandardweredevelopedusingtherectangularintegrationtechnique.EqA1.1isusedtodeterminetherelativespectralirradianceusingrectangularintegration.Otherintegrationtech-niquescanbeusedtoevaluatespectralpowerdistributiondata,butmaygivedifferentresults.Whencomparingrelativespectralpowerdistributiondatatothespectralpowerdistribu-tionrequirementsofthisstandard,usetherectangularintegra-tiontechnique. A1.3Todeterminewhetheraspecificlampforaxenon-arcdevicemeetstherequirementsofTable1,Table2,orTable3,measurethespectralpowerdistributionfrom250nmto400nm.Typically,thisisdoneat2nmincrements.Ifthemanu-facturer’sspectralmeasurementequipmentcannotmeasurewavelengthsaslowas250nm,thelowestmeasurement wavelengthmustbereported.Thelowestwavelengthmea-suredshallbenogreaterthan270nm.Fordeterminingconformancetotherelativespectralirradiancerequirementsforaxenon-arcwithextendedUVfilters,measurementfrom250nmto400nmisrequired.ThetotalirradianceineachwavelengthbandpassisthensummedanddividedbythespecifiedtotalUVirradianceaccordingtoEqA1.1.Useofthisequationrequiresthateachspectralintervalmustbethesame(forexample,2nm)throughoutthespectralregionused. li5B IR5 li5Ali00li5C (El i 3100Eli (A1.1) ( where: IR=relativeirradianceinpercent, E=irradianceatwavelengthli(irradiancestepsmustbe equalforallbandpasses), A=lowerwavelengthofwavelengthbandpass,B=upperwavelengthofwavelengthbandpass, C=lowerwavelengthoftotalUVbandpassusedfor calculatingrelativespectralirradiance(290nmfordaylightfilters,300nmforwindowglassfilters,or250nmforextendedUVfilters),and li=wavelengthatwhichirradiancewasmeasured. APPENDIXES (NonmandatoryInformation) X1.APPARATUSWITHAIR-COOLEDXENONARCLAMPS X1.1Thistestapparatususesoneormoreair-cooledxenonarclampsasthesourceofradiation.Differenttypeanddifferentsizelampsoperatingindifferentwattagerangesmaybeutilizedindifferentsizesandtypesofapparatus. X1.2Theradiationsystemconsistsofeitheroneormorexenon-arclamps,dependingonthetypeofapparatus.Aheat-absorbingsystemmaybeused. 6 G155–05a X2.APPARATUSWITHWATER-COOLEDXENONARCLAMPS X2.1Thetestapparatususesawater-cooledxenonarclampasthesourceofradiation.Differentsizelampsoperatingindifferentwattagerangesmaybeutilizedindifferentsizesandtypesofapparatus. X2.2Thexenon-arclampusedconsistsofaxenonburner tube,aninnerfilterofglassorquartz,anouterglassfilter,andthenecessaryaccessories.Tocoolthelamp,distilledordeionizedwateriscirculatedovertheburnertubeandthendirectedoutofthelampbetweentheinnerandouterglassfilters. X3.EXPOSURECONDITIONS X3.1Anyexposureconditionsmaybeused,aslongastheexactconditionsaredetailedinthereport.Followingaresomerepresentativeexposureconditions.Thesearenotnecessarilypreferredandnorecommendationisimplied.Theseconditionsareprovidedforreferenceonly(seeTableX3.1). NOTEX3.1—Theseexposureconditionsarebriefsummariesoftheactualexposureprocedures.Consulttheapplicabletestmethodormaterialspecificationfordetailedoperatinginstructionsandprocedures.HistoricalconventionhasestablishedCycle1asaverycommonlyusedexposurecycle.Othercyclesmaygiveabettersimulationoftheeffectsofoutdoor TABLEX3.1CommonExposureConditions Cycle1 FilterDaylight Irradiance0.35W/m2·nm Wavelength340nm ExposureCycle 102minlightat63°CBlackPanelTemperature 18minlightandwaterspray(airtemp.notcontrolled) 102minlightat63°CUninsulatedBlackPanelTemperature18minlightandwaterspray(airtemp.notcontrolled); 