FullArticleforEvolutionoffreshwaterplumesandsalinityfrontsinthenorthernBayofBengal
LingjuanWu,1,2,3FanWang,1DongliangYuan,1andMaochangCui1Received21September2005;revised20March2007;accepted8May2007;published31August2007.
[1]Theevolutionoffreshwaterplumesandtheassociatedsalinityfrontsinthe
northernBayofBengal(henceforththebay)isstudiedusingrotatedempirical
orthogonalfunction(REOF)analysisandextendedassociatepatternanalysis(EAPA).Theresultsshowthatseasurfacesalinitydistributionisfeaturedbyeastern-bayandwestern-bayplumesinthenorthernbayduringdifferentseasons.Thewestern-bayplumebeginsinearlyJuly,peaksinlateAugust,andthenturnsintoabay-shapedplumewiththetwoplumesineithersideofthebay,whichpeaksinlateOctober.Thesouthwardextensionofthewestern-bayplumecanbeexplainedbythesouthwestwardgeostrophicflowassociatedwiththecyclonicgyreinthenorthernbay,whichcountersthenortheastwardEkmandriftdrivenbywindstress.Theoffshoreexpansionofthewestern-bayplumeisinducedbytheoffshoreEkmandriftwhichalsoproducesasalinityfrontneartheeastcoastofIndia.Thebay-shapedplumeappearswhenthecyclonicgyreshiftswestwardandaweakanticyclonicgyreoccupiesthenortheasternbay.Astheseasonadvances,thewesternpartofthebay-shapedplumedecayswhiletheeasternpartpersistsuntilthefollowingJune,whichisbelievedtobeassociatedwiththeanticyclonicgyreinthenorthernbay.Theevolutionoftheplumesexcepttheeasternpartofthebay-shapedplumeinfallcanbepartlyexplainedbytheseasonalvariationofmasstransportassociatedwiththeSverdrupbalance.Thefactthatthewestern-bay(eastern-bay)plumeappearswhensurfacefreshwaterfluxinthe
northeasternbayincreases(decreases)dramaticallysuggeststhattheplumesarenotproduceddirectlybysurfacefreshwaterflux.Riverdischargeseemstobethe
freshwatersourcefortheplumesandhaslittletodowiththeevolutionoftheplumes.
Citation:Wu,L.,F.Wang,D.Yuan,andM.Cui(2007),EvolutionoffreshwaterplumesandsalinityfrontsinthenorthernBayofBengal,J.Geophys.Res.,112,C08017,doi:10.1029/2005JC003308.
1.Introduction
[2]TheBayofBengal(hereafterreferredtoasthebay)isthefreshestregionintheIndianOceanbecauseofdirectmonsoonalrainfallandlargeriverrunofffromtheborderingcountries.MajorriverssuchasBrahmaputra,Ganges,Irrawaddy,Godavari,MahanadiandKrishna(Figure1)dischargeabout1.5Â1012m3/yroffreshwaterintothebay[Martinetal.,1982],andtherateofrainfallrangesbetween1–3m/yrinthewholebay[BaumgartnerandReichel,1975].HanandMcCreary[2001]showsthatwhenbothriverinflowsandsurfacefreshwaterflux(precipitationminusevaporation)areincludedina4.5layermodel,thesalinitysimulationintheupperIndianOceanaresignificantlyimprovedincomparisonwiththatforcedonlybysurfacefreshwaterflux,especiallyinthenorthernbayandalongthe
InstituteofOceanology,ChineseAcademyofSciences,Qingdao,China.
2NorthChinaSeaBranchofStateOceanicAdministration,Qingdao,China.
3GraduateSchooloftheChineseAcademyofSciences,Beijing,China.Copyright2007bytheAmericanGeophysicalUnion.0148-0227/07/2005JC003308$09.00
1eastcoastofIndia.RaoandSivakumar[2003]showedthatthepeakdischargefrommajorriversandadvectionbyoceancurrentareimportanttothepronounceddilutioninthecoastalnorthwesternbayareaduringtheheightofsummermonsoon.[3]Existingstudieshavemostlyfocusedonthefreshwa-terdistributioninthewesternpartofthebayinsummer.Afreshwaterplumenorthofabout17°NwasobservedalongtheeastcoastofIndiaduringJuly–August1989.TheplumewaspushedoffshorebyupwellingfavorableEkmantrans-port,whichalsoproducedasalinityfrontneartheeastcoastofIndia[Shetyeetal.,1991].ThesouthwardfreshwaterextensionwasexplainedusingthesteadystateSverdruptheory,whichlinksthemeridionaltransportintheopenbasintowindfieldbyShetye[1993].Theplumebetween85°Eand87°EwasthoughttobecausedbyEastIndiaCoastalCurrent(EICC),carryingfreshwaterfromriverBrahmaputraandGangessouthward[Sarmaetal.,1999].FourdifferentdrivingmechanismshavebeenproposedtoaccountforEICCvariability:interiorEkmanpumping,localalongshorewinds,remotealongshorewindsadjacenttothenorthernandeasternboundariesofthebayandremoteforcingfromtheequator.Shetyeetal.[1993]proposedthatEkmanpumpingintheinteriorbayisthe
1of13
C08017
C08017WUETAL.:FRESHWATERPLUMESANDSALINITYFRONTSINBAYOFBENGALC08017
Figure1.Bottomtopographyofthebay(m)andmajorrivers.TheparallelogramregionenclosedinthicklineisusedinFigure5.
