您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页Quantum statistical mechanics and class field Theory

Quantum statistical mechanics and class field Theory

来源:爱go旅游网
7002 beF 31 ]TN.tham[ 1v9732070/tham:viXraQUANTUMSTATISTICALMECHANICSANDCLASSFIELD

THEORY

JORGEPLAZAS

Abstract.Inthisshortcommunicationwesurveysomeknownresultsrelat-ingnoncommutativegeometrytotheclassfieldtheoryofnumberfields.Theseresultsappearwithinthecontextofquantumstatisticalmechanicswheresomearithmeticpropertiesofagivennumberfieldcanberealizedintermsofthestructureofequilibriumstatesofaquantumstatisticalmechanicalsystem.

1.Introduction

Inthelasttenyearssomeveryinterestingresultsrelatingnoncommutativege-ometrytoclassfieldtheoryhaveemerged.ThefirstinstanceofthisconnectionwasexploredbyBostandConnesin[2]wheretheyrelatedtheclassfieldtheoryofthefieldofrationalnumbersQtothestructureofequilibriumstatesofaparticularquantumstatisticalmechanicalsystem.Variousresultsgeneralizingsomeaspectsofthisconstruction,basedonquantumstatisticalmechanicalsystemsrelatedtoothernumberfields,haveappearedsincethen([1,4,12,13,14]).InparticulartheproblemoffindingquantumstatisticalmechanicalsystemsthatencodetheexplicitclassfieldtheoryofquadraticimaginaryextensionsofQhasbeensolvedrecently([7,8]).Theexistenceofquantumstatisticalmechanicalsystemswithricharith-meticalpropertiesopensanewapproachtothestudyofexplicitclassfieldtheoryusingthetoolsofquantumstatisticalmechanics.Thepurposeofthisarticleistogiveabriefintroductiontothistopic.

Iwanttothanktheorganizersofthe2005summerschool“Geometricandtopo-logicalmethodsforquantumfieldtheory”andMaxPlanckInstitutefortheirsup-port.

2.Basicsinclassfieldtheory

Themainobjectsofstudyinalgebraicnumbertheoryarenumberfields,bydefinitionanumberfieldKisafinitedegreenumbersQ.Oncewefixanalgebraic¯extensionofthefieldofrational

ofKwewouldtheabsoluteGaloisgroupGal(K

¯closureK

liketounderstand|K),whichturnsouttobeverydifficultevenwhenK=Q.Onestepinunderstandingthegroup¯|K)consistsinstudyingitsabelianizationGal(K

¯Gal(K

|K)ab,thisabeliangroupistheGaloisgroupofKab,themaximalabelianextensionofK,sowehave:

Gal(Kab|K)=Gal(K

¯|K)ab2JORGEPLAZAS

ThefieldKabsionsofKinK

¯maybeobtainedasthelimitoverallfinitenormalabelianexten-.AbelianclassfieldtheorystudiestheseabelianextensionstogetherwiththecorrespondingGaloisgroups.Oneofthemainresultsofthetheorychar-acterizesthegroupGal(Kabringconstructedfromthefield|K)asKaalone.quotientThisofthetopologicalgroupofringunitsisoftheatopologicalid`eleclassgroupCK.Letusbrieflyrecallitsconstruction.

LetKbeanumberfieldandletOKbeitsringofintegers,i.e.OKconsistsoftheelementsinKwhicharerootsofmonicpolynomialswithcoefficientsinZ.ThereisaonetoonecorrespondencebetweentheprimeidealsofOKandthefiniteplacesofK,whichareequivalenceclassesofnonarchimedeanvaluations||onK.Forinstanceeveryprimenumberp∈OQ=Zgivesrisetoafiniteplacecorrespondingtothep-adicabsolutevalue||pinQ.GivenafiniteplaceνofKwedenotebyKνthecompletionofKwithrespecttothemetricinducedbyνanddenotebyOνtheringofintegersofKν.ForeachνtheringOνisanopencompactsubringofKνandwemayformtherestrictedtopologicalproduct

Af,K=󰀆

(Kν:Oν)

ν

whereνrunsoverthefiniteplacesproductfinitenumberofcoordinateslie󰀂ofOK.Thisrestrictedproductisbydefinition

thesubsetofthecartesianνKνconsistingofelementsforwhichallbuta󰀂inthesubringsOν.Itisgiventheweakesttopologyforwhichthesets󰀂

ν∈FKν×ν∈/FOν,forFafinitesetofplaces,areopen.ThetopologicalringAf,Kiscalledtheringoffinitead`elesofK.IfweaddtoAf,KtheproductofthecompletionsofKwithrespecttotheinfiniteplaceswegetAK,theringofad`elesofK.Infiniteplacesaregivenbyequivalenceclassesofarchimedeanvaluationsandcorrespondtothe[K:Q]differentembeddingsofKinC.