6hdarkat95(.0)%RH,at24°CUninsulatedBlackPanelTemperature1.5hlight,70%RH,at77°CBlackPanelTemperature0.5hlightandwaterspray(airtemp.notcontrolled)100%light,55%RH,at55°CBlackPanelTemperature102minlight,35%RH,at63°CBlackPanelTemperature18minlightandwaterspray(airtemp.notcontrolled)3.8hlight,35%RH,at63°CBlackPanelTemperature1hdark,90%RH,at43°CBlackPanelTemperature 40minlight,50(65.0)%RH,at70(62)°CBlackPanelTemperatureand47(62)°CChamberAirTemperature 20minlightandwatersprayonspecimenface; 60minlight,50(65.0)%RH,at70(62)°CBlackPanelTemperature;and47(62)°CChamberAirTemperature 60mindarkandwatersprayonspecimenback,95(65.0)%RH,38(62)°CBlackPanelTemperatureand38(62)°CChamberAirTemperature 40minlight,50(65.0)%RH,at70(62)°CBlackPanelTemperatureand47(62)°CChamberAirTemperature 20minlightandwatersprayonspecimenface; 60minlight,50(65.0)%RH,at70(62)°CBlackPanelTemperature;and47(62)°CChamberAirTemperature 60mindarkandwatersprayonspecimenfrontandback,95(65.0)%RH,38(62)°CBlackPanelTemperatureand38(62)°CChamberAirTemperature3.8hlight,50(65.0)%RH,at(63)°CBlackPanelTemperatureand62(62)°CChamberAirTemperature 1.0hdark,95(65.0)%RH,at38(62)°CBlackPanelTemperatureand38(62)°CChamberAirTemperature 102minlightat63°CBlackPanelTemperature 18minlightandwaterspray(temperaturenotcontrolled) 101112 WindowGlassWindowGlassDaylight 162W/m2(at300–400 nm) 1.5W/m2·nm0.35W/m2·nm 300–400nm420nm340nm 100%light,50%RH,at°CBlackPanelTemperature Continuouslightat63°Cuninsulatedblackpaneltemperature,30%RH18hconsistingofcontinuouslightat63°Cuninsulatedblackpaneltemperature30%RH 6hdarkat90%RH,at35°Cdrybulbtemperature 2Daylight0.35W/m2·nm340nm 3Daylight0.35W/m2·nm340nm 45 WindowGlassWindowGlass 0.30W/m2·nm1.10W/m2·nm 340nm420nm 6WindowGlass1.10W/m2·nm420nm 7ExtendedUV0.55W/m2·nm340nm 7ADaylight0.55W/m2·nm340nm 8ExtendedUV0.55W/m2·nm340nm 9Daylight 180W/m2(at300–400 nm) 300–400nm 7 G155–05a exposure.Cycle3hasbeenusedforexteriorgradetextilematerials.Cycle4hasbeenusedforindoorplastics.Cycles5and6havebeencommonlyusedforindoortextilematerials.Cycle7hasbeenusedforautomotiveexteriormaterials.Cycle8hasbeenusedforautomotiveinteriorcompo-nents. NOTEX3.2—Cycle7correspondstothetestcyclesspecifiedinSAEJ2527andtoSAEJ1960.Cycle8correspondstothetestcyclesspecifiedinSAEJ2412andSAEJ1885.Consulttheappropriatetestprocedurefordetailedcycledescriptions,operatinginstructions,andadescriptionofthefiltersusedinthisapplication.Thefiltersystemspecifiedintheseproceduresischaracterizedin. NOTEX3.3—Morecomplexcyclesmaybeprogrammedinconjunctionwithdarkperiodsthatallowhighrelativehumiditiesandtheformationofcondensateatelevatedchambertemperatures.Condensationmaybeproducedonthefaceofthespecimensbysprayingtherearsideofthespecimenstocoolthembelowthedewpoint. NOTEX3.4—Forspecialtests,ahighoperatingtemperaturemaybedesirable,butthiswillincreasethetendencyforthermaldegradationtoadverselyinfluencethetestresults. NOTEX3.5—Surfacetemperatureofspecimensisanessentialtestquantity.Generally,degradationprocessesacceleratewithincreasingtemperature.Thespecimentemperaturepermissiblefortheacceleratedtestdependsonthematerialtobetestedandontheagingcriterionunderconsideration. NOTEX3.6—Therelativehumidityoftheairasmeasuredinthetestchamberisnotnecessarilyequivalenttotherelativehumidityoftheairveryclosetothespecimensurface.Thisisbecausetestspecimenshavingvaryingcolorsandthicknessesmaybeexpectedtovaryintemperature. TABLEX3.2OperationalFluctuationsonExposureConditions MaximumAllowableDeviationsfromtheSetPointattheControlPointIndicatedbytheReadoutoftheCalibratedControlSensorDuringEquilibriumOperation666666 