您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页高中直线与方程教案ppt

高中直线与方程教案ppt

来源:爱go旅游网
高中直线与方程教案ppt

【篇一:直线的方程课件】

直线与方程课件

【篇二:直线与方程教案】

直线与方程教案 教学目标

(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.

(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.

(3)掌握直线方程各种形式之间的互化.

(4)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.

(5)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化. (6)理解直线与二元一次方程的关系及其证明

(7)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点. 教学建议 1.教材分析 (1)知识结构

由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式. (2)重点、难点分析

①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程. 直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习. 2直线方程的一般式.直线与二元一次方程 ( 不同时为0)的对应关系及其证明.

②本节的难点是直线方程特殊形式的条件,直线方程的整体结构,直线与二元一次方程的关系证明 2.教法建议

(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.

(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.

(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.

(4)教学中要使学生明白两个条件确定一条直线,如两个点、一个点和一个方向或其他两个条件.两点确定一条直线,这是学生很早就接触的几何公理,

(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数). 教学过程 :

下面给出教学实施过程设计的简要思路: 教学设计思路: (一)引入的设计

前边学习了如何根据所给条件求出直线方程的方法,看下面问题: 问:说出过点 (2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么? 答:直线方程是 ,属于二元一次方程,因为未知数有两个,它们的最高次数为一次. 肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

问:求出过点 , 的直线的方程,并观察方程属于哪一类,为什么? 答:直线方程是 (或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.

启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

【问题1】“任意直线的方程都是二元一次方程吗?” (二)本节主体内容教学的设计

学生或研究,或合作研究,教师巡视指导.

经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案: 思路一:? 思路二:? ??

教师组织评价,确定最优方案(其它待课下研究)如下:

按斜率是否存在,任意直线 的位置有两种可能,即斜率 存在或不存在.

当 存在时,直线 的截距 也一定存在,直线 的方程可表示为 ,它是二元一次方程. 当 不存在时,直线 的方程可表示为 形式的方程,它是二元一次方程吗?

学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

平面直角坐标系中直线 上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的. 综合两种情况,我们得出如下结论:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于 、 的二元一次方程.

至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成 或 的形式,准确地说应该是“要么形如 这样,要么形如 这样的方程”. 同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达? 学生们不难得出:二者可以概括为统一的形式. 这样上边的结论可以表述如下:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如 (其中 、 不同时为0)的二元一次方程.

启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

【问题2】任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线吗?

不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢? 师生共同讨论,评价不同思路,达成共识:

回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程 (其中两个未知量的系数 不同时为0)x系数 是否为0恰好对应斜率 是否存在,即

(1)当y系数为0 时,方程可化为x=b, 这是表示斜率为0,平行于y轴的直线.

(2)当x系数为0 时,由于x,y系数 不同时为0,必有y=b,这表示一条与x 轴垂直的直线. 因此,得到结论:

在平面直角坐标系中,任何形如 (其中xy系数不同时为0)的二元一次方程都表示一条直线.

(二)练习巩固、总结提高、板书和作业 等环节的设计在此从略

【篇三:直线与方程教案】

状元堂一对一个性化辅导教案

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务