您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页检测与转换技术期末试题库讲解

检测与转换技术期末试题库讲解

来源:爱go旅游网


传感器习题集及答案

第01章 检测与传感器基础

1.1 什么是传感器?按照国标定义,“传感器”应该如何说明含义?

1.1答:

从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。

我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。按使用的场合不同传感器又称为变换器、换能器、探测器。

1.2 传感器由哪几部分组成?试述它们的作用及相互关系。

1.2答:

组成——由敏感元件、转换元件、基本电路组成;

关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。

1.3 简述传感器主要发展趋势

1.3答:数字化、集成化、智能化、网络化等。

1.4传感器的静态特性是什么?由哪些性能指标描述?它们一般可用哪些公式表示?

1.4答:

静特性是当输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性。传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。人们根据传感器的静特性来选择合适的传感器。

1.5传感器的线性度是如何确定的?确定拟合直线有哪些方法?传感器的线性度

L表征了什么含义?为什么不能笼统的说传感器的线性度是多少。1.5答:

1)实际传感器有非线性存在,线性度是将近似后的拟合直线与实际曲线进行比较,其中存在偏差,这个最大偏差称为传感器的非线性误差,即线性度,

2)选取拟合的方法很多,主要有:理论线性度(理论拟合);端基线性度(端点连线拟合);独立线性度(端点平移拟合);最小二乘法线性度。

3)线性度L是表征实际特性与拟合直线不吻合的参数。

4)传感器的非线性误差是以一条理想直线作基准,即使是同一传感器基准不同时得出的线性度也不同,所以不能笼统地提出线性度, 当提出线性度的非线性误差时,必须说明所依据的基准直线。

1.6传感器动态特性的主要技术指标有哪些?它们的意义是什么? 1)传感器动态特性主要有:时间常数τ;固有频率n;阻尼系数。

2)含义:τ越小系统需要达到稳定的时间越少;固有频率n越高响应曲线上升越快;当n为常数时响应特性取决于阻尼比,阻尼系数越大,过冲现象减弱,影响过冲量和振荡次数。

1时无过冲,不存在振荡,阻尼比直接

1.7有一温度传感器,微分方程为30dy/dt3y0.15x,其中y为输出电压(mV) ,

x为输入温度(℃)。试求该传感器的时间常数和静态灵敏度。

1.7解:

对微分方程两边进行拉氏变换,Y(s)(30s+3)=0.15X(s) 则该传感器系统的传递函数为:

H(s)Y(s)0.150.05 X(s)30s310s1 该传感器的时间常数τ=10,灵敏度k=0.05

第02章 电阻式传感器

2.1 何为电阻应变效应?怎样利用这种效应制成应变片?

导体在受到拉力或压力的外界力作用时,会产生机械变形,同时机械变形会引起导体阻值的变化,这种导体材料因变形而使其电阻值发生变化的现象称为电阻应变效应。

当外力作用时,导体的电阻率、长度l、截面积S都会发生变化,从而引起电阻值R的变化,通过测量电阻值的变化,检测出外界作用力的大小。

2.2 什么是应变片的灵敏系数?它与金属电阻丝的灵敏系数有何不同?为什么?

金属丝灵敏系数k0主要由材料的几何尺寸决定的。受力后材料的几何尺寸变化为(12),电阻率的变化为//。而实际应变片的灵敏系数应包括基片、粘合剂以及敏感栅的横向效应。虽然长度

相同,但应变状态不同,金属丝做成成品的应变片(粘贴到试件上)以后,灵敏系数降低了。

2.3 为什么增加应变片两端电阻条的横截面积便能减小横向效应?