2.5°C2°C5% 0.02W/(m2·nm)0.02W/(m2·nm)2W/m2Parameter BlackPanelTemperatureChamberAirTemperatureRelativeHumidity Irradiance(monitoredat340nm)Irradiance(monitoredat420nm) Irradiance(monitoredat300–400nm) equipmenthasstabilized,discontinuethetestandcorrectthecauseofthedisagreementbeforecontinuing. NOTEX3.7—Setpointsandoperationalfluctuationscouldeitherbelistedindependentlyofeachother,ortheycouldbelistedintheformat:Setpoint6operationalfluctuations.Thesetpointisthetargetconditionforthesensorusedattheoperationalcontrolpointasprogrammedbytheuser.Operationalfluctuationsaredeviationsfromtheindicatedsetpointatthecontrolpointindicatedbythereadoutofthecalibratedcontrolsensorduringequilibriumoperationanddonotincludemeasurementuncertainty.Attheoperationalcontrolpoint,theoperationalfluctuationcanexceednomorethanthelistedvalueatequilibrium.Whenastandardcallsforaparticularsetpoint,theuserprogramsthatexactnumber.Theoperationalfluctuationsspecifiedwiththesetpointdonotimplythattheuserisallowedtoprogramasetpointhigherorlowerthantheexactsetpointspecified.. X3.2Unlessotherwisespecified,operatetheapparatustomaintaintheoperationalfluctuationsspecifiedinTableX3.2fortheparametersinTableX3.1.Iftheactualoperatingconditionsdonotagreewiththemachinesettingsafterthe X3.3ForconversionoftestcyclesfromG26toG155seeTableX3.3. 8 G155–05a TABLEX3.3ConversionofTestCyclesfromG26toG155 G26TestCycleDescriptionforG26,MethodA—Continuouslight withintermittentwaterspray CorrespondingTestCycleInG155ThreecyclesinG155,TableX3.1usecontinuouslightandthesamewaterspraytimesastheconditionsdescribed inG26,MethodA Thefollowingtestcycleistheonly specificconditiondescribed102minlightonly(uninsulatedblackpaneltemperatureat6363°C Cycle1usesdaylightfilterswith340nmirradiancecontrolledat0.35W/m2/nm(thesuggestedminimum340nmirradiancefordaylightfiltersinG26, MethodA)Cycle5useswindowglassfilterswith420nmirradiancecontrolledat1.10W/m2/nm(thesuggestedminimum340nmirradianceforwindowglassfiltersin G26is0.7W/m2/nm Cycle9usesdaylightfiltersand340nmirradiancecontrolledat1.55W/m2/nm(180W/m2/nmfrom300–400 nm).G155,TableX3.1describesseveralspecificcyclesthatcombinelight/darkperiodswithperiodsofwatersprayCycle2inTableX3.1hashasan18hlightperiodusingthesameconditionsdescribedinG26,MethodAfollowedbya6hdarkperiodataveryhigh realtivehumidity 18minlight+waterspray Thetypeoffilterandrealtivehumidityduringthelightperiodarenotspecified G26–MethodB—alternateexposuretolightanddarkandintermittent exposuretowatersprayNospecificlight/dark/watercycle described TheonlyconditionsduringthelightperiodthataredescribedarethoseofMethodA.Thelengthofdarkperiodisnotspecified,noraretemperatureorrelativehumidityconditionsduringthe darkperiod. G26–MethodC—continuousexposuretolightwithnowatersprayUseswindowglassfilters Uninsulatedblackpaneltemperatureis6363°C,relativehumidityis3065%Typicalirradianceis1.5W/m2/nmG26–MethodD—alternateexposuretolightanddarknesswithoutwater spray Nospecificperiodsoflight/darkare described Typeoffilternotspecified Irradianceisnotspecified.Suggestedminimumirradianceis0.35W/m2at340nmwithdaylightfiltersor0.7W/m2at420nmwithwindowglassfiltersRHcontrolledto3565%duringlight period Darkcyclerequiresadrybulb temperatureof3563°Cand9065% RH G155,TableX3.1,Cycle11 G153,TableX3.1Cycle12 9 G155–05a TABLEX3.4ComparisonofBasicAtmosphericConditionsUsed