函数e的x次方的微分
计算过程如下:∫e^xdx =xe^x-∫xe^xdx =xe^x-1/2∫e^xdx^2 =xe^x-1/2e^x+c =(x-1/2)e^x+c。
e是一个常数,常数的微分为0,所以e的微分是0。 ex的泰勒展开式为e^x在x=0自展开得f(x)=e^x。
e^x在x趋于正无穷的时候是发散的,它的泰勒展开式在n趋于正无穷的时候是收敛的级数收敛即和存在,而当n趋于正无穷的时候展开式各多项式的和无限趋近于e^x,即它的和为e^x,所以收敛于e^x当x=1时展开式就收敛于e。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务