您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页ASTM G155-2005a

ASTM G155-2005a

来源:爱go旅游网
Designation:G155–05a

StandardPracticefor

OperatingXenonArcLightApparatusforExposureofNon-MetallicMaterials1ThisstandardisissuedunderthefixeddesignationG155;thenumberimmediatelyfollowingthedesignationindicatestheyearoforiginaladoptionor,inthecaseofrevision,theyearoflastrevision.Anumberinparenthesesindicatestheyearoflastreapproval.Asuperscriptepsilon(e)indicatesaneditorialchangesincethelastrevisionorreapproval.

1.Scope

1.1Thispracticecoversthebasicprinciplesandoperatingproceduresforusingxenonarclightandwaterapparatusintendedtoreproducetheweatheringeffectsthatoccurwhenmaterialsareexposedtosunlight(eitherdirectorthroughwindowglass)andmoistureasrainordewinactualuse.Thispracticeislimitedtotheproceduresforobtaining,measuring,andcontrollingconditionsofexposure.Anumberofexposureproceduresarelistedinanappendix;however,thispracticedoesnotspecifytheexposureconditionsbestsuitedforthematerialtobetested.

NOTE1—PracticeG151describesperformancecriteriaforallexposuredevicesthatuselaboratorylightsources.ThispracticereplacesPracticeG26,whichdescribesveryspecificdesignsfordevicesusedforxenon-arcexposures.TheapparatusdescribedinPracticeG26iscoveredbythispractice.

1.6ThispracticeistechnicallysimilartothefollowingISOdocuments:ISO42-2,ISO11341,ISO105B02,ISO105B04,ISO105B05,andISO105B06.

2.ReferencedDocuments2.1ASTMStandards:2D3980PracticeforInterlaboratoryTestingofPaintandRelatedMaterials

D5870PracticeforCalculatingPropertyRetentionIndexofPlastics

E691PracticeforConductinganInterlaboratoryStudytoDeterminethePrecisionofaTestMethod

G26PracticeforOperatingLight-ExposureApparatus(Xenon-ArcType)WithandWithoutWaterforExposureofNonmetallicMaterials

G113TerminologyRelatingtoNaturalandArtificialWeatheringTestsforNonmetallicMaterials

G151PracticeforExposingNonmetallicMaterialsinAc-celeratedTestDevicesThatUseLaboratoryLightSources2.2CIEStandards:

CIE-Publ.No.85:RecommendationsfortheIntegratedIrradianceandtheSpectralDistributionofSimulatedSolarRadiationforTestingPurposes32.3InternationalStandardsOrganizationStandards:

ISO1134,PaintandVarnishes—ArtificialWeatheringEx-posuretoArtificialRadiationtoFilteredXenonArcRadiation4ISO105B02,Textiles—TestsforColorfastness—PartB02ColorfastnesstoArtificialLight:XenonArcFadingLampTest4ISO105B04,Textiles—TestsforColorfastness—PartB04ColorfastnesstoArtificialWeathering:XenonArcFadingLampTest4ISO105B05,Textiles—TestsforColorfastness—PartB05

ForreferencedASTMstandards,visittheASTMwebsite,www.astm.org,orcontactASTMCustomerServiceatservice@astm.org.ForAnnualBookofASTMStandardsvolumeinformation,refertothestandard’sDocumentSummarypageontheASTMwebsite.3AvailablefromAmericanNationalStandardsInstitute,11W.42dSt.,13thFloor,NewYork,NY10036).4AvailablefromAmericanNationalStandardsInstitute(ANSI),25W.43rdSt.,4thFloor,NewYork,NY10036.

21.2Testspecimensareexposedtofilteredxenonarclightundercontrolledenvironmentalconditions.Differenttypesofxenonarclightsourcesanddifferentfiltercombinationsaredescribed.

1.3SpecimenpreparationandevaluationoftheresultsarecoveredinASTMmethodsorspecificationsforspecificmaterials.GeneralguidanceisgiveninPracticeG151andISO42-1.Morespecificinformationaboutmethodsfordeter-miningthechangeinpropertiesafterexposureandreportingtheseresultsisdescribedinPracticeD5870.

1.4ThevaluesstatedinSIunitsaretoberegardedasthestandard.

1.5Thisstandarddoesnotpurporttoaddressallofthesafetyconcerns,ifany,associatedwithitsuse.Itistheresponsibilityoftheuserofthisstandardtoestablishappro-priatesafetyandhealthpracticesanddeterminetheapplica-bilityofregulatorylimitationspriortouse.

1.5.1Shouldanyozonebegeneratedfromtheoperationofthelamp(s),itshallbecarriedawayfromthetestspecimensandoperatingpersonnelbyanexhaustsystem.

ThispracticeisunderthejurisdictionofASTMCommitteeG03onWeatheringandDurabilityandisthedirectresponsibilityofSubcommitteeG03.03onSimulatedandControlledExposureTests.

CurrenteditionapprovedOct.1,2005.PublishedNovember2005.Originallyapprovedin1997.Lastpreviouseditionapprovedin2005asG155–05.

1Copyright©ASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,UnitedStates.

1

G155–05a

DetectionandAssessmentofPhotochromism4ISO105B06,Textiles—TestsforColorfastness—PartB06ColorfastnesstoArtificialLightatHighTemperatures:XenonArcFadingLampTest4ISO42-1,Plastics—MethodsofExposuretoLaboratoryLightSources,Part1,GeneralGuidance4ISO42-2,Plastics—MethodsofExposuretoLaboratoryLightSources,Part2,Xenon-ArcSources42.4SocietyofAutomotiveEngineers’Standards:

SAEJ1885,AcceleratedExposureofAutomotiveInteriorTrimComponentsUsingaControlledIrradianceWaterCooledXenonArcApparatus5SAEJ1960,AcceleratedExposureofAutomotiveExteriorMaterialsUsingaControlledIrradianceWaterCooledXenonArcApparatus5SAEJ2412,AcceleratedExposureofAutomotiveInteriorTrimComponentsUsingaControlledIrradianceXenon-ArcApparatus5SAEJ2527AcceleratedExposureofAutomotiveExteriorMaterialsUsingaControlledIrradianceXenon-ArcAp-paratus53.Terminology

3.1Definitions—ThedefinitionsgiveninTerminologyG113areapplicabletothispractice.

3.2DefinitionsofTermsSpecifictoThisStandard:

3.2.1Asusedinthispractice,thetermsunlightisidenticaltothetermsdaylightandsolarirradiance,globalastheyaredefinedinTerminologyG113.