primaryforcingmechanismofthenortheastwardEICCfromFebruarytoMay.McCrearyetal.[1993]suggestedthatforcingbybothlocalandremotealongshorewindsinfluencestheEICC.Shankaretal.[1996]showedthattheinteriorEkmanpumpingpartlycontributedtotheseasonalEICCcycleandthesuperpositionofforcingbylocalalongshorewindsandoffshoreEkmanpumpingyieldedamodelEICCinagreementwiththeshipdriftsfromJunetoDecember,buttheonsetofnorthwardflowinspringoccurredlaterthaninobservations.McCrearyetal.[1996]extendedtheShankaretal.[1996]studybyusingalinearnumericalmodeltoinvestigatetherelativecontri-butionsofthefourprocessesthatforcetheEICC.ModelresultsofPotemraetal.[1991],Yuetal.[1991]andMcCrearyetal.[1996]indicatedtheimportanceofremoteforcingfromtheequator.However,mostnumericalmodelsusuallyusedhighlysimplifiedbasingeometrywhereastheeasternboundaryofthetropicalIndianOceaniscomposedofachainofislands.Thecirculationinthenorthernbayisverycomplicatedandtheinfluenceofoceancirculationonthefreshwaterdistributioninthenorthernbay,especiallyinnortheasternbay,hasnotbeenstudiedyet.Inthepresentpaper,basedondatafromanoceangeneralcirculationmodel(OGCM)fortheEarthSimulator(OFES),theevo-lutionanditspossiblemechanismofthefreshwaterplumesinthenorthernbaywillbediscussed.
Model(MOM3)developedatGeophysicalFluidDynam-icsLaboratoryofNationalOceanicandAtmosphericAdministration(GFDL/NOAA),areusedtostudytheevo-lutionofthefreshwaterplumesoverthebay(5°N–25°N,75°E–100°E).Thiseddy-resolvingsimulationhasbeenintegratedfrom1950to1999forcedwithmonthlymeanmomentum,heatandsalinityfluxesofNCEP/NCARreanal-ysis.AdditionalrestoringtothemonthlymeanSSSofWorldOceanAtlas1998[Boyeretal.,1998]atarelaxationtimescaleof6daysisused.TheKPPboundarylayermixingschemeisemployedfortheverticalmixing.DetailsofOFESisgivenbyMasumotoetal.[2004].
[5]ThedatasetofHamburgOceanAtmospherePara-metersandFluxesfromSatellitedata(HOAPS)withhorizontalgridspacingof0.5°,whichhasbeenderivedfromthepassivemicrowaveandinfraredsatellitedataoftheSpecialSensorMicrowave/Imager(SSM/I)andtheAdvancedVeryHighResolutionRadiometer(AVHRR)[Schulzetal.,1998;Grassletal.,2000],isemployedtoobtainfreshwaterfluxacrosstheseasurface.Thedailyanomaliesarerelativetoa4-yearmeanfrom1996to1999andaresmoothedwitha7-dayrunningmeanfilter.MonthlyclimatologyofriverdischargefromGlobalRunoffDataCentre(GRDC)isusedtodiscusstheinfluenceofriverdischargeontheevolutionofthefreshwaterplumes.MonthlymeansurfacewindstressfromEuropeanCentreforMedium-RangeWeatherForecasts(ECMWF)Re-Analysis40-year(ERA-40)isusedtocalculatesurfaceEkmandriftandbarotropicmasstransportassociatedwiththeSverdrupbalance.