敏感栅越窄,基长越长的应变片,横向效应越小,因为结构上两端电阻条的横截面积大的应变片横向效应较小。

2.4 金属应变片与半导体应变片在工作原理上有何不同?半导体应变片灵敏系数范围是多少,金属应变片灵敏系数范围是多少?为什么有这种差别,说明其优缺点。举例说明金属丝电阻应变片与半导体应变片的相同点和不同点。

金属导体应变片的电阻变化是利用机械形变产生的应变效应,对于半导体而言,应变传感器主要是利用半导体材料的压阻效应。金属电阻丝的灵敏系数可近似写为 灵敏系数近似为

k0//E≈50~100。

2.5 一应变片的电阻R=120Ω,灵敏系数k=2.05,用作应变为800m/m的传感元件。

求:①R和R/R;② 若电源电压U=3V,初始平衡时电桥的输出电压U0。

2.5解:

k012,即k01.5~2;半导体

k2.05;800m/m

R/Rk0.0164;应变引起的电阻变化R0.2

3R当电源电压U3V时,电桥输出电压 U01.23mV

4R

2.6 在以钢为材料的实心圆柱形试件上,沿轴线和圆周方向各贴一片电阻为120Ω的金属应变片R1和R2(如图2-6a所示),把这两应变片接入电桥(见图2-6b)。若钢的泊松系数0.285,应变片的灵敏系数k =2,电桥电源电压U=2V,当试件受轴向拉伸时,测得应变片R1的电阻变化值R10.48。试求:①轴向应变;②电桥的输出电压。解1:

R1/R11)k 则轴向应变为:

R1/R0.48/1200.002 k22)电桥的输出电压为:

11U0Uk(1)220.0021.2855.14mV

22解2:

k2;R1120R0.48;U2V R1/;R11轴向应变: 0.002k

U2.7 一测量吊车起吊重物的拉力传感器如图2-7a所示。R1、R2、R3、R4按要求电桥输出电压: U0R1/R14mV2贴在等截面轴上。已知:等截面轴的截面积为0.00196m2,弹性模量

E=2×1011N/m2,泊松比0.3,且R1=R2=R3=R4=120Ω, 所组成的全桥型

电路如题图2-7b所示,供桥电压U=2V。现测得输出电压U0=2.6mV。求:①等截面轴的纵向应变及横向应变为多少?②力F为多少?

图2-7

图 2-6

R1R2R3R4120;0.3;S0.00196m2;E21011N/m2;U2V;U02.6mV

U0R0.156UlR/RR/R轴向应变:0.0008125lk12

rl横向应变:0.0004875rl力:FSE3.185105N按全桥计算:R

2.8 已知:有四个性能完全相同的金属丝应变片(应变灵敏系数k2), 将其粘

贴在梁式测力弹性元件上,如图2-8所示。在距梁端l0处应变计算公式为

6Fl20

Ehb设力F100N,l0100mm,h5mm,b20mm,E2105N/mm2。求: ①说明是一种什么形式的梁。在梁式测力弹性元件距梁端l0处画出四个应变

片粘贴位置,并画出相应的测量桥路原理图;②求出各应变片电阻相对变化量;③当桥路电源电压为6V时,负载电阻为无穷大,求桥路输出电压U0是多少?

图 2-8

2.8解:

①梁为一种等截面悬臂梁;应变片沿梁的方向上下平行各粘贴两个; ②

k2;F100N;l0100mm;h5mm;b2mm;E2105N/m2

6FlR应变片相对变化量为:k2200.012

REhbR③桥路电压6V时,输出电压为:U060.072VR

2.9 图2-9为一直流电桥,负载电阻RL趋于无穷。图中E=4V,

R1=R2=R3=R4=120Ω,试求:① R1为金属应变片,其余为外接电阻,当R1的增量为ΔR1=1.2Ω时,电桥输出电压U0=? ② R1、R2为金属应变片,感应应变大小变化相同,其余为外接电阻,电桥输出电压U0=? ③ R1、R2为金属应变片,如果感应应变大小相反,且ΔR1=ΔR2 =1.2Ω,电桥输出电压U0=?

2.9解:

①因为只有R1为应变片,电桥输出按单臂电桥计算,U0②因为两应变片变化大小相同,相互抵消无输出,U0ER0.010V 4R0V

ER0.02V 2R③因为R1,R2应变时大小变化相反,电桥输出按半桥计算,U0第03章 半导体传感器

3.1简述气敏电阻的检测原理,其阻值如何变化?