ConsidernowGl1(AK),thegroupofunitsofAK.K∗canbeembeddeddi-agonallyasadiscretesubgroupofGl1(AK).ThequotientCK=Gl1(AK)/K∗iscalledtheid`eleclassgroupofK.ItturnsoutthattheabelianextensionsofKcorrespondtothenormalsubgroupsofCK.Inparticularthefollowingimportanttheoremholds(cf.[9],SectionII.3.7):

Theorem2.1.LetDKbetheconnectedcomponentoftheidentityinCK.Thereisacanonicalisomorphism:

θ:CK/DK→Gal(Kab|K)

ForthecaseK=Qalotmoreisknown.BytheKroneckerWebertheorem(cf.[18]Section20)everyabelianextensionofQiscontainedinacyclotomicextension,thatis,insomeextensionoftheformQ(ζn)whereζnisaprimitiven-throotofunityforsomen.ThecyclotomicextensionQ(ζn)isabeliananditsGaloisgroupGal(Q(ζn)|Q)isisomorphicto(Z/nZ)∗.ThemaximalabelianextensionthefieldQcyclobtainedbyadjoiningtoQallrootsofunityandCQ/DQ=Z

ˆofQis

∗whereZ

ˆ=lim←n

Z/nZ.ForageneralnumberfieldK,onewouldalsoliketoknowwhichelementsofK

¯generateKaboverKandhowtheGaloisgroupGal(Kabtors.ThisisthecontentofHilbert’s12thproblemknown|Kalso)actsastheontheseexplicitgenera-classfieldtheoryproblem.UptonowtheonlynumberfieldsapartfromQforwhichacompletesolutiontotheexplicitclassfieldtheoryproblemisknownarequadraticimaginaryfields,thatisfieldsoftheformK=Q(

√QUANTUMSTATISTICALMECHANICSANDCLASSFIELDTHEORY3

integer.Inthiscasetheanswer√isgivenbythetheoryofcomplexmultiplicationwhichcharacterizesthefieldQ(−d)֒→CtheringofintegersofQ(√

ofananalyticfunctionFonEatthepointsoffinite−d)abis

generatedbythevaluesorderofE.ThefunctionFisgivenbyPuwherePistheWeierstrassfunctionofEanduistheorderofthegroupofautomorphismsofE.

3.Basicsinquantumstatisticalmechanics

Quantumstatisticalmechanicsstudiesstatisticalensemblesofquantummechan-icalsystems.Fromamathematicalpointofview,aquantumstatisticalmechanicalsystemconsistsofasetofobservablesAhavingthestructureofaC∗-algebraandatimeevolutionofthesystemgivenbyaone-parametergroupofautomorphismsσtofthealgebraofobservables,σtsystemisspecifiedbyaprobabilitymeasure∈Aut(Aon),thet∈phaseR.Classicallyspace,integrationthestateofofanaobservableagainstthismeasuregivesitsmeanvaluecorrespondingtotheparticu-larstate.Inaquantummechanicalsetting,probabilitymeasuresarereplacedbystatesonthealgebraofobservables.BydefinitionastateonaunitalC∗-algebraAisalinearmapϕ:A→Csatisfying:

•ϕ(a∗a)≥0foralla∈A.The•appropriateϕ(1)=1.

definitionofequilibriumstatesinthiscontextwasgivenbyHaag,HugenholtzandWinninkin[11].Givenaquantumstatisticalmechanicalsystem(A,σt)anequilibriumstatewillbeastateϕonthealgebraAsatisfyingcertaincompatibilityconditionwithrespecttothetimeevolutionofthesystem.Thiscondition,knownastheKMScondition(afterKubo,MartinandSchwinger)dependsonathermodynamicparameterβ=1

4JORGEPLAZAS

atimeevolutiononAby

σt(a)=eitHae−itH,

a∈A

Iftheoperatore−βHistraceclassthen

ϕ(a)=

1

ϕ(ρ(1))ϕ

◦ρ.Innerendomorphismscomingfromisometries

invariantunderthetimeevolutionacttriviallyonequilibriumstates.SymmetriesinducedbyendomorphismswereintroducedinthecontextofsuperselectionsectorsdevelopedbyDoplicher,Haagandroberts.