[6]Rotatedempiricalorthogonalfunction(REOF)anal-ysisisbasedonvarimaxrotationwhichisknowntoyield
2.DataandMethods
[4]Dailyseasurfacesalinity(SSS)andseasurfaceheight(SSH)datafrom1January1996to31December1999fromOFES,whichisbasedontheModularOcean
2of13
C08017WUETAL.:FRESHWATERPLUMESANDSALINITYFRONTSINBAYOFBENGALC08017
Figure2.AnnualcycleoftheSSSfromOFESforthebay(psu).
stablespatialpatternsingeneral[Richman,1986;Chengetal.,1995].TwoindependentREOFspatialmodescanbeextractedeveniftheyhavesimilarpatternsbecauseREOFmodesdonotretaincompleteorthogonalityinspace.Associatepattern(orregressiondistribution)isdefinedasanoptimalfieldpatternrelatedtothegiventimeseriesbytheleastsquaresmethod,whichhasbeenwidelyusedinclimatestudies[Zoritaetal.,1992;vonStorchetal.,1993].Associatepatternanalysismaynotbeefficientinextractinginformationwithlongtimelagbecausetheanalysiscannottellhowmuchtheassociatepatterniscorrelatedtothegiventimeseries.Toovercomethisshortcoming,extendedassociatepatternanalysis
(EAPA)hasbeenproposedbyCuietal.[2004a](seedetailsinAppendixA),whichhasbeenusedtostudythemechanismoftheElNin˜ophenomenon[CuiandWu,2005]andthesurfacehydrographyandcirculationvaria-tionsoftheChinaseas[Cuietal.,2004b;WuandCui,2005].
3.SeasonalVariationsofSSS,SSH,SurfaceFreshwaterFlux,EkmanDrift,andGeostrophicFlows
[7]Figures2–4showtheannualcycleofSSS,SSHandfreshwaterflux,respectively.ItisevidentinFigure2that
3of13
C08017WUETAL.:FRESHWATERPLUMESANDSALINITYFRONTSINBAYOFBENGALC08017
Figure3.SameasFigure2,exceptforSSH(cm).Valueslessthan50areshaded.
thelow-salinityareainnorthernbayiscomposedoftwofreshwaterplumesduringdifferentseasons.Theplumesinthenortheasternandnorthwesternbayarecalledtheeastern-bayplumeandwestern-bayplume,respectively.InJuly,freshwaterspreadsrapidlyalongthewesternboundaryofthebayandthewestern-bayplumenorthof12°Nforms,whichpersistssteadilyuntilSeptemberwhilespreadsoff-shore.AnearshoresalinityfrontalongtheeastcoastofIndiaappearsduringthisperiod.DuringOctober–December,abay-shapedplumeincludingboththeeastern-bayandwestern-bayplumesformsinthenorthernbay.IntheJanuary
ofthenextyear,thewesternpartofthebay-shapedplumedisappearswhiletheeasternpart(i.e.,theeastern-bayplume)persistsuntilJune.
[8]Figure3showsthesimulatedmonthlymeanSSHfields,whichexhibitacyclonicgyreoverthenorthernbayfromJunethroughSeptember.Thegyreshiftssouthwest-wardinfall,movessouthwardinwinterandisreplacedbyananticyclonicgyreinspring.Thesimulatedcirculationpatternsaresimilarwiththosederivedfromtheship-driftcurrents,shipboardsurveys[Shetyeetal.,1991,1993,
4of13
C08017WUETAL.:FRESHWATERPLUMESANDSALINITYFRONTSINBAYOFBENGALC08017
Figure4.SameasFigure2,exceptforsurfacefreshwaterfluxfromHOAPS(m/month).
1996],andTOPEX/POSEIDONaltimeter[Basuetal.,2000;EigenheerandQuadfasel,2000].
[9]DuringMay–July,surfacefreshwaterfluxincreasesdramaticallyinthenorthernbay,especiallyinthenorth-easternbay.AfterJuly,surfacefreshwaterfluxinthenorthernbaydecreasesandbecomesnegativeinwinter,whichpersistsuntilMay.
[10]MonthlymeansurfaceEkmandriftandgeostrophicflowaveragedoverthediamondregion(Figure1)areplottedinFigure5.Thepositivevalueindicatesnorthwardflowalongthecoastandoffshoreflowacrosstheshelf.ItisevidentinFigure5that,fromJanuarythroughoutMay,bothEkmandriftandgeostrophicflowarenorthward,whichmightcontributetothedisappearanceofthewesternpartofthebay-shapedplume.Duringthesummermonsoon,thesouthwardextensionofthewestern-bayplumeisconsistentwiththealongshoregeostrophicflowwhilethealongshoreEkmandriftistothenorth,oppositetothedirectionoffreshwaterextension.Ontheotherhand,offshoreEkmandrift,whichisstrongerthantheonshoregeostrophicflow,explainsthesignificantoffshoreexpansionofthewestern-bayplume.Theassociatedupwellingmightexplainthe
5of13
C08017WUETAL.:FRESHWATERPLUMESANDSALINITYFRONTSINBAYOFBENGALC08017
Figure5.Surfacemonthlymeanoffshore(thicksolidline)andalongshore(thickdashedline)Ekmandrift(cm/s)averagedovertheparallelogramregion.Offshore(thinsolidline)andalongshore(thindashedline)geostrophicflows(cm/s)averagedoverthesameregion.Positivevaluesindicatenorthwardflowalongthecoastandoffshoreflowacrosstheshelf.
formationofthenearshoresalinityfront.Asthesummermonsoonrelaxes,theoffshoreandalongshoreEkmandriftweakenswhilethealongshoregeostrophicflowstrengthensrapidly,givingrisetothenarrowwestern-bayplumealongtheeastcoastofIndia.Withtheonsetofthewintermonsoon,bothEkmandriftandgeostrophicflowareonshoreandsouthward,whichisconsistentwiththepeakofsouthwardEICCinNovember.