3.1答:利用气体的吸附而使半导体本身的电阻率发生变化这一机理来进行检测。实验证明,当氧化性气体吸附到N型半导体,还原性气体吸附到P型半导体上时,将使半导体载流子减少,而使电阻值增大。当还原性气体吸附到N型半导体上,氧化性气体吸附到P型半导体上时,则载流子增多,使半导体电阻值下降。

3.2 如何定义和计算半导体气体传感器的灵敏度?:

kRsRo

3.3 图3-3为某种气敏传感器的检测曲线,从图中可以看出该传感器最适合用于哪种气体的浓度检测。

图3-3

3.3答:乙醇

3.4 半导体气体传感器为什么要在高温状态下工作?加热方式有哪几种?加热丝可以起到什么作用?

1)因为在常温下,电导率变化不大,达不到检测目的,因此以上结构的气敏元件都有电阻丝加热器,加热时间2~3分钟,最佳工作温度为200℃~400℃。

2)加热方式分为直热式和旁热式。电阻型气敏传感器加热的目的有两个方面的因素,一是为了加速气体吸附和上述的氧化还原反应,提高灵敏度和响应速度,另外使附着在传感器元件壳面上的油雾、尘埃烧掉。 3.5 什么叫气敏传感器的初期稳定时间?恢复时间? 第04章 压电式传感器

4.1 什么是压电效应?什么是正压电效应和逆压电效应?

4.1答:

某些电介质在沿一定的方向受到外力的作用变形时,由于内部电极化现象同时在两个表面上产生符号相反的电荷,当外力去掉后,恢复到不带电的状态;而当作用力方向改变时,电荷的极性随着改变。晶体受力所产生的电荷量与外力的大小成正比。这种现象称为正压电效应。如对晶体施加一定变电场,晶体本身将产生机械变形,外电场撤离,变形也随之消失,称为逆压电效应

4.2 什么是居里点温度?

4.2答:

是指压电材料开始丧失压电特性的温度。

4.3 压电传感器能否用于静态测量?并对原因加以说明。4.3答:

由压电传感器的等效电路可见,要保证输出信号与输入作用力间的线性关系,只有在负载电阻较大,工作频率较高时,传感器电荷才能得以保存补充,需要测量电路具有无限大的输入阻抗。但实际上这是不可能的,故压电传感器只能作动态测量,不宜作静态信号测量,只能在其上加交变力,电荷才能不断得到补充,并给测量电路一定的电流。

4.4 压电元件在使用时常采用多片串联或并联的结构形式。试述在不同接法下输

出电压、电荷、电容的关系,它们分别适用于何种应用场合?画出两种接法的示意图和引线接法。4.4答:

1)在压电式传感器中,为了提高灵敏度,往往采用多片压电芯片构成一个压电组件。其中最常用的是两片结构;根据两片压电芯片的连接关系,可分为串联和并联连接,常用的是并联连接,可以增大输出电荷,提高灵敏度。

2)如果按相同极性粘贴,相当两个压电片(电容)串联。输出总电容为单片电容的一半,输出电荷与单片电荷相等,输出电压是单片的两倍;若按不同极性粘贴,相当两个压电片(电容)并联,输出电容为单电容的两倍,极板上电荷量是单片的两倍,但输出电压与单片相等。

4.6 己知电压前置放大器输人电阻及总电容分别为Ri1M,Ci100pF,求与压电加速度计相配,测1Hz振动时幅值误差是多少?4.6解:

信号频率f1Hz;放大器输入电阻Ri1M,电容Ci100pF

幅值误差为:

Uim()Uim()dFmRi12Ri2Ci2dFmCi

Uim()Uim()Uim()10.99Uim()Uim()相对误差为:

(10.99)100%1%

4.7 一压电加速度计,供它专用电缆的长度为1.2m,电缆电容为100pF,压电

片本身电容为1000pF。出厂标定电压灵敏度为100V/g,若使用中改用另一根长2.9m电缆,其电容量为300pF,问其电压灵敏度如何改变?

