您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页2013.1.1统计计算题参考答案

2013.1.1统计计算题参考答案

来源:爱go旅游网


分配数列

1.根据所给资料分组并计算出各组的频数和频率,编制次数分布表;根据整理表计算算术平均数。

习题1:某单位40名职工业务考核成绩分别为: 68 89 88 84 86 87 75 73 72 68 75 82 97 58 81 54 79 76 95 76 71 60 90 65 76 72 76 85 89 92 64 57 83 81 78 77 72 61 70 81

单位规定:60分以下为不及格,60─70分为及格,70─80分为中,80─90分为良,90─100分为优。 要求:

(1)将参加考试的职工按考核成绩分为不及格、及格、中、良、优五组并编制一张考核成绩次数分配表; (2)指出分组标志及类型及采用的分组方法;

(3)根据考核成绩次数分配表计算本单位职工业务考核平均成绩; (4)分析本单位职工业务考核情况。 解答:

(1)该企业职工考核成绩次数分配表: 成 绩(分) 不及格(60以下) 及格 (60-70) 中 (70-80) 良 (80-90) 优 (90-100) 合 计 职工人数(人) 频率(%) 3 6 15 12 4 40 7.5 15 37.5 30 10 100

(2)此题分组标志是按“成绩”分组,其标志类型是“数量标志”; 分组方法是“变量分组中的组距式分组的等距分组,而且是开口式分组”;

(3)根据考核成绩次数分配表计算本单位职工业务考核平均成绩。 xf35566515751285495x77(分)

f40

(4)分析本单位职工考核情况。

本单位的考核成绩的分布呈两头小,中间大的“钟形分布”(即正态分布),不及格和优秀的职工人数较少,分别占总数的7.5%和10%,本单位大部分职工的考核成绩集中在70-90分之间,占了本单位的为67.5%,说明该单位的考核成绩总体良好。

计算加权算术平均数、加权调和平均数(已知某年某月甲、乙两农贸市场A、B、C三种农产品价格和成交量、成交额资料,试比较哪一个市场农产品的平均价格 较高?并说明原因。)、标准差、变异系数

2.根据资料计算算术平均数指标;计算变异指标;比较平均指标的代表性。

习题2.某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,标准差为9.6件;乙组工人日产量资料如

 第1页,共15页

下:

日产量(件) 工人数(人)

15 15 25 38

35 34

45 13

要求:⑴计算乙组平均每个工人的日产量和标准差;

⑵比较甲、乙两生产小组哪个组的日产量更 有代表性? 标准差的计算参考教材P102页. 解:

xfx=f乙1515253835344513295029.51538341310080758.986100

乙=2xxff

9.6V甲=0.267V乙=xx36

8.9860.304629.5

V甲V乙甲组更有代表性。

习题3.甲、乙两个生产小组,甲组平均每个工人的日产量为36件,

标准差为9.6件;乙组工人日产量资料如下:

日产量(件) 10-20 20-30 30-40 40-50 工人数(人) 18 39 31 12 计算乙组平均每个工人的日产量,并比较甲、乙两生产小组哪个组的 日产量更有代表性? 解答:

xf15182539353145122870x=28.718393112100f

乙乙=xxf2f83319.127100

9.1279.6=0.32V甲=0.267V乙x28.7x36

 第2页,共15页

V甲V乙甲组更有代表性。

抽样推断

计算抽样平均误差、简单随机抽样条件下估计总体平均数和总体成数的区间范围和总量指标的区间范围。

3.采用简单重复抽样的方法计算成数(平均数)的抽样平均误差; 根据要求进行成数(平均数)的区间估计及总数的区间估计。

习题1:某工厂有1500个工人,用简单随机重复抽样的方法抽 出50个工人作为样本,调查其月平均产量水平,资料如下: 日产量(件) 工人数(0人) 524 4 534 6 540 9 550 10 560 8 580 6 600 4 660 3 要求:(1)计算样本平均数和抽样平均误差。

(2)以95.45%(t=2)的可靠性,估计该厂工人的月平均产量 和总产量的区间。

解答: n=50, N=1500,t=2

(1)计算样本平均数和抽样平均误差

xfxf5244534654095501056085806600466035020963204486055004480348024001980502800056件050标准差s

(xx)f2f

129646766400910010084006160041000035051844056360010000240064003000025640512.8505032.45件

计算重复抽样的抽样平均误差:

第3页,共15页

uxsn32.45504.59

(2)以95.45%的可靠性估计该厂工人的月平均产量和总产量的区间。 计算重复抽样的抽样极限误差:

xtux24.599.18

该厂工人的月平均产量重复抽样的区间范围是:

xxXxx

5609.18X5609.18

550.82X569.18

则,该厂工人的月平均产量区间范围是在550.82件至569.18件之间。 总产量为:550.82*1500=826230件 569.18*1500=853770件

