您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页实验九 干燥实验

实验九 干燥实验

来源:爱go旅游网
4.9干燥实验

一、 实验目的

1、 学习物料含水量的测定方法。

2、 了解和掌握湿物料连续流化干燥的方法。

3、 学习干燥操作中物料、热量衡算和体积对流传热系数(αv)的估算方法。

二、 实验内容

1、 每组在固定的空气流量和温度下对物料进行流态化干燥。

2、 测量物料的脱水速率、空气与物料间的对流传热系数、热损失及热效率。

三、 实验原理

当湿物料与干燥介质相接触时,物料表面的水分开始汽化,并向周围介质传递。根据干燥过程中不同期间的特点,干燥过程可分为两个阶段:恒速干燥阶段和降速干燥阶段。

流化床干燥器是流态化技术在干燥操作中的应用,热空气通过装有颗粒物料的干燥器,使颗粒在流化床中上下翻动,彼此碰撞混合,气固间进行传热、传质。

本实验在恒定的干燥条件下对硅胶颗粒进行干燥,测量物料的脱水速率、空气与物料间的对流传热系数、热损失及热效率。 1、空气流量测定

采用孔板流量计,材质─铜板;孔径─17.0毫米。

实际的气体体积流量随操作的压强和温度而变化,测量时需作校正。具体方法: ① 流量计处的体积流量V0:

V0C0A02(P1P2) (m/s) (4-36)

3

C0—孔板流量计的流量系数,C0=0.67;

—空气在t0时的密度,kg/m3;

P1P2 —流量计处压差,Pa; t0— 流量计处的温度,℃。

② 若设备的气体进口温度与流量计处的气体温度差别较大,两处的体积流量是不同

的(例如流化床干燥器),此时体积流量需用状态方程作校正(对空气在常压下操作时通常用

理想气体状态方程)。例如:流化床干燥器,气体的进口温度为t1,则体积流量V1为:

V1V273t1 (m3/h) (4-37)

273t2、湿度测定

①空气湿度:只测实验时的室内空气湿度。用干、湿球湿度计测取。干燥器出口空气湿度由物料脱水量衡算得到。

②物料湿度测定:用快速水份测定仪,使用方法见说明书。

3、 物料量计算:

输入=实际加料量△G1=G01-G11 进料速率 GC 绝干料GC=G1(1-w1) 以干基为基准的湿含量XG1 (4-38) 1w 1w 脱水速率W=GC(X1-X2) (4-39) 4、 热量衡算

输入Q2/Rp+Ud2

入=QP+QD=Up/Rd (4-40) 其中 预热器实际加热电压Up 干燥器实际保温电压Ud

输出Q出=L(I2-I0)+GC(I2′-I1′) (W) (4-41) 空气湿度

H0H10.622PsPPs (4-42)

干燥器进口处空气湿比容

V244H)t273H(0.7721.273 绝干气流量 LV进V (4-44) H 干燥器出口空气湿度 H2WLH1 空气焓值 I (kJ/kg)计算:

干燥器出口处 I2=(1.01+1.88H2)×t2+2490H2 干燥器进口处 I1=(1.01+1.88H1)t1+2490H1

流量计处 I0=(1.01+1.88H0)×t0+2490×H0 物料焓值I'计算: I′=(Cs+XCw)×θ 输出:Q出=L(I2-I0)+GC(I2′-I1′) (W) 热量损失Q出损=

Q入QQ (4-50)

入5、 对流传热系数V计算: QVVt (W/m3

·℃) m 气体向固体物料传热的后果是引起物料升温和水分蒸发。 其传热速率Q=Q1+Q2(W)

Q1=GcCm2(θ2-θ1)=Gc(Cm+CwX2) (θ2-θ1) (W) (4-52) Q2=W(IV'-IL')=W[(r0℃+CVθm)-CWθ1] (W) (4-53)

(4-43) (4-45) (4-46) (4-48) (4-49) (4-51)

