Informa Ltd Registered in England and Wales Registered Number: 1072954 Registeredoffice: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK
Journal of Coordination Chemistry
Publication details, including instructions for authors andsubscription information:
http://www.tandfonline.com/loi/gcoo20Design, synthesis and structure of
uranyl coordination polymers from 2-Dlayer to 3-D network structure
Si Yue Wei, Feng Ying Bai, Ya Nan Hou, Xiao Xi Zhang, Xue TingXu, Ji Xiao Wang, Huan Zhi Zhang & Yong Heng Xing
a
a
a
c
a
a
b
a
a
College of Chemistry and Chemical Engineering, Liaoning NormalUniversity, Dalian, PR China
b
College of Life Sciences, Liaoning Normal University, Dalian, PRChina
c
Click for updates Guangxi Key Laboratory of Information Materials, GuilinUniversity of Electronic Technology, Guilin, PR China
Accepted author version posted online: 27 Nov 2014.Publishedonline: 02 Jan 2015.
To cite this article: Si Yue Wei, Feng Ying Bai, Ya Nan Hou, Xiao Xi Zhang, Xue Ting Xu, JiXiao Wang, Huan Zhi Zhang & Yong Heng Xing (2015) Design, synthesis and structure of uranylcoordination polymers from 2-D layer to 3-D network structure, Journal of Coordination Chemistry,68:3, 507-519, DOI: 10.1080/00958972.2014.992341To link to this article: http://dx.doi.org/10.1080/00958972.2014.992341PLEASE SCROLL DOWN FOR ARTICLE
Taylor & Francis makes every effort to ensure the accuracy of all the information (the“Content”) contained in the publications on our platform. However, Taylor & Francis,our agents, and our licensors make no representations or warranties whatsoever as tothe accuracy, completeness, or suitability for any purpose of the Content. Any opinionsand views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Contentshould not be relied upon and should be independently verified with primary sourcesof information. Taylor and Francis shall not be liable for any losses, actions, claims,proceedings, demands, costs, expenses, damages, and other liabilities whatsoever orhowsoever caused arising directly or indirectly in connection with, in relation to or arisingout of the use of the Content.
This article may be used for research, teaching, and private study purposes. Anysubstantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditionsDownloaded by [Lanzhou University] at 07:10 16 March 2015 JournalofCoordinationChemistry,2015
Vol.68,No.3,507–519,http://dx.doi.org/10.1080/00958972.2014.992341
Design,synthesisandstructureofuranylcoordinationpolymersfrom2-Dlayerto3-Dnetworkstructure
SIYUEWEI†,FENGYINGBAI‡,YANANHOU†,XIAOXIZHANG†,
XUETINGXU†,JIXIAOWANG†,HUANZHIZHANG§andYONGHENGXING*†
Downloaded by [Lanzhou University] at 07:10 16 March 2015 †CollegeofChemistryandChemicalEngineering,LiaoningNormalUniversity,Dalian,PRChina
‡CollegeofLifeSciences,LiaoningNormalUniversity,Dalian,PRChina
§GuangxiKeyLaboratoryofInformationMaterials,GuilinUniversityofElectronicTechnology,
Guilin,PRChina
(Received7January2014;accepted8October2014)
SolvothermalreactionofuranylacetateandsuccinicacidinDMFresultedinformationofthreeuranylcoordinationpolymers,[(UO2)4(μ2-OH)7(OH)6]·2(H2O)·(H3O)·4NH2(CH3)2(1),[(UO2)(μ2-OH)(OH)3]·2NH2(CH3)2](2),and[(DMF)2(UO2)(μ2-OH)4(UO2))](3).Theproductswerecharacterizedbyelementalanalysis,IRspectroscopy,X-raysinglecrystal,andpowderdiffraction.Structuralanalysisshowsthat1isalayer,2and3are3-Dnetworkstructures.
Keywords:Coordinationpolymer;Solvothermalreaction;Crystalstructure;DMFhydrolysis
1.Introduction
Uranylcompoundshaveattractedattentionforpotentialapplicationsinionexchange[1,2],protonconductivity[3],photochemistry[4,5],nonlinearopticalmaterials[6,7],catalysis[8],andespeciallyinenergyandthemilitary.Thedirectedassemblyofdiscretemoleculestobuildpolymericarraysisatopicofinterest,andcrystalengineeringprovidesatoolforrealizationofsuchtargets.Thepredictableself-assemblyoflow-dimensionalmoleculesintohigh-dimensionalframeworksthroughweakintermolecularinteractionssuchashydrogenbonds,weakvanderWaalsinteractions,andπ–πstackingisanimportantstrategyincrystal
*Correspondingauthor.Email:xingyongheng@lnnu.edu.cn©2014Taylor&Francis
508S.Y.Weietal.