4.7解:

已知压电加速度计电缆长度为1.2m,电缆电容Cc=100pF,传感器电容Ca=1000pF;电压灵敏度为Ku100V/g电压灵敏度Kudd100V/gCcCaCi100pF1000pFCi

因Ci较小忽略前置电路输入电容电压灵敏度为:Ku求出:d0.11106更换2.9m电缆,电容Cc=300pFd0.11106电压灵敏度为:Ku84.62V/gCcCa300pF1000pF可见电缆加长后电压灵敏度下降。

dd100V/gCcCa100pF1000pF

4.8 用石英晶体加速度计及电荷放大器测量加速度,已知:加速度计灵敏度为

5PC/g,电荷放大器灵敏度为50mV/PC,当机器加速度达到最大值时,相应输出电压幅值为2V,试求该机器的振动加速度。 4.8解:

已知加速度计灵敏度为5PC/g,电荷放大器灵敏度为50mV/PC

当输出幅值为2V时,机器振动加速度为:

g2V/50mV/PC0.8g

5PC/g第05章 电感式传感器

5.1 何谓电感式传感器?电感式传感器分为哪几类?各有何特点?

5.1答:

电感式传感器是一种机-电转换装置,电感式传感器是利用线圈自感和互感的变化实现非电量电测的一种装置,传感器利用电磁感应定律将被测非电量转换为电感或互感的变化。它可以用来测量位移、振动、压力、应变、流量、密度等参数。

电感式传感器种类:变磁阻式、变压器式、涡流式等。

5.2 提高电感式传感器线性度有哪些有效的方法。5.2答:

电感传感器采用差动形式可有效改善线性度。

5.4 零点残余电压的产生原因。

5.4答:

差动变压器式传感器的铁芯处于中间位置时,在零点附近总有一个最小的输出电压U0,

将铁芯处于中间位置时,最小不为零的电压称为零点残余电压。产生零点残余电压的主要原因是由于两个次级线圈绕组电气系数(互感 M 、电感L、内阻R)不完全相同,几何尺寸也不完全相同,工艺上很难保证完全一致

5.5 为什么螺线管式电传感器比变间隙式电传感器有更大的测位移范围?。

5.5答:

螺线管式差动变压器传感器利用互感原理,结构是:塑料骨架中间绕一个初级线圈,两次级线圈分别在初级线圈两边,铁心在骨架中间可上下移动,根据传感器尺寸大小它可测量1~100mm范围内的机械位移。变间隙式电感传感器是利用自感原理,衔铁的与铁芯之间位移(气隙)与磁阻的关系为非线性关系,可动线性范围很小,因此测量范围受到限制。

5.10 什么叫电涡流效应?说明电涡流式传感器的基本结构与工作原理。电涡流式传感器的基本特性有哪些?它是基于何种模型得到的?

5.10答:

1)块状金属导体置于变化的磁场中或在磁场中作用切割磁力线运动时,导体内部会产生一圈圈闭和的电流,这种电流叫电涡流,这种现象叫做电涡流效应。

2)形成涡流必须具备两个条件:第一存在交变磁场;第二导电体处于交变磁场中。电涡流式传感器通电后线圈周围产生交变磁场,金属导体置于线圈附近。当金属导体靠近交变

磁场中时,导体内部就会产生涡流,这个涡流同样产生交变磁场。由于磁场的反作用使线圈的等效电感和等效阻抗发生变化,使流过线圈的电流大小、相位都发生变化。通过检测与阻抗有关的参数进行非电量检测。

3)因为金属存在趋肤效应,电涡流只存在于金属导体的表面薄层内,实际上涡流的分布是不均匀的。涡流区内各处的涡流密度不同,存在径向分布和轴向分布。所以电涡流传感器的检测范围与传感器的尺寸(线圈直径)有关。