4.SummaryofPractice

4.1Specimensareexposedtorepetitivecyclesoflightandmoistureundercontrolledenvironmentalconditions.

4.1.1Moistureisusuallyproducedbysprayingthetestspecimenwithdemineralized/deionizedwaterorbycondensa-tionofwatervaporontothespecimen.

4.2Theexposureconditionmaybevariedbyselectionof:4.2.1Lampfilter(s),

4.2.2Thelamp’sirradiancelevel,4.2.3Thetypeofmoistureexposure,

4.2.4Thetimingofthelightandmoistureexposure,4.2.5Thetemperatureoflightexposure,

4.2.6Thetemperatureofmoistureexposure,and4.2.7Thetimingofalight/darkcycle.

4.3Comparisonofresultsobtainedfromspecimensexposedinthesamemodelofapparatusshouldnotbemadeunlessreproducibilityhasbeenestablishedamongdevicesforthematerialtobetested.

4.4Comparisonofresultsobtainedfromspecimensexposedindifferentmodelsofapparatusshouldnotbemadeunlesscorrelationhasbeenestablishedamongdevicesforthematerialtobetested.

5.SignificanceandUse

5.1Theuseofthisapparatusisintendedtoinducepropertychangesassociatedwiththeenduseconditions,includingthe

AvailablefromSocietyofAutomotiveEngineers(SAE),400CommonwealthDr.,Warrendale,PA15096-0001.

5effectsofsunlight,moisture,andheat.Theseexposuresmayincludeameanstointroducemoisturetothetestspecimen.Exposuresarenotintendedtosimulatethedeteriorationcausedbylocalizedweatherphenomena,suchasatmosphericpollu-tion,biologicalattack,andsaltwaterexposure.Alternatively,theexposuremaysimulatetheeffectsofsunlightthroughwindowglass.Typically,theseexposureswouldincludemois-tureintheformofhumidity.

NOTE2—Caution:RefertoPracticeG151forfullcautionaryguidanceapplicabletoalllaboratoryweatheringdevices.

5.2Variationinresultsmaybeexpectedwhenoperatingconditionsarevariedwithintheacceptedlimitsofthispractice.Therefore,noreferenceshallbemadetoresultsfromtheuseofthispracticeunlessaccompaniedbyareportdetailingthespecificoperatingconditionsinconformancewiththeReportSection.

5.2.1Itisrecommendedthatasimilarmaterialofknownperformance(acontrol)beexposedsimultaneouslywiththetestspecimentoprovideastandardforcomparativepurposes.Itisrecommendedthatatleastthreereplicatesofeachmaterialevaluatedbeexposedineachtesttoallowforstatisticalevaluationofresults.6.Apparatus

6.1LaboratoryLightSource—Thelightsourceshallbeoneormorequartzjacketedxenonarclampswhichemitradiationfrombelow270nmintheultravioletthroughthevisiblespectrumandintotheinfrared.Inorderforxenonarcstosimulateterrestrialdaylight,filtersmustbeusedtoremoveshortwavelengthUVradiation.Filterstoreduceirradianceatwavelengthsshorterthan310nmmustbeusedtosimulatedaylightfilteredthroughwindowglass.Inaddition,filterstoremoveinfraredradiationmaybeusedtopreventunrealisticheatingoftestspecimensthatcancausethermaldegradationnotexperiencedduringoutdoorexposures.

6.1.1Thefollowingfactorscanaffectthespectralpowerdistributionoffilteredxenonarclightsourcesasusedintheseapparatus:

6.1.1.1DifferencesinthecompositionandthicknessoffilterscanhavelargeeffectsontheamountofshortwavelengthUVradiationtransmitted.

6.1.1.2Agingoffilterscanresultinchangesinfiltertransmission.Theagingpropertiesoffilterscanbeinfluencedbythecomposition.AgingoffilterscanresultinasignificantreductionintheshortwavelengthUVemissionofaxenonburner.

6.1.1.3Accumulationofdepositsorotherresidueonfilterscaneffectfiltertransmission.

6.1.1.4Agingofthexenonburneritselfcanresultinchangesinlampoutput.Changesinlampoutputmayalsobecausedbyaccumulationofdirtorotherresidueinorontheburnerenvelope.

6.1.2Followthedevicemanufacturer’sinstructionsforrecommendedmaintenance.

2

G155–05a

TABLE1RelativeUltravioletSpectralPowerDistributionSpecificationforXenonArcwithDaylightFiltersA,BSpectralBandpassWavelengthlinnml<290

290#l#320320ATABLE2RelativeUltravioletSpectralPowerDistributionSpecificationforXenon-ArcwithWindowGlassFiltersA,BSpectralBandpassWavelengthlinnml<300

300#l#320320AMinimumPercentC2.628.3.2

BenchmarkSolarRadiationPercentD,E,F5.840.0.2

MaximumPercentC0.157.940.067.5

MinimumPercentC0.123.862.5

WindowGlassFilteredSolarRadiationPercentD,E,F0.0#0.534.265.3

MaximumPercentC0.292.835.576.1

DatainTable1aretheirradianceinthegivenbandpassexpressedasapercentageofthetotalirradiancefrom290to400nm.ThemanufacturerisresponsiblefordeterminingconformancetoTable1.AnnexA1stateshowtodeterminerelativespectralirradiance.BThedatainTable1arebasedontherectangularintegrationof112spectralpowerdistributionsforwaterandaircooledxenon-arcswithdaylightfiltersofvariouslotsandages.Thespectralpowerdistributiondataisforfiltersandxenon-burnerswithintheagingrecommendationsofthedevicemanufacturer.Theminimumandmaximumdataareatleastthethreesigmalimitsfromthemeanforallmeasurements.CTheminimumandmaximumcolumnswillnotnecessarilysumto100%becausetheyrepresenttheminimumandmaximumforthedataused.Foranyindividualspectralpowerdistribution,thecalculatedpercentagefortheband-passesinTable1willsumto100%.Foranyindividualxenon-lampwithdaylightfilters,thecalculatedpercentageineachbandpassmustfallwithintheminimumandmaximumlimitsofTable1.Testresultscanbeexpectedtodifferbetweenexposuresusingxenonarcdevicesinwhichthespectralpowerdistributionsdifferbyasmuchasthatallowedbythetolerances.Contactthemanufacturerofthexenon-arcdevicesforspecificspectralpowerdistributiondataforthexenon-arcandfiltersused.DThebenchmarksolarradiationdataisdefinedinASTMG177andisforatmosphericconditionsandaltitudechosentomaximizethefractionofshortwavelengthsolarUV.Thisdataisprovidedforcomparisonpurposesonly.EPreviousversionsofthisstandardusedsolarradiationdatafromTable4ofCIEPublicationNumber85.SeeAppendixX4formoreinformationcomparingthesolarradiationdatausedinthisstandardwiththatforCIE85Table4.FForthebenchmarksolarspectrum,theUVirradiance(290to400nm)is9.8%andthevisibleirradiance(400to800nm)is90.2%expressedasapercentageofthetotalirradiancefrom290to800nm.ThepercentagesofUVandvisibleirradiancesonsamplesexposedinxenonarcdevicesmayvaryduetothenumberandreflectancepropertiesofspecimensbeingexposed.