4.REOFModesandExtendedAssociatedPatterns
[11]Figures6aand6bshowthefirstandsecondREOFspatialmodesofSSSanomalyinthebay,whichaccountfor61.6%and18.7%ofthetotalvariance,respectively.Thefirstmoderepresentsanareaoflowsalinity,followingtheshapeofthenorthernbayingeneral(calledthebay-shapedmodeinthefollowingtext).Thebay-shapemodeincludestheeastern-bayandwestern-bayplumes,anditstimeseriesindicatethattheamplitudeofthismodepeaksinlateOctober.Thesecondmodeindicatesthatthewestern-bayplumeandthesalinityfrontalongtheeastcoastofIndia(calledthewestern-baymodeinthefollowingtext).TheamplitudeofthismodepeaksinlateAugust.
[12]EAPAisusedtostudytheevolutionofboththewestern-bayandbay-shapedmodes.Theformerleadsthelatterbyaboutfortydays.SSS,SSHandsurfacefreshwaterfluxassociatepatternswithtimeleadsfromeighteentozeropentadsinreferencetothewestern-baymodearecalculatedandplottedonFigure7.Asshownintheappendix,takenwestern-baymodeasX,SSS,SSHandsurfacefreshwaterfluxfieldasY,thecorrelationcoefficientsbetweenthewestern-baymodeandtheassociatemodearemorethan0.5,andthevariancesexplainedbytheassociatepatternsareabout10%exceptthosewithtimeleadsexceeding9pentads(Figure8a).
[13]Fromeighteentothirteenpentadsbeforethepeaksofthewestern-baymode(i.e.,frommid-JunetoearlyJuly),SSSanomaliesspreadgraduallyalongtheeastcoastofIndia(Figures7aand7b,left).AfterearlyJuly(Figures7cand7d,left),western-bayplumereaches12°NandexpandsofftheeastcoastofIndia.Meanwhile,thenearshoresalinityfrontispresent,whichisconsistentwiththeSSSanomalyfields.ThissalinitypatternrepresentsthefreshwaterplumefromriverBrahmaputra,Ganges,KrishnaandGodavari,whichpeaksinlateAugust(Figure7e,left).
[14]Throughoutmid-JunetolateAugust,acyclonicgyredominatesthenorthernbaywithasouthwestwardcurrentalongthewesternboundaryandanorthwestwardcurrentalongtheeasternboundary(Figure7,middlecolumn).Thecyclonicgyremovesnortheastwardandbecomesstronger,whichenhancesthesouthwardfreshwaterextension.
[15]Surfacefreshwaterfluxincreasesdramaticallyinthenortheasternbayfrommid-JuneandpeaksinearlyJuly(Figures7aand7b,right).Surfacefreshwaterfluxinthenortheasternbayincreasesmorethanthatinthenorthwest-ernbay,suggestingthatthewestern-bayplumeisnotproducedbythesurfacefreshwaterflux.
[16]Similarly,SSS,SSHandsurfacefreshwaterfluxassociatepatternswithtimelagsfromminusfourtoninepentadsinreferencetothebay-shapemodeareplottedonFigure9.Theassociatepatternwithnine-pentadleadfromthebay-shapemodeisnotshownbecauseitissimilartothatwiththepeakofthewestern-baymode.Thecorrelationcoefficientsbetweenthebay-shapemodeandtheassociatemodearemorethan0.6withthevariancesexplainedbytheassociatepatternsmorethan30%(Figure8b).
[17]AfterlateAugust,lowsalinitystartstodistributealongboththewesternandeasterncoastsofthebay,especiallyintheestuariesofriverBrahmaputraandGanges;lowsalinityintheAndamanSeaindicatesthesouthwestwardexpansionoffreshwaterfromriverIrrawaddy(Figure9a,left).Consequently,theSSSpatternturnsintothebay-shapemode,whichreachesitsmaximumamplitudeinlateOctober(Figure9b,left).Thismodedecaysinmid-December(Figures9cand9d,left).