4.TheBost-Connessystem

In[2]BostandConnesconstructedaremarkablequantumstatisticalmechanicalsystem(A,σt)inwhichthestructureofequilibriumstateswiththeclassfieldtheoryofQ.ThegroupCQ/DQ=Z

ˆisrelatedinadeepway

∗actsassymmetriesofthissystemandthealgebraicnumbersgeneratingthemaximalabelianextensionofQcanberecoveredasvaluesoftheequilibriumstatesatzerotemperatureontheobservablescorrespondingtoanarithmeticsubalgebraofA.WhatismoreremarkableaboutthissystemisthefactthatthevaluescommuteswiththeactionofCQ/DQ=Z

ˆactionoftheGaloisgrouponthis

∗ontheequilibriumstates.Inthissectionwedescribethissystemanditsmainfeatures.

LetAbetheC∗-algebrageneratedbytwosetsofelements{e(r)|r∈Q/Z}and{µn(1)|n∈µ∗N+}withrelations:

nµn=1∀n∈N+(2)µnµk=µnk(3)(0)=1,e(1

r)∗∀=n,ek(−∈rN+

e),e(r)e(s)=e(r+s)

∀r,s∈Q/Z

(4)

µne(r)µ∗n=

QUANTUMSTATISTICALMECHANICSANDCLASSFIELDTHEORY5

DefineatimeevolutionontheC∗-algebraAbytaking

σt(µn)=nitµn,n∈N+,t∈Rσt(e(r))=e(r),

r∈Q/Z,t∈R

Wewillrefertothequantumstatisticalmechanicalsystem(A,σt)astheBost-Connessystem.Wesummarizethemainresultsof[2]aboutthestructureofthissystem.AsabovewedenotebyE∞thesetofextremalKMS∞states.Theorem4.1(Bost,Connes).

•ThegroupCQ/DQ=Z

ˆ∗actsasagroupofsymmetriesofthesystem(A,σt).•LetAQbetheQ-subalgebraofAgeneratedoverQbythesetsofelements

{e(r)|r∈Q/Z}and{µn,µ∗∗

n|n∈N}.Thenforeveryϕ∈E∞andeverya∈AQthevalueϕ(a)isalgebraicoverQ.Moreoverforanyϕ∈E∞onehasϕ(AQ)⊂QabandQabisgeneratedbynumbersoftheformϕ(a)withϕ∈E∞anda∈AQ.

•Forallϕ∈E∞,γ∈Gal(Qab|Q)anda∈AQonehas

γϕ(a)=ϕ(θ−1(γ)a)

whereθ:Z

ˆ∗→Gal(Qab|Q)istheclassfieldtheoryisomorphism.Thesystem(A,σt)wasoriginallyintroducedbyBostandConnesinthecontext

ofHeckealgebras.Theinclusion󰀃of󰀄ringsZ⊂QinducesaninclusionPZ+⊂PQ+wherePQ+={b0a|b∈Q,a∈Q∗+}andPZ+

={󰀃matrix1c01

Thisinclusionofmatrixgroupsisalmostnormalinthesensethatthe󰀄groups

1orbits|c∈Z}of.PZ+actingontheleftonthesetofrightcosetsPQ+/PZ+arefiniteandviceversa.

OnecanthenformaconvolutionalgebraH(PZ+,PQ+

)givenbyfinitelysupported

C-valuedfunctionsonPZ+\\PQ+/PZ+

,thisalgebraiscalledtheHeckealgebraofthe

pair(PZ

+

,PQ+).H(PQ+;PZ+)canbecompletedtoaC∗-algebrawithanaturaltimeevolution.Itisshownin[2]thatinthiswayoneobtainsthesystem(A,σt)describedabove.

Let(ǫn)n∈N+bethecanonicalbasisoftheHilbertspacel2(N+).Foranyelementγ∈Gal(Qab|Q)onecandefinearepresentationπγofthealgebraAinl2(N+)by

πγ(µn)ǫk=ǫnk,

n,k∈N+

πγ(e(r))ǫk=γ(e2πikr)ǫk,

k∈N+,r∈Q/Z

ForanyoftheserepresentationsthetimeevolutionofthesystemisimplementedbytheoperatorHǫk=(logk)ǫk,k∈N+andsothepartitionfunctionofthesystemistheRiemannzetafunction

Z(β)=Tr(e−βH)=

󰀅1

k

6JORGEPLAZAS

5.Somegeneralizationstoothernumberfields

TheworkofBostandConneshasinspiredseveralauthorstoconstructquantumstatisticalmechanicalsystemsassociatedtoothernumberfields.Theseconstruc-tionsgeneralizeindifferentdirectionssomeoftheresultsin[2].