Downloaded by [Lanzhou University] at 07:10 16 March 2015 engineering[9].Oxygenandnitrogen-containingorganiccompoundsareoftenusedtoconstructdiversestructuresandfunctionaluranylcompounds,providingthepossibilityofforminghydrogen-bondednetworkstructures.Insomecases,hydrogenbondslinkuranyldiscreteclusterstoformchains,layers,oreven3-Dnetworkstructures.
Design,synthesis,andstructuresofuranylcompoundscomposedofuranylcarboxylatessuchas[UO2)3(Hcit)2(H2O)3]·2H2O[10],uranylphosphonatesandcarboxyphosphonatessuchasCo2[(UO2)6(PO3CH2CO2)6(H2O)13]·6H2O[11],anduranylcurbit[n]urilssuchas[UO2(CB5)](ReO4)2·2H2Oand[s2(CB5)(H2O)2][(UO2)2(HCOO)(OH)4]2·3H2O[12]havebeendescribed.However,studiesofuranylcoordinationpolymerswithsolventsasligandsarerare.TheUO22þspecieswithinactiveU=Odoublebondsgenerallyiscoordinatedonlythroughequatorialligands,yieldinginfinitechainsorsheets,while3-Dframeworkstruc-turesareformedoccasionally.Inthiswork,threeuranylcoordinationpolymershavebeen
þ
synthesized.Weemployacommonligand(DMF)toconnectUO22toformuranylpoly-mersfrom2-Dlayerto3-Dnetworkstructures.DMFcanbeusedasasolventandacoordi-natedligand.DMFiseasilyhydrolyzed,producingNH2(CH3)2+instrongacid,strongbase,orhightemperature[13].Inthispaper,weusethesepropertiesofDMFhydrolysisandcoordinationtoconstructthreeuranylcoordinationpolymers,[(UO2)4(μ2-OH)7(OH)6]·2(H2O)·(H3O)·4NH2(CH3)2(1),[(UO2)(μ2-OH)(OH)3]·2NH2(CH3)2](2),and[(DMF)2(UO2)(μ2-OH)4(UO2))](3).
2.Experimental
2.1.Materialsandmethods
IRspectrawererecordedonaJASCOFT/IR-480PLUSFouriertransformspectrometerwithpressedKBrpelletsfrom200to4000cm–1andaBrukerAXSTENSOR−27FTIRspectrometerwithKBrpelletsfrom4000to400cm−1.ElementalanalysesforC,H,andNwerecarriedoutonaPerkinElmer240Cautomaticanalyzer.X-raypowderdiffraction(PXRD)patternswereobtainedonaBrukerAvance-D8equippedwithCuKαradiation(λ=1.54183Å),intherange5°<2θ<50°,withastepsizeof0.02°(2θ)andacounttimeof2sperstep.2.2.Synthesis
Allchemicalspurchasedwereofreagentgradeorbetterandusedwithoutpurification.Caution!Whiletheuraniumcompoundusedinthesestudiescontaineddepleteduranium,precautionsareneededforhandlingradioactivematerials,andallstudiesshouldbeconductedinalaboratorydedicatedtostudiesofradioactivematerials.
2.2.1.Synthesisof[(UO2)4(μ2-OH)7(OH)6]·2(H2O)·(H3O)·4NH2(CH3)2(1).AmixtureofUO2(CH3COO)2·2H2O(0.0326g,0.0769mM)andsuccinicacid(0.0290g,0.25mM)inDMF(4mL)wasstirredfor1hatroomtemperature,thenthepHadjustedto7bysolu-tionofsodiumhydroxide(1M).Themixturewasintroducedintoareactionkettleandheatedstaticallyat160°Cforthreedays.Resultinglightyellowproductwasthenfiltered
Uranylcoordinationpolymers509
off,washedwithwater,anddriedinair.Anal.CalcdforC8H52N4O24U4(%):C,6.23;H,3.36;andN,3.64.Found(%):C,6.20;H,3.29;andN,3.69.
2.2.2.Synthesisof[(UO2)(μ2-OH)(OH)3]·2NH2(CH3)2](2).Thepreparationissimilartothatof1exceptthatthetemperaturewaschangedto100°CandpHadjustedto2bysolutionofnitricacid(1M).Yellowcrystalsof2wereobtainedafterwashingbywaterseveraltimes.Anal.CalcdforC4H20N2O6U(%):C,11.2;H,4.65;andN,6.51.Found(%):C,11.0;H,4.61;andN,6.42.