该厂工人的总产量的区间范围是在826230件至853770件之间。

习题2:采用简单随机重复抽样的方法,在2000件产品中抽查200件, 其中合格品190件. 要求:(1)计算合格品率及其抽样平均误差

(2)以95.45%的概率保证程度(t=2)对合格品率和合格品数量进 行区间估计。 解答:

已知: n=200 N=2000 F(t)=95.45% t=2 (1)合格品率:

n1190n200=95% p=

合格品率的抽样平均误差:

p1p0.9510.950.0154或1.54%n200ptp20.01540.0308p

(2)合格品率的区间范围: 下限=上限=

xx0.950.030891.92%

xx0.950.030898.08%

即合格品率的区间范围为:91.92%--98.08%

合格品数量的区间范围为:91.92%*2000----98.08%*2000 1838 .4件~1961.6件之间.

习题3.外贸公司出口一种食品, 规定每包规格不低于150克,现在用重复抽样的方法抽取其中的100包进行检验,

第4页,共15页

其结果如下:

每包重量(克) 包 数

148-149 10 149-150 20 150-151 50 20 151-152 —— 100 要求:(1)以99.73%的概率估计这批食品平均每包重量的范围,以便确定平均重量是否达到规格要求;

(2)以同样的概率保证估计这批食品合格率范围。

70p0.7100解:

xf15030x150.3f100

2xxff0.87

xn0.871000.087

xt30.0870.261xx150.30.261即150.04,150.561pp(1p)0.0458n

ptp30.04580.1374pp0.70.1374即0.5626,0.8374

相关与回归分析

计算相关系数、建立回归方程并解释回归系数的含义、预测因变量的估计值。

4.计算相关系数;建立直线回归方程并指出回归系数的含义;利用建 立的方程预测因变量的估计值。

习题1.某企业上半年产品产量与单位成本资料如下:

月 份 1 产量(千件) 单位成本(元) 2 73 第5页,共15页

2 3 4 5 6 3 4 3 4 5 72 71 73 69 68 要求: (1)计算相关系数,说明两个变量相关的密切程度。 (2)配合回归方程,指出产量每增加1000件时,单位成本 平均变动多少?

(3)假定产量为6000件时,单位成本为多少元? 解答: 回归方程计算表:

月份 产量x 单位成本y x2 y2 1 2 3 4 5 6 2 3 4 3 4 5 73 72 71 73 69 68 426

xy 146 216 284 219 276 340 4 9 16 9 16 25 5329 5184 5041 5329 4761 4624 合计 21 n=6

x=21

79 30268 1481 y=426

x2=79

y2=30268 xy=1481

xy(1) 相关系数:

rx21xyn

1(x)2n1y2(y)2n=-0.9090

说明产量x和单位成本y之间存在着高度负相关关系。

见教材183

(2)设直线回归方程为yc=a+bx n=6

x=21

y=426

x2=79

y2=30268 xy=1481

xy

1xynb21x(x)2n

= (1481-1/6*21*426)/(79-1/6*21*21)=-1.82

aybx=426/6-(-1.82)*21/6=77.37 则yc=77.37-1.82x

在这里说明回归系数b的含义 ,即产量每增加1000件时, 单位成本平均降低1.82元 .

第6页,共15页

(3)假定产量为6000件,即x=6时,单位成本为: 则yc=77.37-1.82x =77.37-1.82*6 =66.45(元) .

即单位成本为: 66.45元.

习题2.根据企业产品销售额(万元)和销售利润率(%)资料计算出如下数据: n=7

x=1890

y=31.1

x2=535500

y2=174.15

xy=9318

要求: (1) 确定以利润率为因变量的直线回归方程. (2)解释式中回归系数的经济含义.

(3)当销售额为500万元时,利润率为多少? 参考答案:

(1) 确定以利润率为因变量的直线回归方程: Y=-5.5+0.037x

(2)解释式中回归系数的经济含义:

产品销售额每增加1万元,销售利润率平均增加0.037%.

(3)当销售额为500万元时,利润率为: Y=12.95%

统计指数

数量指标综合指数、质量指标综合指数的计算; 加权算术平均数指数和加权调和平均数指数的计算; 从相对数和绝对数角度对总量指标的变动进行因素分析。

5.计算综合指数及平均指数(加权、调和)并同时指出变动绝对值、计算平均数指数。

习题1:某企业生产两种产品的资料如下: 产品 甲 乙 单位 件 公斤 产 量q 基期 50 150 计算期 60 160 单位成本p(元) 基期 8 12 计算期 10 14 要求:

(1)计算两种产品总成本指数及总成本变动的绝对额;