(4-47) 式中:Q1—湿含量为X2的物料从θ1升温到θ2所需要的传热速率。 Q2─W(kg/s)水在气化所需的传热速率。

Cm2─出干燥器物料的湿比热 (kJ/kg绝干料·℃) Iv′─θm温度下水蒸气的焓, kJ/kg IL′─θ1温度下液态水的焓, kJ/kg θm=(θ1+θ2)/2 流化床干燥器有效容积V 气相和固相之间推动力 tm4D1h

2(t1m)(t2m)(℃) (4-)

t1mlnt2m干燥过程中蒸发水分所消耗的热量Q蒸向干燥器提供热量Q入6、热效率η计算: 100% (4-55)

Q蒸=W(2490+1.88t2-4.187θ1) (4-56)

四、 实验装置

图4-17 流化床干燥操作实验流程示意图

1—风机(旋涡泵);2—旁路阀(空气流量调节阀);3—温度计(测气体进流量计前的温度);4—压差计(测流量);5—孔板流量计;6—空气预热器(电加热器);7—空气进口温度计;8—放空阀;9—进气阀;10—出料接收瓶;11—出料温度计;12—分布板(80不锈钢丝网);13—流化床干燥器(玻璃制品,表面镀以透明导电膜);14—透明膜电加热电极引线;15—粉尘接收瓶;16—旋风分离器;17—干燥器出口温度计;18—取干燥器内剩料插口;19—带搅拌器的直流电机(进固料用);20、21—原料(湿固料)瓶;22—压差

计;23—干燥器内剩料接收瓶;24—吸干燥器内剩料用的吸管(可移动)。

设备的主要技术数据:

流化床干燥器(玻璃制品,用透明膜加热新技术保温)

流化床层直径D: Φ80×2.5毫米(内径75毫米)

床层有效流化高度h:100毫米(固料出口) 总高度: 530毫米

流化床气流分布器: 80目不锈钢丝网(二层)

物料

变色硅胶: 1.0 ─ 1.6毫米粒径

绝干料比热Cs=0.783kJ/kg ·℃ (t=57℃)(查无机盐工业手册) 每次实验用量:400-500克(加水量30-40毫升)

机电设备

⒈风机─旋涡式气泵

该风机能两用, 即作鼓风和抽气均可。本实验中正常操作时作鼓风机用,•一旦操作结束,为取出干燥器内剩余物料就将此风机作为抽气机用。具体方法是①停风机,将气泵的吸气口与剩余料接收瓶(见流程示意图23标箭头处的接口)用软管连接好,②将吸管24(见流程图一,下同)放入干燥器上口18内;③打开气泵旁路阀2; ④启动风机(按风机开关16,见附图二)即可将干燥器内物料抽干净。用毕,将气泵吸气口上软管拔出,即可。

⒉加料电机为直流调速电机,最大电压为12V,使用中一般控制在1.5~12V即可。

⒊预热器: 电阻丝加热,用调压器调电压来控制温度。

⒋干燥器保温: 干燥器(玻璃制品)外表面上镀以导电膜代替电阻丝,可通电加热,用调压器调电压控温。

表一 设备编号 第一套(050701005) 第二套(050701006) 第三套(050701007) 第四套(050701008) 保温电阻(欧姆) 91.9 105.8 82.1 7.6 加热器电阻 23.0 22.5 27.3 22.8

实验操作参数 (参考值) 空 流量计压差读数kPa 气 进口温度℃ 硅 胶 颗粒直径mm 水量mlH2O 加料速度 2kPa左右 视流化程度而定 60左右 0.8~1.6毫米 500-600克物料中加25-40毫升水 直流电机电压不大于12V