2.2.3.Synthesisof[(DMF)2(UO2)(μ2-OH)4(UO2))](3).Thepreparationissimilartothatof1exceptthatthetemperaturewaschangedto80°C.Yellowcrystalsof3wereobtainedafterwashingbywaterseveraltimes.Anal.CalcdforC6H18N2O10U2(%):C,9.55;H,2.39;andN,3.71.Found(%):C,9.44;H,1.94;andN,3.60.2.3.X-raycrystallographicdetermination
Asinglecrystalwithdimensions0.58mm×0.34mm×0.18mmfor1wasselectedforstructuredetermination.ReflectiondatawerecollectedatroomtemperatureonaBrukerAXSSMARTAPEXIICCDdiffractometerwithgraphitemonochromatedMo-Kαradiation(λ=0.71073Å)from1.87<θ<25.00°.Atotalof20,048(4303unique,Rint=0.0456)reflectionsweremeasured.Thestructureof2wasdeterminedbysinglecrystalX-raydif-fraction.Ayellowsinglecrystalof2withdimensions0.50mm×0.34mm×0.18mmwasmountedonaglassfiber.ReflectiondatawerecollectedatroomtemperatureonaBrukerAXSSMARTAPEXIICCDdiffractometerwithgraphitemonochromatedMo-Kαradiation(λ=0.71073Å)from2.17<θ<25.00°.Atotalof4612(1941unique,Rint=0.0575)reflec-tionsweremeasured.In2,thelargestdiff.peakandholeare7.418and−4.975eÅ–3andthemajorresidualpeaksappeararoundU(U1–Q1andU1–Q2bondlengthsare0.883and0.902Å).
Thestructureof3wasdeterminedbysinglecrystalX-raydiffraction.Ayellowsinglecrystalof3withdimensions0.44mm×0.38mm×0.13mmwasmountedonaglassfiber.ReflectiondatawerecollectedatroomtemperatureonaBrukerAXSSMARTAPEXIICCDdiffractometerwithgraphitemonochromatedMo-Kαradiation(λ=0.71073Å)from2.17<θ<25.00°.Atotalof9043(3637unique,Rint=0.0362)reflectionsweremeasured.In3,thelargestdiff.peakandholeare7.133and−1.398eÅ–3andthemajorpeaksappeararoundU(U1–Q1andU2–Q2bondlengthsare0.829and0.811Å).Empiricalabsorptioncorrectionswereappliedusingmulti-scantechnique.Allabsorptioncorrectionswereper-formedusingSADABS[14].Crystalstructuresweresolvedbydirectmethods.Allnonhy-drogenatomswererefinedwithanisotropicthermalparametersbyfull-matrixleast-squarescalculationsonF2usingSHELXL-97[15].Hydrogensoncarbonandnitrogenwerefixedatcalculatedpositionsandrefinedusingaridingmodel,butthehydrogensoflatticewatermoleculein1werefoundinthedifferenceFouriermap.Thehydrogensoftheμ2-O(O3,O5,O6,O10for1;O3for2;O3,O4,O5,O8for3)andtheU–Otfromterminalhydroxoions(O4,O9,O14for1;O4,O5,O6for2)werenotlocated.Crystaldataanddetailsofthedatacollectionandthestructurerefinementaregivenintable1.Selectedbonddistancesandanglesaregivenintable2.FiguresanddrawingsweremadewithDiamond3.2.
Downloaded by [Lanzhou University] at 07:10 16 March 2015 510
Table1.
Crystaldataof1–3.
1
S.Y.Weietal.
Complexes
Formula
FormulaweightCrystalsystemSpacegroupa(Å)b(Å)c(Å)α(°)β(°)γ(°)V(Å3)Z
DCalcd(gcm−3)Crystalsize/mmF(000)
μ(Mo-Kα)/mm−1θ(°)
Reflectionscollected
Independentreflections[I>2σ(I)]ParametersGoodnessoffitRawR2aab2
C4H20N2O6U430.25MonoclinicC2/c
13.620(4)8.709(2)19.604(5)90
100.957(4)90
2283.0(10)82.503
0.50×0.34×0.18158414.2242.79–24.994612
1941(1687)1231.1
0.0877(0.0950)b0.2461(0.2546)b3
C6H18N2O10U2754.28MonoclinicC2/c
23.848(2)7.3947(7)17.0358(16)90
97.690(2)90
2977.3(5)83.366
0.44×0.38×0.13265621.7771.72–28.379043
3637(2856)1851.045
0.0390(0.0565)b0.0948(0.1021)bDownloaded by [Lanzhou University] at 07:10 16 March 2015 C8H52N4O24U41540.66
OrthorhombicPnma
17.0296(13)22.1116(17)9.0134(7)909090
3394.0(5)43.015
0.58×0.34×0.18275219.1141.84–28.3420,0484303(3615)1981.030
0.0427(0.0535)b0.1079(0.1134)bR=ΣêêFoê−êFcêê/ΣêFoê,wR2={Σ[w(Fo2−Fc2)2]/Σ[w(Fo2)2]}1/2;[Fo>4σ(Fo)].Basedonalldata.