[18]DuringSeptember–December,thecyclonicgyreinthenorthernbayshiftssouthwardandwestward;aweakanticyclonicgyreoccupiesthenortheasternbay(Figure9,middlecolumn).Thecirculationpatternisconducivetothebay-shapeSSSmodeincludingboththeeasternandwesternplumesinthenorthernbay.Surfacefreshwaterfluxinthenortheasternbaydecreasessignificantlyfrommid-August(Figures7d,7e,9a,and9b)andnegativefreshwaterflux
6of13
C08017WUETAL.:FRESHWATERPLUMESANDSALINITYFRONTSINBAYOFBENGALC08017
Figure6.(a)Firstand(b)secondREOFspatialmodesofSSSanomalyforthebayandtimeseriesofthe(c)first(redline)andsecond(blueline)REOFmodes.
dominatesthenorthernbayafterOctober(Figures9cand9d),suggestingthattheeasternpartofthebay-shapemodeisnotproducedbythesurfacefreshwaterflux.
cyclonicgyreshiftswestwardandaweakanticyclonicgyreoccupiesthenortheasternbay.Asseasonadvances,thewesternpartofthebay-shapedplumedecayswhiletheeasternpartpersistsuntiltheJuneofthefollowingyear,whichisbelievedtobeassociatedwiththeanticyclonicgyreinthenorthernbay.
[21]Thereforeouranalysesindicatethattheoceancircu-lationinthenorthernbayplaysanimportantroleintheevolutionofthefreshwaterplumes.Tounderstandtheirforcingmechanism,thesteadystateSverdrupcirculationiscalculatedonthebasisof
b@Y=@x¼curlt;
ð1Þ
5.DiscussionandConclusions
[19]TheresultsoftheREOFanalysisandEAPAshowthatthelow-salinityareainthenorthernbayischaracter-izedbytheeastern-bayandwestern-bayplumesduringdifferentseasons.Thewestern-bayplumebeginsinearlyJuly,peaksinlateAugust,andturnsintoabay-shapedplumewiththetwoplumesineithersideofthebay.Thebay-shapedplumepeaksinlateOctoberandthentrans-formsintotheeastern-bayplumeintheJanuaryofthefollowingyear.
[20]Thesouthwardextensionofthewestern-bayplumeislikelyproducedbythesouthwestwardgeostrophicflowassociatedwiththecyclonicgyreinthenorthernbay,whichcountersthenortheastwardEkmandriftdrivendirectlybythewindstress.Theoffshoreexpansionofthewestern-bayplume,ontheotherhand,isinducedbytheoffshoreEkmandriftwhichalsoproducesanearshoresalinityfront.Thebay-shapedplumeappearswhenthe
whereb=@f/@yrepresentsthevariationofCoriolisparameterfwithlatitude,curltindicatesthewindstresscurl,Ystandsfortheverticallyintegratedtransportstreamfunction.
[22]ItisevidentinFigure10thatfromJanuarythroughApril,ananticyclonicpatternofSverdruptransportoccu-piesthewholebay,withasoutheastwardflowalongtheeasternboundaryofthebayandnortheastwardflowalong
7of13
C08017WUETAL.:FRESHWATERPLUMESANDSALINITYFRONTSINBAYOFBENGALC08017
Figure7.SSS(psu,left),SSH(cm,middle),andsurfacefreshwaterflux(mm/d,right)associatedpatternswithtimeleadsfromeighteentozeropentadsinreferencetothewestern-baymode.
8of13
C08017WUETAL.:FRESHWATERPLUMESANDSALINITYFRONTSINBAYOFBENGALC08017
Figure8.(a)Correlationcoefficientsbetweenthewestern-baymodeandtheassociatedmode(solidline),andvariancesexplainedbyassociatepatternsfortimeleadsfromeighteentozeropentadsinreferencetothewestern-baymode(dashedline).(b)SameasFigure8aexceptfortimelagsfromminusninetoninepentadsinreferencetothebay-shapemode.
thewesterncoastofthebay.Thepatternsuggeststhatthedecayofthewesternpartofthebay-shapedplumeandthepersistenceoftheeasternpartarerelatedwiththeanticy-clonicpatternofSverdruptransport.DuringJune–Septem-ber,acyclonicpatternnorthof16°NisenclosedbyasouthwestwardcurrentalongtheeastcoastofIndia,correspondingtotheformationandpersistenceofthewestern-bayplumeinsummer.FromSeptembertoDecem-ber,thecyclonicpatternmoveswestwardandsouthward.Thesouthwestwardcoastalflowshiftssouthward.Thepatternisconsistentwiththenarrowwesternpartofthebay-shapedplumeobservedinfall.However,theSverdrupflowalongtheeasternbayistothenorth,whichisoppositetotheexpansionoftheeasternpartofthebay-shapedplumeinfall.ThereforetheseasonalvariationofSverdrupcirculationcontributestotheevolutionoftheplumesexcepttheeasternpartofthebay-shapedplumeinfall.[23]However,thewestern-bayplumeappearsafterJunewhenthefreshwaterfluxincreasesdramaticallyinthenortheasternbay.Theeasternpartofthebay-shapedplumeinfallispresentwhenthefreshwaterfluxdecreasessignificantlyinthenortheasternbay.Theeastern-bayplumeexistsfromJanuarytoJunewhennegativefreshwaterfluxdominatesinthenorthernbay.Thepatternsimplythattheplumesarenotdirectlyproducedbysurfacefreshwaterflux.