4)回路方程的建立是把金属上涡流所在范围近似看成一个单匝短路线圈作为等效模型。

5.11 电涡流式传感器可以进行哪些物理量的检测?能否可以测量非金属物体,为什么?5.11答:

1)凡是能引起R2、L2、M变化的物理量,均可以引起传感器线圈R1、L1 的变化,可以进行非电量检测;如被测体(金属)的电阻率,导磁率,厚度d,线圈与被测体之间的距离x,激励线圈的角频率等都可通过涡流效应和磁效应与线圈阻抗Z发生关系,使R1、L1变化;若控制某些参数不变,只改变其中一个参数,便可使阻抗Z成为这个参数的单值函数。

2)电涡流传感器不可以直接测量非金属物体,这是由于传感器本身特性决定的

第06章 电容式传感器

6.1 如何改善单极式变极距型电容传感器的非线性?

非线性随相对位移/0的增加而增加,为保证线性度应限制相对位移的大小;起始极距0与灵敏度、

线性度相矛盾,所以变极距式电容传感器只适合小位移测量;为提高传感器的灵敏度和改善非线性关系,变极距式电容传感器一般采用差动结构

6.2 为什么高频工作时的电容式传感器连接电缆的长度不能任意变化?

低频时容抗

Xc较大,传输线的等效电感L和电阻R可忽略。而高频时容抗Xc减小,等效电感和电阻不

f0存在,当工作频率ff0谐振

可忽略,这时接在传感器输出端相当于一个串联谐振,有一个谐振频率

频率时,串联谐振阻抗最小,电流最大,谐振对传感器的输出起破坏作用,使电路不能正常工作。通常工作频率10MHz以上就要考虑电缆线等效电感L0的影响。

6.3 差动式变极距型电容传感器,若初始容量C1C280pF,初始距离

04mm,当动极板相对于定极板位移了0.75mm时,试计算其非线性误差。若改为单极平板电容,初始值不变,其非线性误差有多大?6.3

解:若初始容量

C1C280pF,初始距离04mm,当动极板相对于定极板位移了0.75mm时,非线性

误差为:

L(0)2100%(0.752)100%3.5% 4改为单极平板电容,初始值不变,其非线性误差为:

L0.75100%100%18.75% 046.5 平板式电容位移传感器,已知:极板尺寸ab4mm,极板间隙

00.5mm,极板间介质为空气。求该传感器静态灵敏度;若极板沿x方向移动2mm,求此时电容量。

6.5解:对于平板式变面积型电容传感器,它的静态灵敏度为:

kgC0b88.8510127.081011Fm1 a0 极板沿x方向相对移动2mm后的电容量为:

b(ax)8.8510120.00421.4161013F C00.5

6.6 已知:圆盘形电容极板直径D50mm,间距00.2mm,在电极间置一块厚0.1mm的云母片(r7),空气(01)。求:①无云母片及有云母片两种情况下电容值C1及C2是多少?②当间距变化0.025mm时,电容相对变化量

C1/C1及C2/C2是多少?

S8.8510123.142.5103103.4710F 6.6解:1)C140210

8.8510123.142.5103C26.081010F41100ddr11047S

0d 2)令′dr,则

C100.0250.143

C1100.20.0250C20.025′ 0.280

C21′0.11430.025 ′6.7在压力比指示系统中采用差动式变间隙电容传感器和电桥测量电路,如图6-7

所示。已知:

δ0=0.25mm;D=38.2mm;R=5.1kΩ;Usr=60V(交流),频率f=400Hz。试求: (1)该电容传感器的电压灵敏度Ku (V/μm);

(2)当电容传感器的动极板位移△δ=10μm 时,输出电压Usc 值。

图6-7 6.7

07章 磁电式传感器

7.2 说明磁电感应式传感器产生误差的原因及补偿方法。

磁电感应式传感器两个基本元件,即永久磁铁和线圈,永久磁铁在使用前需要有稳定性处理,主要是线圈中电流产生的磁场对恒定磁场的作用(称为线圈磁场效应)是不能忽略的,需要采用补偿线圈与工作线圈相串联加以补偿。当环境温度变化较大时传感器温度误差较大,必须加以补偿。

7.3 为什么磁电感应式传感器的灵敏度在工作频率较高时,将随频率增加而下降?