6.1.3SpectralIrradianceofXenonArcwithDaylightFilters—Filtersareusedtofilterxenonarclampemissionsinasimulationofterrestrialsunlight.Thespectralpowerdistri-butionofxenonarcswithneworpre-agedfilters6,7shallcomplywiththerequirementsspecifiedinTable1.

6.1.4SpectralIrradianceofXenonArcWithWindowGlassFilters—Filtersareusedtofilterxenonarclampemissionsinasimulationofsunlightfilteredthroughwindowglass.8Table2showstherelativespectralpowerdistributionlimitsforxenonarcsfilteredwithwindowglassfilters.Thespectralpowerdistributionofxenonarcswithneworpre-agedfiltersshallcomplywiththerequirementsspecifiedinTable2.

6.1.5SpectralIrradianceofXenonArcWithExtendedUVFilters—FilterthattransmitmoreshortwavelengthUVaresometimesusedtoacceleratetestresult.Althoughthistypeoffilterhasbeenspecifiedinsometests,theytransmitsignificant

DatainTable2aretheirradianceinthegivenbandpassexpressedasapercentageofthetotalirradiancefrom300to400nm.ThemanufacturerisresponsiblefordeterminingconformancetoTable2.AnnexA1stateshowtodeterminerelativespectralirradiance.BThedatainTable2arebasedontherectangularintegrationof36spectralpowerdistributionsforwatercooledandaircooledxenon-arcswithwindowglassfiltersofvariouslotsandages.Thespectralpowerdistributiondataisforfiltersandxenon-burnerswithintheagingrecommendationsofthedevicemanufacturer.Theminimumandmaximumdataareatleastthethreesigmalimitsfromthemeanforallmeasurements.CTheminimumandmaximumcolumnswillnotnecessarilysumto100%becausetheyrepresenttheminimumandmaximumforthedataused.Foranyindividualspectralpowerdistribution,thecalculatedpercentagefortheband-passesinTable2willsumto100%.Foranyindividualxenon-lampwithwindowglassfilters,thecalculatedpercentageineachbandpassmustfallwithintheminimumandmaximumlimitsofTable2.Testresultscanbeexpectedtodifferbetweenexposuresusingxenonarcdevicesinwhichthespectralpowerdistribu-tionsdifferbyasmuchasthatallowedbythetolerances.Contactthemanufacturerofthexenon-arcdevicesforspecificspectralpowerdistributiondataforthexenon-arcandfiltersused.DThewindowglassfilteredsolardataisforasolarspectrumwithatmosphericconditionsandaltitudechosentomaximizethefractionofshortwavelengthsolarUV(definedinASTMG177)thathasbeenfilteredbywindowglass.TheglasstransmissionistheaverageforaseriesofsinglestrengthwindowglassestestedaspartofaresearchstudyforASTMSubcommitteeG3.02.8Whilethisdataisprovidedforcomparisonpurposesonly,itisdesirableforaxenon-arcwithwindowglassfilterstoprovideaspectrumthatisaclosematchtothiswindowglassfilteredsolarspectrum.EPreviousversionsofthisstandardusedwindowglassfilteredsolarradiationdatabasedonTable4ofCIEPublicationNumber85.SeeAppendixX4formoreinformationcomparingthesolarradiationdatausedinthestandardwiththatforCIE85Table4.FForthebenchmarkwindowglassfilteredsolarspectrum,theUVirradiance(300to400nm)is8.2%andthevisibleirradiance(400to800nm)is91.8%expressedasapercentageofthetotalirradiancefrom300to800nm.ThepercentagesofUVandvisibleirradiancesonsamplesexposedinxenonarcdeviceswithwindowglassfiltersmayvaryduetothenumberandreflectancepropertiesofspecimensbeingexposed,andtheUVtransmissionofthewindowglassfiltersused.

Ketola,W.,Skogland,T.,Fischer,R.,“EffectsofFilterandBurnerAgingontheSpectralPowerDistributionofXenonArcLamps,”DurabilityTestingofNon-MetallicMaterials,ASTMSTP1294,RobertHerling,Editor,ASTM,Philadelphia,1995.7Searle,N.D.,Giesecke,P.,Kinmonth,R.,andHirt,R.C.,“UltravioletSpectralDistributionsandAgingCharacteristicsofXenonArcsandFilters,”AppliedOptics,Vol.No.8,19,pp.923–927.8Ketola,W.,Robbins,J.S.,“UVTransmissionofSingleStrengthWindowGlass,”AcceleratedandOutdoorDurabilityTestingofOrganicMaterials,ASTMSTP1202,WarrenD.KetolaandDouglasGrossman,Editors,ASTM,Philadelphia,1993.

6radiantenergybelow300nm(thetypicalcut-onwavelengthforterrestrialsunlight)andmayresultinagingprocessesnotoccurringoutdoors.ThespectralirradianceforaxenonarcwithextendedUVfiltersshallcomplywiththerequirementsofTable3.

6.1.6Theactualirradianceatthetester’sspecimenplaneisafunctionofthenumberofxenonburnersused,thepowerappliedtoeach,andthedistancebetweenthetestspecimensandthexenonburner.Ifappropriate,reporttheirradianceandthebandpassinwhichitwasmeasured.

6.2TestChamber—Thedesignofthetestchambermayvary,butitshouldbeconstructedfromcorrosionresistantmaterialand,inadditiontotheradiantsource,mayprovideformeansofcontrollingtemperatureandrelativehumidity.Whenrequired,provisionshallbemadeforthesprayingofwateronthetestspecimen,fortheformationofcondensateontheexposedfaceofthespecimenorfortheimmersionofthetestspecimeninwater.

6.2.1Theradiationsource(s)shallbelocatedwithrespecttothespecimenssuchthattheirradianceatthespecimenfacecomplieswiththerequirementsinPracticeG151.