[24]Theseasonalcycleofthefreshwaterdischargefrommajorriverssurroundingthenortherncoastsofthebayexperiencestwophases(Figure11).OneisthefloodphasefromJunetoOctober,duringwhich,theremarkablede-creaseinSSSisassociatedwiththepeakdischargefrommajorriverssurroundingthenorthwesternbay.However,SSSpatterninthenorthernbaychangesfromtheeastern-bayplumepattern,tothewestern-bayplumepattern,thentothebay-shapedplumepatternduringthisperiod.Theotheristhedryphase,duringwhich,thelowSSSisassociatedwithrelativelylessriverdischarge.However,SSSpatterninthenorthernbaychangesfromthebay-shapedplumepatterntotheeastern-bayplumepattern.Thereforeriverdischargeseemstobethefreshwatersourcefortheplumes
anditscontributiontotheevolutionoftheplumesislookingforwardtofurtherstudy.
AppendixA:ThreeKeyPointsofEAPA
[25]GiventimeseriesXandvariablefieldY,
X¼fxðjÞjj¼1;......;ng
Y¼fyði;jÞji¼1;......;m;j¼1;......;ng;
withzeromean(hXi=hYi=0).AspacevectorA
A¼faðiÞji¼1;......;mg
canbecalculatedbytheleastsquaresmethodtosuitthecondition
X
j
½yði;jÞÀaðiÞÁxðjÞ2¼minði¼1;......;mÞ:
ðA1Þ
ItmeansthattheinformationgivenbytimeseriesXcanbeexplainedbyitsregressionvaluea(i)atanyspacepointiofvariablefieldY.ThereforespacevectorAcanusedforthestudyontheformationmechanismoftimeseriesX.AiscalledastheassociatepatternofXinfieldY.
A1.CorrelationBetweenGivenandAssociateTimeSeries
[26]IffieldYisprojectedonthedirectionofA,anewtimeseriesX0,whichisusuallywellcorrelatedwiththeoriginaltimeseriesX,canbeobtainedanddefinedastheassociatetimeseriesofX.ThetimeseriesX0canbeusedforthesimulationandforecastofXandtheircorrelationcoefficientr(X,X0)representstheprecisionofthesimula-tionandforecast.
A2.ExplainedVariancebyAssociatePattern
[27]ThematrixproductY0ofthecolumnvectorX0TandunifiedrowvectorofAisdefinedastheassociatefieldseparatedfromthefieldYbythetimeseriesX.Atanyspace
9of13
C08017WUETAL.:FRESHWATERPLUMESANDSALINITYFRONTSINBAYOFBENGALC08017
Figure9.SameasFigure7,exceptfortimelagsfromminusfourtoninepentadsinreferencetothebay-shapemode.
10of13
C08017WUETAL.:FRESHWATERPLUMESANDSALINITYFRONTSINBAYOFBENGALC08017
Figure10.AnnualcycleoftheSverdruptransportstreamfunctionY(106m3/s)inthebay.Negativevaluesareshaded.
11of13
C08017WUETAL.:FRESHWATERPLUMESANDSALINITYFRONTSINBAYOFBENGALC08017
pointc)orweakly(atpointb)correlated.Theseextremumpoints(notedasjk,k=1,...,23),whicharelikethefirecenterradiatingstrongrays,greatlycontributetothelinearregressionvalue(about95%)incontrastwithweaklyshiningpoints.
[29]Thecondition(A1)indicatesforanyspaceiandtimej
yði;jÞ¼aðiÞÁxðjÞ:
[30]Asmentionedabove,fortheextremumpointsjk,
yði;jkÞ¼aðiÞÁxðjkÞ;
sothat
Figure11.Monthlymeanriverdischarges(1010m3/mo)ofBrahmaputra(solidline),Ganges(solidlinewithboxes),Irrawaddy(solidlinewithcrosses),Godavari(solidlinewithtriangles)andKrishna(dashedline).
hhyði;jkÞiik¼aðiÞÁhhxðjkÞiik;
where
X
hhxðjkÞiik¼
k
sgnðxðjkÞÞÁxðjkÞ
23
pointiinthefieldsYandY,thestandarddeviationsY(i)andsY0(i)canbeeasilycalculated.ThevarianceexplainedbyassociatepatternAcanbewrittenas
sY0ðiÞ
varðiÞ¼ÁrðX;X0ÞÁ100%;
sYðiÞ
hhyði;jkÞiik¼
ðA2Þ
0X
k
sgnðxðjkÞÞÁyði;jkÞ
23
whichrepresentshowmuchthevarianceofthefieldYcontainedinthefieldY0.