In[13]M.LacaandI.RaeburnrealizedthealgebraofobservablesoftheBost-Connessystemasasemigroupcrossedproductalgebra.GivenadiscretegroupΓitsgroupalgebraCΓcanbecompletedtoaC∗-algebraC∗(Γ)byconsideringallunitaryirreduciblerepresentationsofCΓasanalgebraofoperatorsonsomeHilbertspace.IfasemigroupSactsbyendomorphismsonthealgebraC∗(Γ)onecantwisttheproductandtheconvolutiononC∗(Γ)bytheactionofSgettingacrossedproductC∗-algebraC∗(Γ)⋊S.TheC∗-algebraoftheBost-ConnessystemisthengivenbyasemigroupcrossedproductC∗(Q/Z)⋊N+wheretheactionofN+onC∗(Q/Z)isarightinversetotheactioncomingfromthenaturalmultiplication(n,r)→nrwheren∈N+andr∈Q/Z.

Arledge,LacaandRaeburnconsideredin[1]crossedproductsoftheformC∗(K/O)⋊O×forKanarbitrarynumberfieldandOitsringofintegers.TheycharacterizethefaithfulrepresentationsofthesealgebrasandrealizedthemasHeckealgebras.AsinthecaseofQonehasthatforanynumberfieldKtheringinclusion

++

O⊂KinducesanalmostnormalinclusionofmatrixgroupsPO⊂PK.HarariandLeichtnamstudiedin[12]aquantumstatisticalmechanicalsystemcorrespondingto

++

theHeckealgebraH(PK;PO).Theequilibriumstatesofthissystemsharemany

󰀂∗

ˆ∗=ofthepropertiesoftheBost-Connessystem.ThegroupOνOν,whereν

runsoverthefiniteplacesofK,actsasasymmetrygroupofthesystemandthepartitionfunctionofthesystemistheDedekindzetafunctionofthenumberfieldK

󰀅1

ζK(s)=

1−N(p)−s

awithafinitenumberoffactorsremovedfromtheproduct.InthisexpressionarunsovertheintegralidealsofO,prunsovertheprimeidealsofOandN(a)=[O:a]istheabsolutenormoftheideala.Thissystemexhibitsspontaneoussymmetrybreakingatthepoleofthisfunction;for0<β≤1thesystemadmitsonlyoneequilibriumstateandthesymmetrygroupofthesystemactstriviallyonthisstate.

ˆ∗andthesymmetrygroupactsfreelyForβ>1thespaceEβisparameterizedbyO

andtransitivelyonthisspace.Theresultsof[12]holdforarbitraryglobalfields.Theseincludenumberfieldsandfiniteseparableextensionsofthefieldofrationalfunctionsoverafinitefield.

Aquantumstatisticalmechanicalsystemsimilartotheoneof[12]wasintroducedin[4]byCohen.HersystemhastheadvantageofrecoveringthefullDedekindzetafunctionofthenumberfieldKaspartitionfunctionofthesystem.

LacaandvanFrankenhuijsenstudiedin[14]theHeckealgebracorrespondingtothealmostnormalinclusionofmatrixgroups

󰀃󰀄󰀃󰀄1O1K

0O∗0K∗foranarbitrarynumberfieldKwithringofintegersO.Theequilibriumstates

ofthecorrespondingsystemareanalyzedinthecaseoffieldswithclassnumberone.Forquadraticimaginaryfieldsofclassnumberonethesymmetrygroupofthe

QUANTUMSTATISTICALMECHANICSANDCLASSFIELDTHEORY7

systemisisomorphictotheGaloisgroupofthemaximalabelianextensionofthefieldandtheactionofthisgrouponextremalequilibriumstatesistransitive.

6.Fabulousstatesfornumberfields

TheworkofBostandConnestogetherwithitsvariousgeneralizationsopensthepossibilityofapproachingtheproblemofexplicitclassfieldtheorywithintheframeworkofnoncommutativegeometry.FollowingtheselinesonewouldliketohaveforanarbitrarynumberfieldKaquantumstatisticalmechanicalsystemwhichfullyincorporatesitsclassfieldtheory,thenotionoffabulousstatesfornumberfields,introducedin[5]byConnesandMarcolli,encodesthisaim.

GivenanumberfieldKtogetherwithanembeddingK֒→Cthe“problemoffabulousstates”asksfortheconstructionofaquantumstatisticalmechanicalsystem(A,σt)suchthat:

•ThegroupCK/DKactsasagroupofsymmetriesofthesystem(A,σt).•ThereexistsaK-subalgebraϕ(a)isalgebraicAKofAsuchthatforeveryϕ∈E∞andeverya∈AKthevalueoverK.MoreoverKabisgeneratedoverKbynumbersofthisform.