3

G155–05a

TABLE3RelativeUltravioletSpectralPowerDistributionSpecificationforXenonArcwithExtendedUVFiltersA,BSpectralBandpassWavelengthlinnm250290320360

AMinimumPercentC0.15.032.352.0

BenchmarkSolarRadiationPercentD,E,F5.840.0.2

MaximumPercentC0.711.037.062.0

#l<290#l#320DatainTable3aretheirradianceinthegivenbandpassexpressedasapercentageofthetotalirradiancefrom250to400nm.ThemanufacturerisresponsiblefordeterminingconformancetoTable3.AnnexA1stateshowtodeterminerelativespectralirradiance.BThedatainTable3arebasedontherectangularintegrationof81spectralpowerdistributionsforwatercooledandaircooledxenon-arcswithextendedUVfiltersofvariouslotsandages.Thespectralpowerdistributiondataisforfiltersandxenon-burnerswithintheagingrecommendationsofthedevicemanufacturer.Theminimumandmaximumdataareatleastthethreesigmalimitsfromthemeanforallmeasurements.CTheminimumandmaximumcolumnswillnotnecessarilysumto100%becausetheyrepresenttheminimumandmaximumforthedataused.Foranyindividualspectralpowerdistribution,thecalculatedpercentagefortheband-passesinTable3willsumto100%.Foranyindividualxenon-arclampwithextendedUVfilters,thecalculatedpercentageineachbandpassmustfallwithintheminimumandmaximumlimitsofTable3.Testresultscanbeexpectedtodifferbetweenexposuresusingxenonarcdevicesinwhichthespectralpowerdistribu-tionsdifferbyasmuchasthatallowedbythetolerances.Contactthemanufacturerofthexenon-arcdevicesforspecificspectralpowerdistributiondataforthexenon-arcandfiltersused.DThebenchmarksolarradiationdataisdefinedinASTMG177andisforatmosphericconditionsandaltitudechosentomaximizethefractionofshortwavelenghtsolarUV.Thisdataisprovidedforcomparisonpurposesonly.EPreviousversionsofthisstandardusedsolarradiationdatafromTable4ofCIEPublicationNumber85.SeeAppendixX4formoreinformationcomparingthesolarradiationdatausedinthestandardwiththatforCIE85Table4.FForthebenchmarksolarspectrum,theUVirradiance(290to400nm)is9.8%andthevisibleirradiance(400to800nm)is90.2%expressedasapercentageofthetotalirradiancefrom290to800nm.ThepercentagesofUVandvisibleirradiancesonsamplesexposedinxenonarcdevicesmayvaryduetothenumberandreflectancepropertiesofspecimensbeingexposed.

6.3InstrumentCalibration—Toensurestandardizationandaccuracy,theinstrumentsassociatedwiththeexposureappa-ratus(thatis,timers,thermometers,wetbulbsensors,drybulbsensors,humiditysensors,UVsensors,radiometers)requireperiodiccalibrationtoensurerepeatabilityoftestresults.Wheneverpossible,calibrationshouldbetraceabletonationalorinternationalstandards.Calibrationscheduleandprocedureshouldbeinaccordancewithmanufacturer’sinstructions.6.4Radiometer—Theuseofaradiometertomonitorandcontroltheamountofradiantenergyreceivedatthespecimenisrecommended.Ifaradiometerisused,itshallcomplywiththerequirementsinPracticeASTMG151.

6.5Thermometer—Eitherinsulatedorun-insulatedblackorwhitepanelthermometersmaybeused.ThermometersshallconformtothedescriptionsfoundinPracticeG151.Thetypeofthermometerused,themethodofmountingonspecimenholder,andtheexposuretemperatureshallbestatedinthetestreport.

6.5.1Thethermometershallbemountedonthespecimenracksothatitssurfaceisinthesamerelativepositionandsubjectedtothesameinfluencesasthetestspecimens.

6.5.2Somespecificationsmayrequirechamberairtempera-turecontrol.Positioningandcalibrationofchamberairtem-peraturesensorsshallbeinaccordancewiththedescriptionsfoundinPracticeG151.

4

6.6Moisture—Thetestspecimensmaybeexposedtomois-tureintheformofwaterspray,condensation,immersion,orhighhumidity.

6.6.1WaterSpray—Thetestchambermaybeequippedwithameanstointroduceintermittentwatersprayontothefrontorthebackofthetestspecimens,underspecifiedconditions.Thesprayshallbeuniformlydistributedoverthespecimens.Thespraysystemshallbemadefromcorrosionresistantmaterialsthatdonotcontaminatethewateremployed.

6.6.1.1QualityofWaterforSpraysandImmersion—Spraywatermusthaveaconductivitybelow5µS/cm,containlessthan1-ppmsolids,andleavenoobservablestainsordepositsonthespecimens.Verylowlevelsofsilicainspraywatercancausesignificantdepositsonthesurfaceoftestspecimens.Careshouldbetakentokeepsilicalevelsbelow0.1ppm.Inadditiontodistillation,acombinationofdeionizationandreverseosmosiscaneffectivelyproducewateroftherequiredquality.ThepHofthewaterusedshouldbereported.SeePracticeG151fordetailedwaterqualityinstructions.

6.6.1.2Condensation—Aspraysystemdesignedtocoolthespecimenbysprayingthebacksurfaceofthespecimenorspecimensubstratemayberequiredwhentheexposurepro-gramspecifiesperiodsofcondensation.

6.6.2RelativeHumidity—Thetestchambermaybeequippedwithameanstomeasureandcontroltherelativehumidity.Suchinstrumentsshallbeshieldedfromthelampradiation.

6.6.3WaterImmersion—Thetestchambermaybeequippedwithameanstoimmersespecimensinwaterunderspecifiedconditions.Theimmersionsystemshallbemadefromcorro-sionresistantmaterialsthatdonotcontaminatethewateremployed.

6.7SpecimenHolders—Holdersfortestspecimensshallbemadefromcorrosionresistantmaterialsthatwillnotaffectthetestresults.Corrosionresistantalloysofaluminumorstainlesssteelhavebeenfoundacceptable.Brass,steel,orcoppershallnotbeusedinthevicinityofthetestspecimens.

6.7.1Thespecimenholdersaretypically,butnotnecessar-ily,mountedonarevolvingcylindricalrackthatisrotatedaroundthelampsystemataspeeddependentonthetypeofequipmentandthatiscenteredbothhorizontallyandverticallywithrespecttotheexposurearea.