A3.StatisticalMeaningofAssociatePattern
[28]Only3spaces(a:2.5°N,97.5°W;b:22.5°N,157.5°W;c:42.5°N,177.5°W)areconsidered.TakenNino3indexasXandmonthlySSTanomaly(1950.01À2000.12)asY,theresult(FigureA1)showsthatthe14ElNin˜oand9LaNin˜aextremaareveryimportantforthelinearregression,wheneverXandYarepositively(atpointa),negatively(at
couldbedefinedas‘‘absolutemean’’fory(i,jk)andx(jk),respectively.
[31]ThereforeassociatepatternAsuitsthesimilarcondition
XÂ
i
Ã2
hhyði;jkÞiikÀaðiÞÁhhxðjkÞiik¼min
ItmeansthatassociatepatternAisactuallythe‘‘absolute’’meanoffieldYwitharatiowhenXreachesitsElNin˜oorLaNin˜aextrema.Thereforeitisskillfullyequivalenttothecompositeanalysisofstatisticalclimatology.Thismethodis
FigureA1.LinearregressionsbetweenNino3indexandSSTat3points(dotforallofpointsandtrianglesforthe14ElNin˜oand9LaNin˜aextrema;solidlineistheregressionlineforallpoints,anddashedlineisfortheextremumpoints).
12of13
C08017WUETAL.:FRESHWATERPLUMESANDSALINITYFRONTSINBAYOFBENGALC08017
anaturalextensionofassociatepatternanalysisandshouldbecalledextendedassociatepatternanalysis(EAPA).[32]Acknowledgments.ThisworkissupportedbyNationalBasicResearchProgramofChina(2006CB403601and2006CB403603)andNationalScienceFoundationproject(40576016).Theauthorsgreatlyappreciatethreeanonymousreviewers’suggestiveadviceandtheOFESdatasupportoftheEarthSimulatorCenter.
References
Basu,S.,S.D.Meyers,andJ.J.O’Brien(2000),AnnualandinterannualsealevelvariationsintheIndianOceanfromTOPEX/Poseidonobserva-tionsandoceanmodelsimulations,J.Geophys.Res.,105,975–994.Baumgartner,F.,andE.Reichel(1975),TheWorldWaterBalance:MeanAnnualGlobal,ContinentalandMaritimePrecipitation,EvaporationandRunoff,179pp.,Elsevier,NewYork.
Boyer,T.P.,S.Levitus,J.I.Antonov,M.E.Conkright,T.O’Brien,C.Stephens,andB.Trotsenko(1998),WorldOceanAtlas1998,vol.6,SalinityoftheIndianOcean,NOAAAtlasNESDIS,vol.32,NOAA,SilverSpring,Md.
Cheng,X.,G.Nitsche,andJ.M.Wallace(1995),Robustnessoflow-frequencycirculationpatternsderivedfromEOFandrotatedEOFana-lyses,J.Clim.,8,1709–1713.
Cui,M.C.,andL.J.Wu(2005),ElNin˜ophenomenoninSODAdata,ActaOceanol.Sin.,24(4),43–53.
Cui,M.C.,J.Mo,andF.L.Qiao(2004a),ElNin˜ophenomenonandextendedassociatepatternanalysis,J.Hydrodyn.,15B(1),90–100.Cui,M.C.,D.X.Hu,andL.J.Wu(2004b),SeasonalandintraseasonalvariationsofthesurfaceTaiwanWarmCurrent,Chin.J.Oceanol.Lim-nol.,22(3),271–277.
Eigenheer,A.,andD.Quadfasel(2000),SeasonalvariabilityoftheBayofBengalcirculationinferredfromTOPEX/POSEIDONaltimetry,J.Geo-phys.Res.,105,3243–3252.
Grassl,H.,V.Jost,M.R.RameshKumar,J.Schulz,B.Bauer,andP.Schluessel(2000),TheHamburgOceanAtmosphereParametersandFluxesfromSatellitedata(HOAPS):Aclimatologicalatlasofsatellitederivedair-seainteractionparametersovertheoceans,Rep.312,130pp.,MaxPlanckInst.fu¨rMeteorol.,Hamburg,Germany.
Han,W.,andJ.P.McCreary(2001),ModellingsalinitydistributionsintheIndianOcean,J.Geophys.Res.,106,859–877.