3.Resultsanddiscussion3.1.Synthesis
UO2(CH3COO)2·2H2Oandsuccinicacidwereusedasstartingmaterialswhileasolvother-malsynthesisassistedbyDMFwasadoptedtopreparetheuranylcomplexes.Originally,weaddedsuccinicacidtothesystemtoobtainauraniumcoordinationpolymerwithcar-boxylicacids[16],unfortunately,reactionresultsshowthatthesuccinicacidisnotcoordi-natedwithuranyl,andprotonatedNH2(CH3)2+cation,whichisproducedbyDMFhydrolysisthatconnectswithuranylbyhydrogenbondsorDMFdirectlycoordinatedwithuranyl.Whensuccinicacidwasnotaddedinthesyntheticsystem,wedonotobtain1–3.Thus,theadditionofthesuccinicacidisnecessaryinthereaction.Inthereactions,simi-larly,pHisalsoessentialtothepolymerizationofuranyl.IsolatedUO22þcationsexistinaqueoussolution(pH<2.5).However,inlessacidicmedia,theidentityofuranylspeciesvarieswiththeconcentrationofOH−(aq)ions[17].WhenpH>2.5,UO22þtendstohydro-lyzeandpolymerize,forminganumberofpolynuclearuranylspecies,andthengeneratecomplexprecipitates,suchasU2O52þandU3O82þ[17].Themainfactorswhichinfluence
þ
thehydrolysisaretemperatureandtheconcentrationofUO22þ.TheprocessofUO22hydrolysisisshownbelow:
Uranylcoordinationpolymers
Table2.
Selectedbonddistances(Ǻ)andangles(°)for1–3.*
1.774(7)2.251(5)1.772(9)1.774(9)2.256(5)157.1(2)178.3(4)91.1(3)89.7(3)90.3(3)179.1(4)91.2(3)1.793(13)2.364(11)177.3(7)151.5(5)178.2(4)89.7(7)146.1(4)1.747(7)2.324(6)2.332(5)1.746(7)2.323(6)2.382(8)179.2(4)92.6(3)90.4(3)141.33(15)33.24(15)91.2(3)88.3(3)91.5(3)91.5(3)
O(2)–U(1)O(6)–U(1)O(9)–U(2)O(12)–U(3)U(1)–O(6)–U(3)O(1)–U(1)–O(6)O(2)–U(1)–O(6)O(7)–U(2)–O(9)#2O(8)–U(2)–O(10)O(11)–U(3)–O(13)#2O(12)–U(3)–O(10)U(1)–O(2)U(1)–O(5)
O(2)–U(1)–O(4)O(1)–U(1)–O(3)O(6)–U(1)–O(3)#1O(5)–U(1)–O(6)O(6)–U(1)–O(3)U(1)–O(2)U(1)–O(5)#1U(1)–U(1)#1U(2)–O(7)U(2)–O(8)#3U(1)–U(1)#2O(1)–U(1)–O(4)O(1)–U(1)–O(5)#1O(4)–U(1)–O(5)O(4)–U(1)–U(1)#2O(10)–U(2)–U(2)#3O(7)–U(2)–O(4)O(4)–U(2)–O(8)O(4)–U(2)–O(10)O(7)–U(2)–O(9)
1.767(7)2.289(5)2.258(5)1.769(9)161.4(3)90.3(3)90.3(3)90.8(3)89.8(4)91.2(3)88.1(4)1.792(12)2.244(11)92.4(6)90.5(6)136.8(4)73.9(4)72.3(4)1.755(8)2.325(5)3.9199(4)1.752(7)2.331(6)3.9199(4)87.8(3)89.1(3)77.7(2)109.96(16)104.07(19)89.7(3)138.6(2)150.5(2)89.6(3)
O(3)–U(1)O(7)–U(2)O(10)–U(2)O(10)–U(3)U(2)–O(10)–U(3)O(4)–U(1)–O(3)O(4)–U(1)–O(6)O(7)–U(2)–O(8)O(9)–U(2)–O(10)O(13)–U(3)–O(10)O(10)–U(3)–O(6)U(1)–O(4)U(1)–O(6)
O(4)–U(1)–O(5)U(1)–O(3)–U(1)#1O(1)–U(1)–O(4)O(4)–U(1)–O(3)O(5)–U(1)–U(1)#1U(1)–O(4)U(1)–O(5)U(1)–U(1)#2U(2)–O(4)U(2)–O(10)U(2)–U(2)#3O(2)–U(1)–O(4)O(4)–U(1)–O(5)#1O(2)–U(1)–O(3)#2O(3)–U(1)–U(1)#2O(6)–U(2)–O(7)O(6)–U(2)–O(8)O(6)–U(2)–O(10)O(8)–U(2)–O(10)O(8)–U(2)–O(9)
511
Complex1O(1)–U(1)O(4)–U(1)O(8)–U(2)O(11)–U(3)O(13)–U(3)U(1)–O(3)–U(2)O(2)–U(1)–O(1)O(2)–U(1)–O(4)O(2)–U(1)–O(5)O(8)–U(2)–O(9)O(12)–U(3)–O(11)O(11)–U(3)–O(13)