6.7.2Specimenholdersmaybeintheformofanopenframe,leavingthebackofthespecimenexposed,ortheymayprovidethespecimenwithasolidbacking.Anybackingusedmayaffecttestresultsandshallbeagreeduponinadvancebetweentheinterestedparties.

6.7.3Specimenholdersmayrotateontheirownaxis.Whentheseholdersareused,theymaybefilledwithspecimensplacedbacktoback.Rotationoftheholderonitsaxisalternatelyexposeseachspecimentodirectradiationfromthexenonburner.

6.8ApparatustoAssessChangesinProperties—UsetheapparatusrequiredbytheASTMorotherstandardthatdescribesdeterminationofthepropertyorpropertiesbeingmonitored.

7.TestSpecimen

7.1RefertoPracticeG151.

G155–05a

8.TestConditions

8.1Anyexposureconditionsmaybeusedaslongastheexactconditionsaredetailedinthereport.AppendixX1listssomerepresentativeexposureconditions.Thesearenotneces-sarilypreferredandnorecommendationisimplied.Theseconditionsareprovidedforreferenceonly.

9.Procedure

9.1Identifyeachtestspecimenbysuitableindeliblemark-ing,butnotonareastobeusedintesting.

9.2Determinewhichpropertyofthetestspecimenswillbeevaluated.Priortoexposingthespecimens,quantifytheappropriatepropertiesinaccordancewithrecognizedinterna-tionalstandards.Ifrequired(forexample,destructivetesting),useunexposedfilespecimenstoquantifytheproperty.SeePracticeD5870fordetailedguidance.

9.3MountingofTestSpecimens—Attachthespecimenstothespecimenholdersintheequipmentinsuchamannerthatthespecimensarenotsubjecttoanyappliedstress.Toassureuniformexposureconditions,fillallofthespaces,usingblankpanelsofcorrosionresistantmaterialifnecessary.

NOTE3—Evaluationofcolorandappearancechangesofexposedmaterialsmustbemadebasedoncomparisonstounexposedspecimensofthesamematerialwhichhavebeenstoredinthedark.Maskingorshieldingthefaceoftestspecimenswithanopaquecoverforthepurposeofshowingtheeffectsofexposureononepanelisnotrecommended.Misleadingresultsmaybeobtainedbythismethod,sincethemaskedportionofthespecimenisstillexposedtotemperatureandhumiditythatinmanycaseswillaffectresults.

9.7ApparatusMaintenance—Thetestapparatusrequiresperiodicmaintenancetomaintainuniformexposureconditions.Performrequiredmaintenanceandcalibrationinaccordancewithmanufacturer’sinstructions.

9.8Exposethetestspecimensforthespecifiedperiodofexposure.SeePracticeG151forfurtherguidance.

9.9Attheendoftheexposure,quantifytheappropriatepropertiesinaccordancewithrecognizedinternationalstan-dardsandreporttheresultsinconformancewithPracticeG151.

NOTE4—Periodsofexposureandevaluationoftestresultsaread-dressedinPracticeG151.

10.Report

10.1ThetestreportshallconformtoPracticeG151.11.PrecisionandBias11.1Precision:

11.1.1Therepeatabilityandreproducibilityofresultsob-tainedinexposuresconductedaccordingtothispracticewillvarywiththematerialsbeingtested,thematerialpropertybeingmeasured,andthespecifictestconditionsandcyclesthatareused.Inround-robinstudiesconductedbySubcommitteeG03.03,the60°glossvaluesofreplicatePVCtapespecimensexposedindifferentlaboratoriesusingidenticaltestdevicesandexposurecyclesshowedsignificantvariability.Thevari-abilityshownintheseround-robinstudiesrestrictstheuseof“absolutespecifications”suchasrequiringaspecificpropertylevelafteraspecificexposureperiod.

11.1.2Ifastandardorspecificationforgeneraluserequiresadefinitepropertylevelafteraspecifictimeorradiantexposureinanexposuretestconductedaccordingtothispractice,thespecifiedpropertylevelshallbebasedonresultsobtainedinaround-robinthattakesintoconsiderationthevariabilityduetotheexposureandthetestmethodusedtomeasurethepropertyofinterest.Theround-robinshallbeconductedaccordingtoPracticeE691orPracticeD3980andshallincludeastatisticallyrepresentativesampleofalllabo-ratoriesororganizationswhowouldnormallyconducttheexposureandpropertymeasurement.

11.1.3Ifastandardorspecificationforusebetweentwoorthreepartiesrequiresadefinitepropertylevelafteraspecifictimeorradiantexposureinanexposuretestconductedaccord-ingtothispractice,thespecifiedpropertylevelshallbebasedonstatisticalanalysisofresultsfromatleasttwoseparate,independentexposuresineachlaboratory.Thedesignoftheexperimentusedtodeterminethespecificationshalltakeintoconsiderationthevariabilityduetotheexposureandthetestmethodusedtomeasurethepropertyofinterest.

11.1.4Theround-robinstudiescitedin11.1.1demonstratedthattheglossvaluesforaseriesofmaterialscouldberankedwithahighlevelofreproducibilitybetweenlaboratories.Whenreproducibilityinresultsfromanexposuretestconductedaccordingtothispracticehavenotbeenestablishedthroughround-robintesting,performancerequirementsformaterialsshallbespecifiedintermsofcomparison(ranked)toacontrolmaterial.Thecontrolspecimensshallbeexposedsimulta-neouslywiththetestspecimen(s)inthesamedevice.Thespecificcontrolmaterialusedshallbeagreeduponbythe

5

9.4ExposuretoTestConditions—Programtheselectedtestconditionstooperatecontinuouslythroughouttherequirednumberofrepetitivecycles.Maintaintheseconditionsthroughouttheexposure.Interruptionstoservicetheapparatusandtoinspectspecimensshallbeminimized.

9.5SpecimenRepositioning—Periodicrepositioningofthespecimensduringexposureisnotnecessaryiftheirradianceatthepositionsfarthestfromthecenterofthespecimenareaisatleast90%ofthatmeasuredatthecenteroftheexposurearea.IrradianceuniformityshallbedeterminedinaccordancewithPracticeG151.

9.5.1Ifirradianceatpositionsfarthestfromthecenteroftheexposureareaisbetween70and90%ofthatmeasuredatthecenter,oneofthefollowingthreetechniquesshallbeusedforspecimenplacement.

9.5.1.1Periodicallyrepositionspecimensduringtheexpo-sureperiodtoensurethateachreceivesanequalamountofradiantexposure.Therepositioningscheduleshallbeagreeduponbyallinterestedparties.