Martin,J.M.,J.D.Burton,andJ.D.Eisma(Eds.)(1982),Riverinputstooceansystems:ProceedingsofaSCOR/ACMRR/ECOR/IAHS/UNESCO/CMG/IABO/IAPSOreviewandworkshop,report,384pp.,FoodandAgric.Organ.,Rome.
Masumoto,Y.,etal.(2004),Afifty-yeareddy-resolvingsimulationoftheworldocean:PreliminaryoutcomesofOFES(OGCMfortheEarthSimulator),J.EarthSimul.,1,35–56.
McCreary,J.P.,P.K.Kundu,andR.L.Molinari(1993),Anumericalinvestigationofdynamics,thermodynamicsandmixedlayerprocessesintheIndianOcean,Prog.Oceanogr.,31,181–244.
McCreary,J.P.,W.Han,D.Shankar,andS.R.Shetye(1996),DynamicsoftheEastIndiaCoastalCurrent:2.Numericalsolutions,J.Geophys.Res.,101,13,993–14,010.
Potemra,J.T.,M.E.Luther,andJ.J.O’Brien(1991),Theseasonalcircu-lationoftheupperoceanintheBayofBengal,J.Geophys.Res.,96,12,667–12,683.
Rao,R.R.,andR.Sivakumar(2003),SeasonalvariabilityofseasurfacesalinityandsaltbudgetofthemixedlayerofthenorthIndianOcean,J.Geophys.Res.,108(C1),3009,doi:10.1029/2001JC000907.
Richman,M.B.(1986),Rotationofprincipalcomponents,J.Climatol.,6,293–335.
Sarma,Y.V.B.,E.P.R.Rao,P.K.Saji,andV.V.S.S.Sarma(1999),HydrographyandcirculationoftheBayofBengalduringwithdrawalphaseofthesouthwestmonsoon,Oceanol.Acta,22(5),453–471.
Schulz,J.,V.Jost,andS.Bakan(1998),Anewsatellitederivedfreshwaterclimatology(HamburgOceanAtmosphereParametersandFluxesfromSatellitedata),Int.WOCENewsl.,32,20–26.
Shankar,D.,J.P.McCreary,W.Han,andS.R.Shetye(1996),DynamicsoftheEastIndiaCoastalCurrent:1.AnalyticsolutionsforcedbyinteriorEkmanpumpingandlocalalongshorewinds,J.Geophys.Res.,101,13,975–13,992.
Shetye,S.R.(1993),ThemovementandimplicationsoftheGanges-BramhaputrarunoffonenteringtheBayofBengal,CurrentSci.,64(1),32–38.
Shetye,S.R.,S.S.C.Shenoi,A.D.Gouveia,G.S.Michael,D.Sundar,andG.Nampoothiri(1991),Wind-drivencoastalupwellingalongthewesternboundaryoftheBayofBengalduringthesouthwestmonsoon,Cont.ShelfRes.,11,1397–1408.
Shetye,S.R.,A.D.Gouveia,S.S.C.Shenoi,D.Sundar,D.Sundar,G.S.Michael,andG.Nampoothiri(1993),ThewesternboundarycurrentofseasonalsubtropicalgyreintheBayofBengal,J.Geophys.Res.,98,945–954.
Shetye,S.R.,A.D.Gouveia,D.Shankar,S.S.C.Shenoi,P.N.Vinayachandran,D.Sundar,G.S.Michael,andG.Nampoothiri(1996),HydrographyandcirculationinthewesternBayofBengalduringthenortheastmonsoon,J.Geophys.Res.,101,14,011–14,025.
vonStorch,H.,E.Zorita,andU.Cubasch(1993),Downscalingofglobalclimatechangeestimatestoregionalscales:AnapplicationtoIberianrainfallinwintertime,J.Clim.,5,1161–1171.
Wu,L.J.,andM.C.Cui(2005),StatisticalanalysisofsurfacehydrographyandcirculationvariationsinnorthernSouthChinaSea,Chin.J.Oceanol.Limnol.,23(4),383–392.
Yu,L.,J.J.O’Brien,andJ.Yang(1991),OntheremoteforcingofthecirculationintheBayofBengal,J.Geophys.Res.,96,20,440–20,454.Zorita,E.,V.Kharin,andH.vonStorch(1992),Theatmosphericcircula-tionandseasurfacetemperatureintheNorthAtlanticareainwinter:TheirinteractionandrelevanceforIberianprecipitation,J.Clim.,5,1097–1171.
ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ
M.Cui,F.Wang,L.Wu,andD.Yuan,InstituteofOceanology,ChineseAcademyofSciences,7NanhaiRoad,Qingdao,Shangdong266071,China.(fwang@ms.qdio.ac.cn;wulingjuan@ms.qdio.ac.cn;d_yuan@yahoo.com)
13of13
因篇幅问题不能全部显示,请点此查看更多更全内容