(2)计算两种产品产量总指数及由于产量变动影响总成本的绝对额; (3)计算两种产品单位成本总指数及由于单位成本影响总成本的绝对额。

解答:(1)计算两种产品总成本指数及总成本变动的绝对额; 产 量q 甲 乙 单位 件 公斤 基期q0 50 150 计算期q1 60 160 单位成本p(元) 基期p0 8 12 计算期p1 10 14 第7页,共15页

pqpq101010601416060022402840129.09%8501215040018002200

总成本变动绝对额:

pqpq110028402200640(元)

(2)计算两种产品产量总指数及由于产量变动影响总成本的绝对额;

产量总指数:

pqkpq0q01086012160850121502400109.09%2200

由于产量变动而增加的总成本:

(3)计算两种产品单位成本总指数及由于单位成本影响总成本的绝对额。

单位成本总指数:

0100pqpq24002200200(元)pqkpq1p011106014160860121602840118.33%2400

由于单位成本而增加的总成本:

pqpq110128402400440(元)

总结:以上计算可见: 通过指数体系分析如下:

总成本指数=产量总指数 * 单位成本总指数

pqpq1010pqpq0010pqpq1011

129.09% = 109.09% * 118.33%

总成本变动绝对额=产量变动绝对额+单位成本变动绝对额

pq11pq00(pq01pq)(pq0011pq)01

第8页,共15页

640= 200 + 440

可见,两种产品的总成本增加了29.09%, 增加了640元;其中由于 产量增加了9.09%, 而使总成本增加了200元,由于单位成本增加了 18.33%,而使总成本增加了440元。

习题2.某企业生产三种产品的资料如下:

产品 甲 乙 丙 单位 件 公斤 台 产 量 基期 100 500 150 计算期 120 500 200 单位成本(元) 基期 15 45 9 计算期 10 55 7 要求:

(1)计算三种产品单位成本总指数及由于单位成本影响总成本的绝对额。 (2)计算三种产品产量总指数及由于产量变动影响总成本的绝对额; (3)计算三种产品总成本指数及总成本变动的绝对额; 解答:(1)三种产品的单位成本总指数:

kppqpq1011101205550072001512045500920030100115.33%26100

由于单位成本而增加的总成本:

pqpq30100261004000(元)

1101(2)三种产品的产量总指数:

kqpqpq0010151204550092001510045500915026100102.96%25350

由于产量变动而增加的总成本:

pqpq01002610025350750(元)

(3)指数体系分析如下:

总成本指数=产量总指数*单位成本总指数

pqpqpqpqpqpq110110000011301002610030100253502535026100

118.7%102.96%115.33%

总成本变动绝对额=产量变动绝对额+单位成本变动绝对额

第9页,共15页

pqpq1100(p0qpq)(pqpq)10011013010025350(2610025350)(3010026100) 可见,三种产品的总成本增加了18.7%, 增加了4750元;其中由于产量 增加了2.96%, 而使总成本增加了750元,由于单位成本增加了15.33%, 而使总成本增加了4000元。

习题3.某商店两种商品的销售额和销售价格的变化情况如下:

销售额pq(万元) 商品 甲 乙 单位 米 件 1995p0q0 120 40 年1996p1q1 130 36 年1996年比1995年 销售价格提高(%)p1/po 10 12 47507504000要求:

(1)计算两种商品销售价格总指数和由于价格变动对销售额的影响绝对额。

(2)计算销售量总指数,计算由于销售量变动,消费者增加(减少)的支出金额。 解答:

销售价格总指数=

qpkqp13036166116.64%13036110.1832.14110%112%

由于价格上升支出的货币金额多:

=

qpkqp11111 =166-142.32=23.68(万元)

(2) 销售量总指数=销售额指数÷销售价格指数

qpqp1qpqpk111113036116.64%88.95%12040

由于销售量减少,消费者减少的支出金额:

销售量变动绝对额=销售额总变动额-销售价格绝对额

=(166-160)-(166-142.32) =-17.68(万元)

类似例题讲解如下: 某商店商品销售资料如下:

商品 销售额(万元) 2003年比2002年价格升降 第10页,共15页

类别 百货 食品 2002年 50 28 2003年 75 34 (%)p1/p0 -3 5 (1)试计算零售商品销售价格指数和销售量指数; (2)由于价格降低消费者少支出的货币金额。 解答:

(1)销售价格指数=

qp1kqp1111753475341-2%15%=99.53%

销售量指数=销售额指数÷销售价格指数

qpqp1qpqpk1111753499.53%140.40%5028

(2)由于价格降低少支出的货币金额

1q1p1q1p1109-109.51-0.51(万元)k

习题4.某商店三种商品的销售资料如下: 销售额pq(万元) 商品名称 甲 乙 丙 基期 p0q0 150 200 400 报告期p1q1 480 240 450 今年销售量 比去年增长% k=q1/q0 8 5 15 试计算:

⑴销售额指数及销售额增加绝对值。

⑵销售量指数及由销售量变动而增加的销售额。

(3)计算商品销售价格总指数和由于价格变动对销售额的影响绝对额。

qpqp解答:(1)销售额指数=10101170156%750(万元)

qpq110p01170750420Kpqpq0000150*108%200*105%400*115%750

(2)销售量总指数=832/750110.93%由于销售量增长10.93%,使销售额增加:

Kpqpq000083275082(万元)

习题5.某地区三个不同企业的劳动生产率和工人数资料如下表,试对该地区劳动生产率的变动进行因素分析。

第11页,共15页

XfXfff2892772.63

104.37% 1101102.52总劳动生产率指数:

劳动生产率固定构成指数110111

该地区各企业劳动生产率报告期与基期比较提高了4.37%,由于各企业

劳动生产率的提高而使每人增加的产值:

X1f1X0f1

2.632.520.11(万元)ff 11

X0f1X0f0 劳动生产率结构影响指数f1f0

该地区劳动生产率报告期与基期比较提高了7.35%,每人增加产值万元。 2772450.182.52 102.86% 1101002.45

由于该地区各企业工人数结构的变动使劳动生产率提高

了2.86%,使每人增加的产值:

X0f1X0f0 2.522.450.07(万元) f1f0

X1X1f1X0f02892452.63 107.35%1101002.45X0f1f0 X1f1X0f02.632.450.18(万元/人)

f1f0

第12页,共15页

三者之间的关系:

时间数列

计算各期环比、定基发展速度、增长速度、年平均增长量、 平均发展速度、平均增长速度;

求解an;时期数列和间断时点数列序时平均数的计算。

6.根据资料计算序时平均数(总量指标及相对、平均指标动态数列);根据资料利用平均发展速度指标公式计算期末水平。

习题1.某商店2007年商品库存资料如下: (单位:万元) 1月1日: 5.2; 7月3l日: 3.6; 1月31日: 4.8; 8月3l 日: 3.4; 2月28日: 4.4; 9月30日: 4.2; 3月31日: 3.6; 10月 31日: 4.6; 4月30日: 3.2; 11月30日: 5.0; 5月31日: 3.0; l2月31日: 5.6。 6月30日:4.0;

根据上述资料,计算各季度平均库存额和全年平均库存额。 解:根据

aa1a2an1n2a2104.37%102.86%n1107.35% 5.23.64.84.420.180.1120.07 3得:第一季度平均库存额==4.5万元

第二季度平均库存额=3.3万元

第三季度平均库存额=3.7万元 第四季度平均库存额=4.8万元

4.53.33.74.84全年平均库存额==4.41万元。

习题2:某企业总产值和职工人数的资料如下:

月 份 3 4 5 6 第13页,共15页

月总产值(万元) 月末职工人数(千人) 1150 6.5 1170 6.7 1200 6.9 1370 7.1

试计算该企业第二季度平均每月全员劳动生产率(元/人)

c解:根据公式

ab

a117012001370a1246.67n3(万元)

aa1a2an1n2a2n1

6.57.16.76.926.8b241 (千人)

第二季度月平均全员劳动生产率为

c

1246.67183.336.8(万元/千人)

=1833.33(元/人)

习题3:某地区历年粮食产量资料如下: 年份 粮食产量 (万斤) 1995 300 1996 472 1997 560 1998 450 1999 700 要求:(1)计算各年的逐期增长量、累积增长量、环比发展速度、定基发展速度;

(2)计算1995年-1999年该地区粮食产量的年平均增长量和粮食产量的年平均发展速度;

(3)如果从1999年以后该地区的粮食产量按8%的增长速度发展,2005年该地区的粮食产量将达到什么水平?

解答:

(1)计算各年的逐期增长量、累积增长量、环比发展速度、定基发展速度; 计算结果如下表:

时间 粮食产量(万斤) 逐期增长量(万斤) 累计增长量(万斤) 环比发展速度(%) 定基发展速度 (%) 1995 300 - - 1996 472 172 172 157.3 157.3 1997 560 88 260 118.6 186.7 1998 450 -110 150 80.4 150 1999 700 250 400 155.6 233.3 (2)计算1995年-1999年该地区粮食产量的年平均增长量和粮食 产量的年平均发展速度;

第14页,共15页

粮食产量的年平均增长量=( 700-300)÷4=100(万斤)

n粮食产量的年平均增长速度=

an7001411.241a0300=24%

(3)如果从1999年以后该地区的粮食产量按8%的增长速度发展, 2005年该地区的粮食产量将达到什么水平?

2005年该地区的粮食产量:

x700(18%)61586.87(万斤)

第15页,共15页

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务