2.298(5)1.767(9)2.296(7)2.313(7)146.9(4)76.17(19)154.87(19)178.7(4)143.38(14)141.76(14)68.98(13)2.235(12)2.323(10)77.7(5)115.5(4)92.4(6)136.1(5)178.2(4)2.290(6)2.327(5)3.9199(4)2.291(6)2.377(7)3.8961(8)91.5(3)140.9(2)90.7(3)173.89(13)178.7(4)90.4(3)88.2(3)70.9(2)145.7(3)
Downloaded by [Lanzhou University] at 07:10 16 March 2015 Complex2U(1)–O(1)U(1)–O(3)
O(1)–U(1)–O(2)O(4)–U(1)–O(6)O(5)–U(1)–U(1)#1O(2)–U(1)–O(5)O(5)–U(1)–O(3)Complex3U(1)–O(1)U(1)–O(3)U(1)–O(3)#2U(2)–O(6)U(2)–O(8)U(2)–O(9)
O(1)–U(1)–O(2)O(1)–U(1)–O(3)O(1)–U(1)–O(5)O(3)–U(1)–O(3)#2O(8)–U(2)–U(2)#3O(6)–U(2)–O(4)O(7)–U(2)–O(8)O(7)–U(2)–O(10)O(6)–U(2)–O(9)
*Symmetrycodes:#1:−x,1−y,2−z;#2:x,1.5−y,zfor1;#1:1.5−x,0.5−y,1−zfor2;#1:−x+y,0.5−y,1−z;#2:0.5−x,0.5+y,0.5−z;#3:0.5−x,−0.5+y,0.5−zfor3.
Underhighlyacidicconditions,themonomericUO22þcationdirectlytakespartincrystalgrowth(suchas2).AbinuclearmodelofuranylcomplexwascomposedunderpH7andsolvothermalconditions,andthebinuclearspecieswithuraniumcoordinationtoDMF(suchas3).Fortrinuclear(UO2)3(μ2-OH)5+,thespeciesmayloseawatertoformaoxo-hydroxo-uraniumpolyhedralcation,(UO2)3O(μ2-OH)3+[18].IntherelativelyhighpHvalues,oligomericuranylspeciesareformedandsubsequentlyinvolvedincrystallizationofuranylcomplex.
3.2.Crystalstructureanalysis
3.2.1.Crystalstructureof1.Complex1crystallizesintheorthorhombicsystemwithPnmaspacegroup.Selectedbonddistancesandanglesof1aregivenintable2.X-raysinglecrystalanalysisindicatesthattheasymmetricunitof1ismadeupoftwoUO22þ
512S.Y.Weietal.
Downloaded by [Lanzhou University] at 07:10 16 March 2015 Figure1.ThecoordinationenvironmentofUin1(hydrogensomittedforclarity).Symmetrycodes:#1:−x,1−y,2−z;#2:x,1.5−y,z.
cations,threeandahalfhydroxobridgegroups,threeterminalhydroxoions,twofreeprotonatedNH2(CH3)2+cations,afreewater,andahalfprotonatedwater(H3O+).O1WisprotonatedwaterandO2Wiswatermolecule.FromthecoordinationenvironmentofU(figure1),thethreeuraniumionsareallseven-coordinate.TheU1centeriscoordinatedwithsevenoxygens(O1,O2,O3,O4,O5,O5#2,andO6;#2:−x,1−y,1−z)toformapentagonalbipyramidgeometry,O1andO2areterminaloxygens,O4isfromterminalhydroxoions,andO3,O5,O5#2(#2:−x,1−y,1−z),andO6arehydroxobridgeatoms.Throughhydroxobridgeatoms(O3andO6),U1isfurtherconnectedwithU2andU3,respectively.U2andU3areconnectedbyhydroxobridge(O10).U1,U2,U3,O3,O6,andO10areself-assembledtoformatwistysix-memberring.U2isbondedwithsevenoxygens(O3,O7,O8,O9,O10,O3#1,O9#1,#1:x,1.5−y,z)withO7andO8terminal,O9andO9#1arefromterminalhydroxoions,andO3andO3#1(#1:x,1.5−y,z)arehydroxobridgestogenerateapentagonalbipyramidgeometry.ThecoordinationenvironmentsofU2andU3arequitesimilar,exceptthatthepairofterminalhydroxogroupsoneachUcenter(adjacentinthepentagonalplane)isdifferent.TheO9⋯O9#1separationonU2is2.69Å,whereasthecorrespondingseparationbetweenterminalhydroxogroupsonU3
Figure2.A1-Dchainnetworkstructureof1.