9.5.1.2Placespecimensonlyintheexposureareawheretheirradianceisatleast90%ofthemaximumirradiance.

9.5.1.3Tocompensatefortestvariability,randomlypositionreplicatespecimenswithintheexposureareathatmeetstheirradianceuniformityrequirementsasdefinedinsection9.5.1.9.6Inspection—Ifitisnecessarytoremoveatestspecimenforperiodicinspection,takecarenottohandleordisturbthetestsurface.Afterinspection,thetestspecimenshallbereturnedtothetestchamberwithitstestsurfaceinthesameorientationaspreviouslytested.

G155–05a

concernedparties.Exposereplicatesofthetestspecimenandthecontrolspecimensothatstatisticallysignificantperfor-mancedifferencescanbedetermined.

11.2Bias—Biascannotbedeterminedbecausenoaccept-ablestandardweatheringreferencematerialsareavailable.

12.Keywords

12.1accelerated;acceleratedweathering;durability;expo-sure;laboratoryweathering;light;lightfastness;non-metallicmaterials;temperature;ultraviolet;weathering;xenonarc

ANNEX

A1.DETERMININGCONFORMANCETORELATIVESPECTRALPOWERDISTRIBUTIONTABLES

(MandatoryInformationforEquipmentManufacturers)

A1.1Conformancetotherelativespectralpowerdistribu-tiontablesisadesignparameterforxenon-arcsourcewiththedifferentfiltersprovided.Manufacturersofequipmentclaimingconformancetothisstandardshalldetermineconformancetothespectralpowerdistributiontablesforalllamp/filtercom-binationsprovided,andprovideinformationonmaintenanceprocedurestominimizeanyspectralchangesthatmayoccurduringnormaluse.

A1.2Therelativespectralpowerdistributiondataforthisstandardweredevelopedusingtherectangularintegrationtechnique.EqA1.1isusedtodeterminetherelativespectralirradianceusingrectangularintegration.Otherintegrationtech-niquescanbeusedtoevaluatespectralpowerdistributiondata,butmaygivedifferentresults.Whencomparingrelativespectralpowerdistributiondatatothespectralpowerdistribu-tionrequirementsofthisstandard,usetherectangularintegra-tiontechnique.

A1.3Todeterminewhetheraspecificlampforaxenon-arcdevicemeetstherequirementsofTable1,Table2,orTable3,measurethespectralpowerdistributionfrom250nmto400nm.Typically,thisisdoneat2nmincrements.Ifthemanu-facturer’sspectralmeasurementequipmentcannotmeasurewavelengthsaslowas250nm,thelowestmeasurement

wavelengthmustbereported.Thelowestwavelengthmea-suredshallbenogreaterthan270nm.Fordeterminingconformancetotherelativespectralirradiancerequirementsforaxenon-arcwithextendedUVfilters,measurementfrom250nmto400nmisrequired.ThetotalirradianceineachwavelengthbandpassisthensummedanddividedbythespecifiedtotalUVirradianceaccordingtoEqA1.1.Useofthisequationrequiresthateachspectralintervalmustbethesame(forexample,2nm)throughoutthespectralregionused.

li5B

IR5

li5Ali00li5C

(El

i

3100Eli

(A1.1)

(

where:

IR=relativeirradianceinpercent,

E=irradianceatwavelengthli(irradiancestepsmustbe

equalforallbandpasses),

A=lowerwavelengthofwavelengthbandpass,B=upperwavelengthofwavelengthbandpass,

C=lowerwavelengthoftotalUVbandpassusedfor

calculatingrelativespectralirradiance(290nmfordaylightfilters,300nmforwindowglassfilters,or250nmforextendedUVfilters),and

li=wavelengthatwhichirradiancewasmeasured.

APPENDIXES

(NonmandatoryInformation)

X1.APPARATUSWITHAIR-COOLEDXENONARCLAMPS

X1.1Thistestapparatususesoneormoreair-cooledxenonarclampsasthesourceofradiation.Differenttypeanddifferentsizelampsoperatingindifferentwattagerangesmaybeutilizedindifferentsizesandtypesofapparatus.

X1.2Theradiationsystemconsistsofeitheroneormorexenon-arclamps,dependingonthetypeofapparatus.Aheat-absorbingsystemmaybeused.

6

G155–05a

X2.APPARATUSWITHWATER-COOLEDXENONARCLAMPS

X2.1Thetestapparatususesawater-cooledxenonarclampasthesourceofradiation.Differentsizelampsoperatingindifferentwattagerangesmaybeutilizedindifferentsizesandtypesofapparatus.

X2.2Thexenon-arclampusedconsistsofaxenonburner

tube,aninnerfilterofglassorquartz,anouterglassfilter,andthenecessaryaccessories.Tocoolthelamp,distilledordeionizedwateriscirculatedovertheburnertubeandthendirectedoutofthelampbetweentheinnerandouterglassfilters.

X3.EXPOSURECONDITIONS

X3.1Anyexposureconditionsmaybeused,aslongastheexactconditionsaredetailedinthereport.Followingaresomerepresentativeexposureconditions.Thesearenotnecessarilypreferredandnorecommendationisimplied.Theseconditionsareprovidedforreferenceonly(seeTableX3.1).

NOTEX3.1—Theseexposureconditionsarebriefsummariesoftheactualexposureprocedures.Consulttheapplicabletestmethodormaterialspecificationfordetailedoperatinginstructionsandprocedures.HistoricalconventionhasestablishedCycle1asaverycommonlyusedexposurecycle.Othercyclesmaygiveabettersimulationoftheeffectsofoutdoor

TABLEX3.1CommonExposureConditions

Cycle1

FilterDaylight

Irradiance0.35W/m2·nm

Wavelength340nm

ExposureCycle

102minlightat63°CBlackPanelTemperature

18minlightandwaterspray(airtemp.notcontrolled)

102minlightat63°CUninsulatedBlackPanelTemperature18minlightandwaterspray(airtemp.notcontrolled);

6hdarkat95(.0)%RH,at24°CUninsulatedBlackPanelTemperature1.5hlight,70%RH,at77°CBlackPanelTemperature0.5hlightandwaterspray(airtemp.notcontrolled)100%light,55%RH,at55°CBlackPanelTemperature102minlight,35%RH,at63°CBlackPanelTemperature18minlightandwaterspray(airtemp.notcontrolled)3.8hlight,35%RH,at63°CBlackPanelTemperature1hdark,90%RH,at43°CBlackPanelTemperature

40minlight,50(65.0)%RH,at70(62)°CBlackPanelTemperatureand47(62)°CChamberAirTemperature