五、实验方法及步骤

㈠ 实验前准备、检查工作

⒈按流程示意图检查设备,容器及仪表是否齐全、完好。

⒉按快速水份测定仪说明书要求,调好水份仪冷热零点,待用。 ⒊将硅胶筛分好所需粒径,并缓慢加入适量水,搅拌均匀,在工业天平上称好所用重量,备用。

⒋风机流量调节阀2打开,放空阀8打开,进气阀9关闭(见流程示意图)。 ⒌向干、湿球湿度计的水槽内灌水,使湿球温度计处于正常状况。

⒍准备秒表一块(或用手表计时)。 ⒎记录流程上所有温度计的温度值。

㈡ 实验操作

⒈从准备好的湿料中取出多于10g(克)的物料,拿去用快速水份测定仪(用户自备)测进干燥器的物料湿度w1。

⒉启动风机,调节流量到指定读数。接通预热器电源,将其电压逐渐升高到100V左右,加热空气。当干燥器的气体进口温度接近60 ℃时,打开进气阀9,关闭放空阀8,调节阀2使流量计读数恢复至规定值。同时向干燥器通电, 保温电压大小以在予热阶段维持干燥器出口温度接近于进口温度为准 。

⒊启动风机后, 在进气阀尚未打开前,将湿物料倒入料瓶,准备好出料接收瓶。

⒋待空气进口温度(60 ℃)和出口温度基本稳定时,记录有关数据,包括干、湿球湿度计的值。启动直流电机,调速到指定值,开始进料。同时按下秒表,•记录进料时间,并观察固粒的流化情况。

⒌加料后注意维持进口温度t1不变、保温电压不变、气体流量计读数不变。 ⒍操作到有固料从出料口连续溢流时,再按一下秒表,记录出料时间。 ⒎连续操作30分钟左右。此期间,每隔一定时间(例如5分钟)记录一次有关数据,包括固料出口温度θ2。数据处理时,取操作基本稳定后的几次记录的平均值。

⒏关闭直流电机旋钮,停止加料,同时停秒表记录加料时间和出料时间,打开放空阀,关闭进气阀,切断加热和保温电源。

⒐将干燥器的出口物料称量和测取湿度w2(方法同w1)。放下加料器内剩的湿料, 称量,确定实际加料量和出料量。并用旋涡气泵吸气方法取出干燥器内剩料、称量。

⒑停风机,一切复原(包括将所有固料都放在一个容器内)。

六、实验装置注意事项

⒈干燥器外壁带电,操作时严防触电,平时玻璃表面应保持干净。 ⒉实验前一定要弄清楚应记录的数据,要掌握快速水份测定仪的用法,正确测取固料进、出料湿含量的数值。

⒊实验中风机旁路阀一定不能全关。放空阀实验前后应全开,实验中应全关。 ⒋加料直流电机电压不能超过12V。保温电压一定要缓慢升压。

⒌注意节约使用硅胶,并严格控制加水量,绝不能过大,小于0.5 毫米粒径的硅胶也可用来做为被干燥的物料,只是干燥过程中旋风分离器不易将细粉粒分离干净而被空气带出。

⒍本实验设备,管路均未严格保温,主要目的是观察流化床干燥的全过程,所以热损失很大。

七、附 录

流化床干燥操作实验原始数据记录表

干燥器内径 D1=76mm 绝干硅胶比热 Cs=0.783kJ/kg·℃ 加料管内初始物料量 G01 加料管内剩余物料量 G11 加料时间 △τ1 进干燥器物料的含水量 w1 出干燥器物料的含水量 w2 名称 流量压差计读数(kPa) 风机 吸入口 大气干球温度t0℃ 大气湿球温度tw℃ 相对湿度φ 干燥器进口温度t1℃ 干燥器出口温度t2℃ 进流量计前空气温度t0℃ 干燥器进口物料温度θ1℃ 干燥器出口物料温度θ2℃ 流化床层压差 mmH2O 流化床层平均高度h mm 预热器加热电压显示值 V 预热器电阻 Rp Ω 干燥器保温电压显示值 V 干燥器保温电阻Rd Ω 加料电机电压 V 进料前 进料后 开始出料后 (每隔5分钟左右记录一次)

八、报告内容

1、根据实验结果计算出物料的脱水速率、空气与物料间的对流传热系数、热损失及热效率。

2、回答下列思考题:

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务