Uranylcoordinationpolymers513
Downloaded by [Lanzhou University] at 07:10 16 March 2015 (O13···O13#1)is2.79Å.TheU=Obondlengthsrangefrom1.756(10)to1.789(12)Å,thebondlengthsofU–Otfromterminalhydroxoionsvaryfrom2.251(5)to2.258(5)Å,andthebondlengthsofU–Obfromhydroxobridgesvaryfrom2.248(5)to2.385(5)Å.TheaveragebondlengthofU–Obis2.325(5)Åwhichmatchesthatof2.33(3)ÅfromtheCSD,andisclosetothatreported[19](2.35(4)Å),butismuchshorterthanthecorrespondingbondlengthofU–OWfromcoordinationwater(2.406Å)[20].ThebondanglesofO=U=Orangefrom178.0(6)to179.6(6)°andthebondanglesofO–U–Ovaryfrom63.9(3)to157.0(4)°.
Inthepackingof1,fouradjacentO=U=Oareconnectedbyhydroxobridgestoformabuildingblockof(UO2)4(μ2-OH)9(OH)4.Thesetwoadjacentbuildingblocksfurthersharetwohydroxobridgesandexpandedalongthebaxistoforma1-Dchain.TherearestrongH-bondsbetweentheprotonsonnitrogenofthedimethylammoniumcationsandoxygenofthechain(figure2).ThehydrogenbondsareN2–H2D⋯O13,2.7244Å,167.00°;N2–H2E⋯O4,2.8667Å,148.00°;N2–H2E⋯O5,2.7943Å,133.00°,whileH2Eisthehydrogenofabifurcatedhydrogenbond.Furthermore,thechainismorestableinthepres-enceofthesehydrogenbonds.AdjacentchainsarefurtherconnectedbyC3–H3B⋯O1(3.2531Å,140.00°)toforma2-Dlayerstructure(figure3).
3.2.2.Crystalstructureof2.Complex2crystallizesinthemonoclinicsystemwithC2/cspacegroup.Selectedbonddistancesandanglesof2aregivenintable2.X-raysinglecrystalanalysisindicatesthat2ismadeupofonecrystallographicallyindependentUO22þ,onehydroxobridge,threeterminalhydroxoions,andtwoprotonatedNH2(CH3)2+cations.
Figure3.Aviewofhydrogen-bondinginteractionsof1.
514S.Y.Weietal.
Downloaded by [Lanzhou University] at 07:10 16 March 2015 U(VI)isseven-coordinate(figure4),O1andO2areterminaloxos,O4,O5,andO6originatefromterminalhydroxoions,andO3andO3#1(#1:1.5−x,0.5−y,1−z)arehydroxobridgesinapentagonalbipyramid.TheU=Obondlengthsrangefrom1.792(13)to1.793(13)Å.ThebondlengthsofU–Otfromterminalhydroxoionsvaryfrom2.235(12)to2.323(10)ÅandthebondlengthsofU–Obfrombridginghydroxogroupsrangefrom2.235(12)to2.383(11)Å.TheaverageU–Obbondlengthis2.374(11)Å,matchingthatof2.33(3)ÅfromtheCSD,andclosetothatreported[19](2.35(4)Å),butshorterthanthebondlengthofU–OW(2.406Å)reported[20].ThebondangleofO=U=Ois177.3(7)°andthebondanglesofO–U–Ovaryfrom64.5(4)to151.5(5)°.
Inthemolecularpacking,aclusterunit[(UO2)2(μ2-OH)2(OH)6]isconnectedbytwotypesofhydrogenbonds,N–H⋯OandC–H⋯O.TheyareN1–H1NA⋯O5,N1–H1NB⋯O6,N2–H2NA⋯O3,N2–H2NA⋯O4,N2–H2NB⋯O6,andC3–H3B⋯O6.Thehydrogenbondconnectingmodeisillustratedinfigure5.Twoadjacentclusterunits[(UO2)2(μ2-OH)2(OH)6]areconnectedbyhydrogenbonds(N2–H2NA⋯O4,2.9698Å,139.58°;N2–H2NB⋯O6,2.7317Å,169.98°)andexpandedtoformaninfinitechainalongthebaxis.Adjacentchainsarefurtherconnectedbytheclusterunitswithintermolecularhydrogenbonds(N1–H1NA⋯O5,2.5820Å,169.95°;N1–H1NB⋯O6,2.7679Å,169.34°)toforma3-Dnetworkstructure(figure6).