20minlightandwatersprayonspecimenface;

60minlight,50(65.0)%RH,at70(62)°CBlackPanelTemperature;and47(62)°CChamberAirTemperature

60mindarkandwatersprayonspecimenback,95(65.0)%RH,38(62)°CBlackPanelTemperatureand38(62)°CChamberAirTemperature

40minlight,50(65.0)%RH,at70(62)°CBlackPanelTemperatureand47(62)°CChamberAirTemperature

20minlightandwatersprayonspecimenface;

60minlight,50(65.0)%RH,at70(62)°CBlackPanelTemperature;and47(62)°CChamberAirTemperature

60mindarkandwatersprayonspecimenfrontandback,95(65.0)%RH,38(62)°CBlackPanelTemperatureand38(62)°CChamberAirTemperature3.8hlight,50(65.0)%RH,at(63)°CBlackPanelTemperatureand62(62)°CChamberAirTemperature

1.0hdark,95(65.0)%RH,at38(62)°CBlackPanelTemperatureand38(62)°CChamberAirTemperature

102minlightat63°CBlackPanelTemperature

18minlightandwaterspray(temperaturenotcontrolled)

101112

WindowGlassWindowGlassDaylight

162W/m2(at300–400

nm)

1.5W/m2·nm0.35W/m2·nm

300–400nm420nm340nm

100%light,50%RH,at°CBlackPanelTemperature

Continuouslightat63°Cuninsulatedblackpaneltemperature,30%RH18hconsistingofcontinuouslightat63°Cuninsulatedblackpaneltemperature30%RH

6hdarkat90%RH,at35°Cdrybulbtemperature

2Daylight0.35W/m2·nm340nm

3Daylight0.35W/m2·nm340nm

45

WindowGlassWindowGlass

0.30W/m2·nm1.10W/m2·nm

340nm420nm

6WindowGlass1.10W/m2·nm420nm

7ExtendedUV0.55W/m2·nm340nm

7ADaylight0.55W/m2·nm340nm

8ExtendedUV0.55W/m2·nm340nm

9Daylight

180W/m2(at300–400

nm)

300–400nm

7

G155–05a

exposure.Cycle3hasbeenusedforexteriorgradetextilematerials.Cycle4hasbeenusedforindoorplastics.Cycles5and6havebeencommonlyusedforindoortextilematerials.Cycle7hasbeenusedforautomotiveexteriormaterials.Cycle8hasbeenusedforautomotiveinteriorcompo-nents.

NOTEX3.2—Cycle7correspondstothetestcyclesspecifiedinSAEJ2527andtoSAEJ1960.Cycle8correspondstothetestcyclesspecifiedinSAEJ2412andSAEJ1885.Consulttheappropriatetestprocedurefordetailedcycledescriptions,operatinginstructions,andadescriptionofthefiltersusedinthisapplication.Thefiltersystemspecifiedintheseproceduresischaracterizedin.

NOTEX3.3—Morecomplexcyclesmaybeprogrammedinconjunctionwithdarkperiodsthatallowhighrelativehumiditiesandtheformationofcondensateatelevatedchambertemperatures.Condensationmaybeproducedonthefaceofthespecimensbysprayingtherearsideofthespecimenstocoolthembelowthedewpoint.

NOTEX3.4—Forspecialtests,ahighoperatingtemperaturemaybedesirable,butthiswillincreasethetendencyforthermaldegradationtoadverselyinfluencethetestresults.

NOTEX3.5—Surfacetemperatureofspecimensisanessentialtestquantity.Generally,degradationprocessesacceleratewithincreasingtemperature.Thespecimentemperaturepermissiblefortheacceleratedtestdependsonthematerialtobetestedandontheagingcriterionunderconsideration.

NOTEX3.6—Therelativehumidityoftheairasmeasuredinthetestchamberisnotnecessarilyequivalenttotherelativehumidityoftheairveryclosetothespecimensurface.Thisisbecausetestspecimenshavingvaryingcolorsandthicknessesmaybeexpectedtovaryintemperature.

TABLEX3.2OperationalFluctuationsonExposureConditions

MaximumAllowableDeviationsfromtheSetPointattheControlPointIndicatedbytheReadoutoftheCalibratedControlSensorDuringEquilibriumOperation666666

2.5°C2°C5%

0.02W/(m2·nm)0.02W/(m2·nm)2W/m2Parameter

BlackPanelTemperatureChamberAirTemperatureRelativeHumidity

Irradiance(monitoredat340nm)Irradiance(monitoredat420nm)

Irradiance(monitoredat300–400nm)

equipmenthasstabilized,discontinuethetestandcorrectthecauseofthedisagreementbeforecontinuing.

NOTEX3.7—Setpointsandoperationalfluctuationscouldeitherbelistedindependentlyofeachother,ortheycouldbelistedintheformat:Setpoint6operationalfluctuations.Thesetpointisthetargetconditionforthesensorusedattheoperationalcontrolpointasprogrammedbytheuser.Operationalfluctuationsaredeviationsfromtheindicatedsetpointatthecontrolpointindicatedbythereadoutofthecalibratedcontrolsensorduringequilibriumoperationanddonotincludemeasurementuncertainty.Attheoperationalcontrolpoint,theoperationalfluctuationcanexceednomorethanthelistedvalueatequilibrium.Whenastandardcallsforaparticularsetpoint,theuserprogramsthatexactnumber.Theoperationalfluctuationsspecifiedwiththesetpointdonotimplythattheuserisallowedtoprogramasetpointhigherorlowerthantheexactsetpointspecified..

X3.2Unlessotherwisespecified,operatetheapparatustomaintaintheoperationalfluctuationsspecifiedinTableX3.2fortheparametersinTableX3.1.Iftheactualoperatingconditionsdonotagreewiththemachinesettingsafterthe

X3.3ForconversionoftestcyclesfromG26toG155seeTableX3.3.