forBenchmarkSolarSpectrumandCIE85Table4Solar Spectrum AtmosphericCondition BenchmarkSolarSpectrum CIE85Table4SolarSpectrum 0.341.420 0°(horizontal) 1.00 Constantat0.2EquivalenttoLinkeTurbidityfactorof about2.80.10 Ozone(atm-cm)0.30Precipitablewatervapor(cm)0.57Altitude(m)2000Tiltangle37°facingEquatorAirmass1.05 Albedo(groundreflectance)LightSoilwavelength dependent AerosolextinctionShettle&FennRural (humiditydependent)Aerosolopticalthicknessat500nm 0.05 TABLEX3.5IrradianceandRelativeIrradianceComparisonforBenchmarkSolarSpectrumandCIE85Table4SoalrSpectrum Bandpass BenchmarkSolarSpectrum CIE85Table4SolarSpectrum l<290 290#l#320320 0.0000.0003.7484.06025.66128.45034.76242.050.17174.560652.300678.780Percentof290to400nmirradiance 0.0%0.0%5.8%5.4%40.0%38.2%.2%56.4% Percentof290to800nmirradiance 9.8%11.0% X4.COMPARISONOFBENCHMARKSOLARUVSPECTRUMANDCIE85TABLE4SOLARSPECTRUM X4.1Thisstandardusesabenchmarksolarspectrumbased onatmosphericconditionsthatprovideforaveryhighlevelofsolarultravioletradiation.ThisbenchmarksolarspectrumispublishedinASTMG177,StandardTablesforReferenceSolarUltravioletSpectralDistributions:Hemisphericalon37degreeTiltedSurface.ThesolarspectrumiscalculatedusingtheSMARTS2solarradiationmodel.9,10,11ASTMAdjunct Gueymard,C.,“ParameterizedTransmittanceModelforDirectBeamandCircumsolarSpectralIrradiance,”SolarEnergy,Vol71,No.5,2001,pp.325-346.10Gueymard,C.A.,Myers,D.,andEmery,K.,“ProposedReferenceIrradianceSpectraforSolarEnergySystemsTesting,”SolarEnergy,Vol73,No6,2002,pp.443-467.11Myers,D.R.,Emery,K.,andGueymard,C.,“RevisingandValidatingSpectralIrradianceReferenceStandardsforPhotovoltaicPerformanceEvaluation,”Trans-actionsoftheAmericanSocietyofMechanicalEngineers,JournalofSolarEnergyEngineering,Vol126,pp567–574,Feb.2004 9ADJG0173,SMARTS2SolarRadiationModelforSpectralRadiationprovidestheprogramanddocumentationforcalcu-latingsolarspectralirradiance. X4.2PreviousversionsofthisstandardusedCIE85Table4asthebenchmarksolarspectrum.TableX3.4comparesthebasicatmosphericconditionsusedforthebenchmarksolarspectrumandCIE85Table4solarspectrum. X4.3TableX3.5comparesirradiance(calculatedusingrectangularintegration)andrelativeirradianceforthebench-marksolarspectrumandCIE85Table4solarspectrum,inthebandpassesusedinthisstandard. 10 G155–05a ASTMInternationaltakesnopositionrespectingthevalidityofanypatentrightsassertedinconnectionwithanyitemmentionedinthisstandard.Usersofthisstandardareexpresslyadvisedthatdeterminationofthevalidityofanysuchpatentrights,andtheriskofinfringementofsuchrights,areentirelytheirownresponsibility. Thisstandardissubjecttorevisionatanytimebytheresponsibletechnicalcommitteeandmustbereviewedeveryfiveyearsandifnotrevised,eitherreapprovedorwithdrawn.YourcommentsareinvitedeitherforrevisionofthisstandardorforadditionalstandardsandshouldbeaddressedtoASTMInternationalHeadquarters.Yourcommentswillreceivecarefulconsiderationatameetingoftheresponsibletechnicalcommittee,whichyoumayattend.IfyoufeelthatyourcommentshavenotreceivedafairhearingyoushouldmakeyourviewsknowntotheASTMCommitteeonStandards,attheaddressshownbelow. ThisstandardiscopyrightedbyASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,UnitedStates.Individualreprints(singleormultiplecopies)ofthisstandardmaybeobtainedbycontactingASTMattheaboveaddressorat610-832-9585(phone),610-832-9555(fax),orservice@astm.org(e-mail);orthroughtheASTMwebsite(www.astm.org). 11 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务