3.2.3.Crystalstructureof3.Complex3crystallizesinthemonoclinicsystemwithC2/cspacegroup.Selectedbonddistancesandanglesof3aregivenintable2.X-raysinglecrystalanalysisindicatesthat3ismadeupoftwoUO22þcations,fourhydroxobridges,andtwoDMFmolecules.U1andU2areseven-coordinate.Thetwodistincturanylions,U1andU2,havenearlylinear[O=U=O]2+bondanglesof179.3(4)and178.7(4)°,respec-tively.U1(VI)iscoordinatedbyO1andO2(U(1)–O(1),1.748(7)Å;U(1)–O(2),1.755(8)Å)fromterminaloxogroups,O3,O3#3,O4,O5,andO5#2(#2:0.5−x,0.5+y,0.5−z;#3:0.5−x,−0.5+y,0.5−z)fromhydroxobridgestoformapentagonalbipyramid.Similarly,U2(VI)iscoordinatedbyO6andO7(U(2)–O(6),1.749(7)Å;U(2)–O(7),1.751(7)Å)fromterminaloxos,O8andO8#1(#1:−x,y,0.5−z)fromhydroxobridges,andO9andO10fromDMF(U(2)–O(9),2.382(8)Å;U(2)–O(10),2.377(7)Å)toformapentagonal
Figure4.ThecoordinationenvironmentofUin2(hydrogensomittedforclarity).Symmetrycodes:#1:1.5−x,0.5−y,1−z.
Uranylcoordinationpolymers515
Downloaded by [Lanzhou University] at 07:10 16 March 2015 Figure5.Hydrogenbondsconnectingof2.
Figure6.Aviewofhydrogen-bondinginteractionsof2.
bipyramid(figure7).TheaveragebondlengthofU–ODMFis2.380(8)Å,closeto2.401(4)Åreported[16].BondlengthsofU–Obfrombridginghydroxogroupsvaryfrom2.290(6)to2.332(5)ÅandbondanglesO−U−Ovaryfrom119.0(10)to121.4(10)°.
516S.Y.Weietal.
Downloaded by [Lanzhou University] at 07:10 16 March 2015 Figure7.ThecoordinationenvironmentofUin3(hydrogensomittedforclarity).Symmetrycodes:#1:−x+y,0.5−y,1−z;#2:0.5−x,0.5+y,0.5−z;#3:0.5−x,−0.5+y,0.5−z.
ThereisahydrogenbondbasedonC–H⋯Ointheframeworkstructure,includingC3–H3B⋯O1,C6–H6A⋯O3,andC6–H6C⋯O7.TwoadjacentunitsUO2(μ2-OH))arecon-nectedbytwohydroxobridgesandexpandedalongthebaxistoforma1-Dchain.Parallelchainsarefurtherbridgedbybuildingblocksof[(OH)(DMF)2(UO2)(OH)2(UO2)(DMF)2(OH)]toforma2-DnetworkstructurewiththecoordinatedDMForientedaboveandbelowthemeanplaneofthenetwork(figure8).The2-Dnetworkstructureisfurtherconnectedbyhydrogenbonds(C3–H3B⋯O1,3.3869Å,170.86°;C6–H6A⋯O3,3.2948Å,144.60°;C6–H6C⋯O7,3.2677Å,138.78°)toforma3-Dnetworkstructure(figure9).3.3.IRspectroscopy
InIRspectra[figureS1(a)–(c),seeonlinesupplementalmaterialathttp://dx.doi.org/10.1080/00958972.2014.992341]ofthecomplexes,thebroadabsorptionsat3456,3376,and3442cm−1indicatethepresenceofN–HstretchingofDMF.Thebandsat2920,2912,and2943cm−1areattributedtothepresenceofasymmetricalC–H(CH3)stretches.Thebandsat1642,1633,and1655cm−1areattributedtobendingofN–H.Thebandsat1469–1363cm−1areassignedtoC–Hbending.Bandsat918,929,and923cm−1areassignedtotheU=Ostretch.TheFTIRspectraofthecomplexesareconsistentwiththestructuralanalyses;detailedassignmentoftheIRspectrafor1–3isshownintable3.3.4.X-raypowderdiffractionstudy
ThesimulatedandexperimentalPXRDspectraof1–3areshowninSupplementarymaterial(figuresS2–S4).TheexperimentalPXRDspectraaccordwiththesimulatedPXRDspectrum,indicatingthat1–3arepurephase,withoutimpurities.
Uranylcoordinationpolymers517
Downloaded by [Lanzhou University] at 07:10 16 March 2015 Figure8.A2-Dlayernetworkstructureof3viewedfromthea–bplane.
Figure9.Aviewofhydrogen-bondinginteractionsof3.
518
Table3.
S.Y.Weietal.
IRspectraof1–3.