8

G155–05a

TABLEX3.3ConversionofTestCyclesfromG26toG155

G26TestCycleDescriptionforG26,MethodA—Continuouslight

withintermittentwaterspray

CorrespondingTestCycleInG155ThreecyclesinG155,TableX3.1usecontinuouslightandthesamewaterspraytimesastheconditionsdescribed

inG26,MethodA

Thefollowingtestcycleistheonly

specificconditiondescribed102minlightonly(uninsulatedblackpaneltemperatureat6363°C

Cycle1usesdaylightfilterswith340nmirradiancecontrolledat0.35W/m2/nm(thesuggestedminimum340nmirradiancefordaylightfiltersinG26,

MethodA)Cycle5useswindowglassfilterswith420nmirradiancecontrolledat1.10W/m2/nm(thesuggestedminimum340nmirradianceforwindowglassfiltersin

G26is0.7W/m2/nm

Cycle9usesdaylightfiltersand340nmirradiancecontrolledat1.55W/m2/nm(180W/m2/nmfrom300–400

nm).G155,TableX3.1describesseveralspecificcyclesthatcombinelight/darkperiodswithperiodsofwatersprayCycle2inTableX3.1hashasan18hlightperiodusingthesameconditionsdescribedinG26,MethodAfollowedbya6hdarkperiodataveryhigh

realtivehumidity

18minlight+waterspray

Thetypeoffilterandrealtivehumidityduringthelightperiodarenotspecified

G26–MethodB—alternateexposuretolightanddarkandintermittent

exposuretowatersprayNospecificlight/dark/watercycle

described

TheonlyconditionsduringthelightperiodthataredescribedarethoseofMethodA.Thelengthofdarkperiodisnotspecified,noraretemperatureorrelativehumidityconditionsduringthe

darkperiod.

G26–MethodC—continuousexposuretolightwithnowatersprayUseswindowglassfilters

Uninsulatedblackpaneltemperatureis6363°C,relativehumidityis3065%Typicalirradianceis1.5W/m2/nmG26–MethodD—alternateexposuretolightanddarknesswithoutwater

spray

Nospecificperiodsoflight/darkare

described

Typeoffilternotspecified

Irradianceisnotspecified.Suggestedminimumirradianceis0.35W/m2at340nmwithdaylightfiltersor0.7W/m2at420nmwithwindowglassfiltersRHcontrolledto3565%duringlight

period

Darkcyclerequiresadrybulb

temperatureof3563°Cand9065%

RH

G155,TableX3.1,Cycle11

G153,TableX3.1Cycle12

9

G155–05a

TABLEX3.4ComparisonofBasicAtmosphericConditionsUsed

forBenchmarkSolarSpectrumandCIE85Table4Solar

Spectrum

AtmosphericCondition

BenchmarkSolarSpectrum

CIE85Table4SolarSpectrum

0.341.420

0°(horizontal)

1.00

Constantat0.2EquivalenttoLinkeTurbidityfactorof

about2.80.10

Ozone(atm-cm)0.30Precipitablewatervapor(cm)0.57Altitude(m)2000Tiltangle37°facingEquatorAirmass1.05

Albedo(groundreflectance)LightSoilwavelength

dependent

AerosolextinctionShettle&FennRural

(humiditydependent)Aerosolopticalthicknessat500nm

0.05

TABLEX3.5IrradianceandRelativeIrradianceComparisonforBenchmarkSolarSpectrumandCIE85Table4SoalrSpectrum

Bandpass

BenchmarkSolarSpectrum

CIE85Table4SolarSpectrum

l<290

290#l#320320290Irradiance(W/m2)instatedbandpass

0.0000.0003.7484.06025.66128.45034.76242.050.17174.560652.300678.780Percentof290to400nmirradiance

0.0%0.0%5.8%5.4%40.0%38.2%.2%56.4%

Percentof290to800nmirradiance

9.8%11.0%

X4.COMPARISONOFBENCHMARKSOLARUVSPECTRUMANDCIE85TABLE4SOLARSPECTRUM

X4.1Thisstandardusesabenchmarksolarspectrumbased

onatmosphericconditionsthatprovideforaveryhighlevelofsolarultravioletradiation.ThisbenchmarksolarspectrumispublishedinASTMG177,StandardTablesforReferenceSolarUltravioletSpectralDistributions:Hemisphericalon37degreeTiltedSurface.ThesolarspectrumiscalculatedusingtheSMARTS2solarradiationmodel.9,10,11ASTMAdjunct

Gueymard,C.,“ParameterizedTransmittanceModelforDirectBeamandCircumsolarSpectralIrradiance,”SolarEnergy,Vol71,No.5,2001,pp.325-346.10Gueymard,C.A.,Myers,D.,andEmery,K.,“ProposedReferenceIrradianceSpectraforSolarEnergySystemsTesting,”SolarEnergy,Vol73,No6,2002,pp.443-467.11Myers,D.R.,Emery,K.,andGueymard,C.,“RevisingandValidatingSpectralIrradianceReferenceStandardsforPhotovoltaicPerformanceEvaluation,”Trans-actionsoftheAmericanSocietyofMechanicalEngineers,JournalofSolarEnergyEngineering,Vol126,pp567–574,Feb.2004

9ADJG0173,SMARTS2SolarRadiationModelforSpectralRadiationprovidestheprogramanddocumentationforcalcu-latingsolarspectralirradiance.

X4.2PreviousversionsofthisstandardusedCIE85Table4asthebenchmarksolarspectrum.TableX3.4comparesthebasicatmosphericconditionsusedforthebenchmarksolarspectrumandCIE85Table4solarspectrum.

X4.3TableX3.5comparesirradiance(calculatedusingrectangularintegration)andrelativeirradianceforthebench-marksolarspectrumandCIE85Table4solarspectrum,inthebandpassesusedinthisstandard.

10

G155–05a

ASTMInternationaltakesnopositionrespectingthevalidityofanypatentrightsassertedinconnectionwithanyitemmentionedinthisstandard.Usersofthisstandardareexpresslyadvisedthatdeterminationofthevalidityofanysuchpatentrights,andtheriskofinfringementofsuchrights,areentirelytheirownresponsibility.

Thisstandardissubjecttorevisionatanytimebytheresponsibletechnicalcommitteeandmustbereviewedeveryfiveyearsandifnotrevised,eitherreapprovedorwithdrawn.YourcommentsareinvitedeitherforrevisionofthisstandardorforadditionalstandardsandshouldbeaddressedtoASTMInternationalHeadquarters.Yourcommentswillreceivecarefulconsiderationatameetingoftheresponsibletechnicalcommittee,whichyoumayattend.IfyoufeelthatyourcommentshavenotreceivedafairhearingyoushouldmakeyourviewsknowntotheASTMCommitteeonStandards,attheaddressshownbelow.

ThisstandardiscopyrightedbyASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,UnitedStates.Individualreprints(singleormultiplecopies)ofthisstandardmaybeobtainedbycontactingASTMattheaboveaddressorat610-832-9585(phone),610-832-9555(fax),orservice@astm.org(e-mail);orthroughtheASTMwebsite(www.astm.org).

11

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务