7.3答:

因为磁电感应式传感器的灵敏度为(e/),振动频率过高时,线圈阻抗增大,使传感器灵敏度随振动频率增加而下降 7.4 什么是霍尔效应?

通电的导体(半导体)放在磁场中,电流与磁场垂直,在导体另外两侧会产生感应电动势,这种现象称霍尔效应。

7.5 霍尔元件常用材料有哪些?为什么不用金属做霍尔元件材料?

1)任何材料在一定条件下都能产生霍尔电势,但不是都可以制造霍尔元件。只有半导体材料适于制作霍尔元件。又因一般电子迁移率大于空穴的迁移率,所以霍尔元件多采用N型半导体制造。

2)金属材料电子浓度虽然很高,但电阻率很小很小,使霍尔电势UH很小,因此不适于做霍尔元件材料。

7.6 霍尔元件不等位电势产生的原因有哪些?

7.6答:

霍尔电势不为零的原因是,霍尔引出电极安装不对称,不在同一等电位面上;激励电极接触不良,半导体材料不均匀造成电阻率不均匀等原因

7.7 某一霍尔元件尺寸为L10mm,b3.5mm,d1.0mm,沿L方向通以电流

I1.0mA,在垂直于L和b的方向加有均匀磁场B0.3T,灵敏度为22V/(AT),试求输出霍尔电势及载流子浓度。

7.7解:

KH22V/(AT),I1.0mA,B0.3T输出霍尔电势: UHKHIB6.6mVL10mm,b3.5mm,de1.0mm,e1.61019载流子浓度为: nIB0.0010.31928.4110UHed0.00661.610190.001

7.9 霍尔元件灵敏度KH40V/(AT),控制电流I3.0mA,将它置于1104~

5104T线性变化的磁场中,它输出的霍尔电势范围有多大?

7.9解:

KH40V/(AT),I3.0mA,B11045104T输出霍尔电势范围是: 低端:UHKHIB12V 高端:UHKHIB60V

7.10解:

对于梯度为5kGs/mm 的磁场,当霍尔元件在平衡点附近作±0.1mm 的摆动时,其磁场的变化ΔB=±5kGs/mm×0.1mm=±0.5kGs 则霍尔元件输出电压的变化范围为

ΔUH = KH I•ΔB=1.2mV/mA•kGs×20mA×(±0.5kGs) =±12mV

7.10有一霍尔元件,其灵敏度KH=1.2mV/mA·kGs,把它放在一个梯度为

5kGs/mm 的磁场中,如果额定控制电流是20mA,设霍尔元件在平衡点附近作±0.1mm 的摆动,问输出电压范围为多少?

第08章 热电式传感器

8.1 什么是热电效应?热电偶测温回路的热电动势由哪两部分组成?由同一种

导体组成的闭合回路能产生热电势吗? 8.1答:

1)两种不同类型的金属导体两端分别接在一起构成闭合回路,当两个结点有温差时,导体回路里有电流流动会产生热电势,这种现象称为热电效应。

2)热电偶测温回路中热电势主要是由接触电势和温差电势两部分组成。 3)热电偶两个电极材料相同时,无论两端点温度如何变化无热电势产生

8.2 为什么热电偶的参比端在实际应用中很重要?对参比端温度处理有哪些方

法?:

1)实际测量时利用这一性质,可对参考端温度不为零度时的热电势进行修正。 2)因为热电偶的分度表均是以参考端T =0℃为标准的,而实际应用的热电偶参考端往往T≠0℃,一般高于零度的某个数值,此时可利用中间温度定律对检测的热电势值进行修正,以获得被测的真实温度。

8.4 试比较热电偶、热电阻、热敏电阻三种热电式传感器的特点。8.4答:热电偶、

热电阻、热敏电阻三种热电式传感器特点如下:

 热电偶可以测量上千度高温,并且精度高、性能好,这是其它温度传感器无法替代。  热电阻结构很简单,金属热电阻材料多为纯铂金属丝,也有铜、镍金属。金属热电

阻广泛用于测量-200~+850℃温度范围,少数可以测量1000℃。

 热敏电阻由半导体材料制成,外形大小与电阻的功率有关,差别较大。热敏电阻用

途很广,几乎所有家用电器产品都装有微处理器,这些温度传感器多使用热敏电阻。

8.5 某热电偶灵敏度为0.04mV/℃,把它放在温度为1200℃处的温度场,若指示

表(冷端)处温度为50℃,试求热电势的大小?

8.5解:

已知:热电偶灵敏度为0.04mV/℃,把它放在温度为1200℃处的温度场,若指示表(冷端)处温度为50℃,则

中间温度为:1200℃-50℃=1150℃; 热电势为: 0.04mV/℃×1150℃=46mV 或:

EAB(T,0)= EAB(T,1200)+ EAB(50,0)= 1200℃×0.04mV/℃-50℃×0.04mV/℃=46mV

8.6 某热电偶的热电势在E(600,0)时,输出E=5.257 mV,若冷端温度为0℃时,

测某炉温输出热电势E=5.267 mV。试求该加热炉实际温度是多少?8.6解: 已知:热电偶的热电势E(600.0,0)=5.257 mV,冷端温度为0℃时,输出热电势E=5.267 mV,

热电偶灵敏度为:K = 5.257 mV/600 = 0.008762 mV/℃

该加热炉实际温度是:T= E/K = 5.267 mV/0.008762 mV/0℃ = 601.14℃

8.7 已知铂热电阻温度计0℃时电阻为100, 100℃时电阻为139Ω,当它与某热

介质接触时,电阻值增至281Ω,试确定该介质温度。(查分度表)

8.7解:

已知:铂热电阻温度计0℃时电阻为100,100℃时电阻为139Ω; 可通过查表得:当电阻值增至281Ω时,介质温度为500℃。

第09章 超声波传感器

9.1 什么是超声波?其频率范围是多少?9.1答:

1)超声波是人耳无法听到的声波。人耳听见的声波称机械波,频率在16Hz~20kHz,一般说话的频率范围在100Hz~8kHz之间,低于20Hz频率的波称为次声波,高于20kHz频率的波称超声波,频率在300MHz~300GHz之间的波称为微波。 2)超声波频率范围在几十千赫兹到几十兆赫兹,

9.2 超声波在通过两种介质界面时,将会发生什么现象?

9.2答:

当超声波从一种介质入射到另一种介质时,在界面上会产生反射、折射和波形转换。

9.3 超声波传感器的发射与接收分别利用什么效应,检测原理是什么?常用的超声波传感器(探头)有哪几种形式?简述超声波测距原理。

9.3答:

1)超声波传感器主要利用压电材料(晶体、陶瓷)的压电效应,其中超声波发射器利用逆压电效应制成发射元件,将高频电振动转换为机械振动产生超声波;超声波接收器利用正压电效应制成接收元件,将超声波机械振动转换为电信号。

2)按工作形式简单超声波传感器有专用型和兼用型两种形式,兼用型传感器是将发射(TX)和接收(RX)元件制作在一起,器件可同时完成超声波的发射与接收;专用型传感器的发送(TX)和接收(RX)器件各自独立。按结构形式有密封性和开放型,超声波传感器上一般标有中心频率(23kHz、40kHz、75kHz、200kHz、400kHz),表示传感器工作频率。

9.4 利用超声波测厚的基本方法是什么?已知超声波在工件中的声速为5640m/s,测得的时间间隔t为22s,试求工件厚度9.4

1)通过测得超声波脉冲从发射到接收的时间间隔t和超声波在介质中传播速度,便可以求得待测的厚度或物位。

2)解:

已知:5640m/s,t1t222s由t2h/,得到工件厚度ht/262.04m

第10章 光电式传感器

10.1什么是内光电效应?什么是外光电效应?说明其工作原理并指出相应的典型光电器件。

10.1答:当用光照射物体时,物体受到一连串具有能量的光子的轰击,于是物体材料中的电子吸收光子能量而发生相应的电效应(如电阻率变化、发射电子或产生电动势等)。这种现象称为光电效应。

1)当光线照在物体上,使物体的电导率发生变化,或产生光生电动势的现象叫做内光电效应,内光电效应又分为光电导效应和光生伏特效应。入射光强改变物质导电率的物理现象称光电导效应,典型的光电器件有光敏电阻;光照时物体中能产生一定方向电动势的现象叫光生伏特效应,光电池、光敏晶体管。

2)在光线作用下,物体内的电子逸出物体表面向外发射的现象称为外光电效应,典型的光电器件有光电管、光电倍增管。

10.2普通光电器件都有哪些主要特性和参数?10.2答:

光照特性;光谱特性;伏安特性;温度特性;频率特性等

10.3什么是光敏电阻的亮电阻和暗电阻?暗电阻电阻值通常在什么范围?

10.3答:

暗电阻,无光照时的电阻为暗电阻,暗电阻电阻值范围一般为0.5~200MΩ;

亮电阻、受光照时的电阻称亮电阻,亮电阻的阻值一般为0.5~20KΩ。 10.4试述光敏电阻、光敏二极管、光敏三极管和光电池的工作原理。 10.5光敏二极管与普通二极管在使用时有什么不同?请说明原理。

10.6光敏三极管与普通三极管的输出特性是否相同?主要区别在哪里?

10.7采用波长为0.8~0.9m的红外光源时,宜采用哪种材料的光电器件做检测元件?为什么?

1)采用波长为0.8~0.9m的红外光源时,宜采硅光电池或硅光敏管,其光谱响应峰值在0.8m附近,波长范围在0.4~1.2m。

2)其中硅光电池适于接受红外光,可以在较宽的波长范围内应用

10.8根据构造形式不同,光电式传感器常见的有哪些类型?10.8答:反射式、透射

式、辐射式、开关式

10.10光电传感器控制电路如图10-10

所示,试分析电路工作原理:① GP—IS01是什么器件,内部由哪两种器件组成?② 当用物体遮挡光路时,发光二极管LED有什么变化?③ R1是什么电阻,在电路中起到什么作用?如果VD二极管的最大额定电流为60mA, R1应该如何选择?④ 如果GP—IS01中的VD二极管反向连接,电路状

态如何?晶体管VT 、LED如何变化?

图10-10

10.10电路分析:

1)GP—IS01是光电开关器件,内部由发光二极管和光敏晶体管组成;

2)当用物体遮挡光路时,Vg无光电流VT截止,发光二极管LED不发光;

3)R1是限流电阻,在电路中可起到保护发光二极管VD的作用;如果VD二极管的最大额定电流为60mA,选择电阻大于R1 =(12V-0.7)/0.06 = 188.3Ω。

4)如果GP—IS01中的VD二极管反向连接,Vg无光电流VT截止,发光二极管LED不发光;电路无状态变化。

第11章 数字式传感器

11.1

一个21码道的循环码码盘,其最小分辨力θ1=?若每一个θ1角所对应的圆弧长度至少为0.001mm,且码道宽度为1mm,则码盘直径多大? 解:

11.2

绝对编码器与增量编码器的区别。 11.3

在光码盘系统中通常有一个柱面透镜或一个透镜组加在光源与码盘之间,它的作用是什么? 将光源的光线变为平行光束,垂直照射到码盘上。 11.4

二进制码盘的缺点有哪些?克服这些缺点的方法主要有哪两种? 刻划误差造成粗大误差,利用双光头方法或利用循环码盘。 11.5

循环码的特点。

无权码,相邻数字之间只有1位不同,不会产生粗大误差。 11.6

循环码与二进制码之间的转换方法。试将二进制码0110转换为循环码(写出计算过程)。 0101

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务