1
345629201642
1469,1396918
23376291216331401929
3
344229431655
1435,1363923
ComplexesνNHν(CH3)δNHδC–HνU=O4.Conclusion
Wehavereportedthreeuranylcomplexes,[(UO2)4(μ2-OH)7(OH)6]·2(H2O)·(H3O)·4NH2(CH3)2(1),[(UO2)(μ2-OH)(OH)3]·2NH2(CH3)2](2),and[(DMF)2(UO2)(μ2-OH)4(UO2))](3).For1,thebuildingblock((UO2)4(μ2-OH)9(OH)4)issharedbytwohydroxobridgesandfurtherexpandedalongthebaxistoforma1-Dchain;adjacentchainsarefurtherconnectedbyhydrogenbonds(N–H⋯OandC–H⋯O)toforma2-Dlayer.For2,[(UO2)2(μ2-OH)2(OH)6]isconnectedbyhydrogenbonds(N–H⋯OandC–H⋯O)toforma3-Dnetworkstructure.For3,DMFismonodentateandconnectedbyhydrogenbonds(C–H⋯O)toforma3-Dnetworkstructure.Researchisinprogresswiththeaimofexploringtheuraniumcoordinationchemistrywithdifferentligandsandfurtherstudyoftheirproperties.
Supplementarymaterial
Tablesofatomiccoordinates,isotropicthermalparameters,andcompletebonddistancesandangleshavebeendepositedwiththeCambridgeCrystallographicDataCenter.CopiesofthisinformationmaybeobtainedfreeofchargebyquotingthepublicationcitationanddepositionnumbersCCDCfor1–3:979412,979413and979414,respectively,fromtheDirector,CCDC,12UnionRoad,Cambridge,CB21EZ,UK(Fax:+441223336033;Email:deposit@ccdc.cam.ac.ukorhttp://www.ccdc.cam.ac.uk).Acknowledgements
WethankNaturalScienceFoundationofChina[grantnumber21371086]andGuangxiKeyLaboratoryofInformationMaterials,GuilinUniversityofElectronicTechnology,PRChina(ProjectNo.1210908-06-K)forfinancialassistance.References
P.O.Adelani,T.E.Albrecht-Schmitt.Angew.Chem.,Int.Ed.,49,8909(2010).P.O.Adelani,T.E.Albrecht-Schmitt.Inorg.Chem.,50,12184(2011).
D.Grohol,M.A.Subramania,D.M.Poojary,A.Clearfield.Inorg.Chem.,35,5264(1996).K.E.Knope,C.L.Cahill.Inorg.Chem.,48,6845(2009).
Y.S.Jiang,Z.T.Yu,Z.L.Liao,G.H.Li,J.S.Chen.Polyhedron,25,1359(2006).K.M.Ok,J.Baek,P.S.Halasyamani,D.O’Hare.Inorg.Chem.,45,10207(2006).
S.Wang,E.V.Alekseev,J.Ling,G.Liu,W.Depmeier,T.E.Albrecht-Schmitt.Chem.Mater.,22,2155(2010).
[8]Z.L.Liao,G.D.Li,M.H.Bi,J.S.Chen.Inorg.Chem.,47,4844(2008).[1][2][3][4][5][6][7]
Downloaded by [Lanzhou University] at 07:10 16 March 2015 Uranylcoordinationpolymers519
Downloaded by [Lanzhou University] at 07:10 16 March 2015 [9]S.V.Kolotuchin,E.E.Fenlon,S.R.Wilson,C.J.Loweth,S.C.Zimmerman.Angew.Chem.Int.Ed.Engl.,34,
2654(1995).
[10]P.Thuéry.Chem.Commun.,8,853(2006).
[11]A.N.Alsobrook,B.G.Hauser,J.T.Hupp,E.V.Alekseev,W.Depmeier,T.E.Albrecht-Schmitt.Chem.
Commun.,46,9167(2010).
[12]P.Thuery.Cryst.GrowthDes.,8,4132(2008).
[13]J.Marrot,K.Barthelet,C.Simonnet,D.Riou.C.R.Chimie,8,971(2005).
[14]G.M.Sheldrick.SADABS,ProgramforEmpiricalAbsorptionCorrectionforAreaDetectorData,University
ofGöttingen,Göttingen(1996).
[15]G.M.Sheldrick.SHELXS97,ProgramforCrystalStructureRefinement,UniversityofGöttingen,Göttingen
(1997).
[16]J.L.Wang,Z.Y.Deng,S.B.Duan,Y.H.Xing.J.Coord.Chem.,65,3546(2012).
[17]D.L.Clark,S.D.Conradson,R.J.Donohoe,D.W.Keogh,D.E.Morris,P.D.Palmer,R.D.Rogers,C.D.Tait.
Inorg.Chem.,38,1456(1999).
[18]K.X.Wang,J.S.Chen.Acc.Chem.Res.,44,531(2011).[19]P.Thuery.Cryst.GrowthDes.,11,2606(2011).[20]P.Thuéry.CrystEngComm,11,1081(2009).
因篇幅问题不能全部显示,请点此查看更多更全内容