•Forallϕ∈E∞,γ∈Gal(Kab|K=)ϕand(θ−1a(γ∈)aAKonehas

γϕ(a))

whereθ:CK/DKThegroundstatesofsuch→Galasystem(Kab|Kare)isrefereedtheclassasfield“fabulous”theoryinisomorphism.viewofitsricharithmeticalproperties.

7.Q-lattices,quadraticextensionsandcomplexmultiplication

ForthecaseofquadraticimaginaryfieldsK=Q(

8JORGEPLAZAS

naturalchoiceofanarithmeticstructuregivenbyaQ-subalgebraofC∗(Ln/R∗+).InthiswayonerecoverstheBost-Connessystem[5].

ThegroupC∗actsbyrescalingonthesetoftwodimensionalQ-lattices.AsintheonedimensionalcasetheC∗-algebraC∗(Ln/C∗)correspondingtothespaceofcommensurabilityclassesoftwodimensionalQ-latticesuptoscalinghasanaturaltimeevolutionandanaturalchoiceofanarithmeticstructure.ThestructureofequilibriumstatesofthecorrespondingquantumstatisticalmechanicalsystemisrelatedtotheGaloistheoryofthefieldofmodularfunctions.Wereferto[6]and[16]forasurveyoftheseresults.√ConsidernowaquadraticimaginaryfieldK=Q(

d),whered∈N+

isasquarefreepositiveinteger.In[15]Maninproposedtheuseofnoncommutativegeometryasageometricframeworkforthestudyofabelianclassfieldtheoryofrealquadraticfields.Thisisthesocalled“realmultiplicationprogram”.Themainideaisthatnoncommutativetorimayplayaroleinthestudyofrealquadraticfieldsanalogoustotheroleplayedbyellipticcurvesinthestudyofimaginaryquadraticfields.SomepossiblerelationsbetweenManin’sprogramandQ-latticesarediscussedin[16].

References

[1]J.Arledge,M.Laca,I.Raeburn,SemigroupcrossedproductsandHeckealgebrasarisingfrom

numberfields.Doc.Math.2(1997)115-138.

[2]J.B.Bost,A.Connes,Heckealgebras,typeIIIfactorsandphasetransitionswithspontaneous

symmetrybreakinginnumbertheory.SelectaMath.(N.S.)1(1995)411-457.

[3]O.Bratteli,D.W.Robinson,Operatoralgebrasandquantumstatisticalmechanics.Springer,

NewYork(1981).

QUANTUMSTATISTICALMECHANICSANDCLASSFIELDTHEORY9

[4]P.Cohen,AC∗-dynamicalsystemwithDedekindzetapartitionfunctionandspontaneous

symmetrybreaking.J.Th´eor.NombresBordeaux11(1999)15-30.

[5]A.Connes,M.Marcolli,Fromphysicstonumbertheoryvianoncommutativegeometry.Part

I.QuantumstatiticalmechanicsofQ-lattices.In“FrontiersinNumberTheory,Physics,andGeometryI.”SpringerVerlag,(2006).

[6]A.Connes,M.Marcolli,Q-lattices:quantumstatisticalmechanicsandGaloistheory.J.Geom.

Phys.56(2006)2-23.

[7]A.Connes,M.Marcolli,N.Ramachandran,KMSstatesandcomplexmultiplication.Selecta

Math.(N.S.)11(2005)325-347.

[8]A.Connes,M.Marcolli,N.Ramachandran,KMSstatesandcomplexmultiplication.PartII,

toappearintheAbelSymposiumVolume.

[9]G.Gras,Classfieldtheory.SpringerVerlag,Berlin,(2003).

[10]E.Ha,F.Paugam,ABost-Connes-MarcollisystemforShimuravarieties,IMRP5(2005)

237-286.

[11]R.Haag,N.M.Hugenholtz,M.Winnink,Ontheequilibriumstatesinquantumstatistical

mechanics.Comm.Math.Phys.5(1967)215-236.[12]D.Harari,E.Leichtnam,Extensionduph´enom`enedebrisurespontan´eedesym´etriede

Bost-Connesaucasdescorpsglobauxquelconques.SelectaMath.(N.S.)3(1997)205-243.[13]M.Laca,I.Raeburn,Asemigroupcrossedproductarisinginnumbertheory.J.London

Math.Soc.(2)59(1999),330-344.

[14]M.Laca,M.vanFrankenhuijsen,PhasetransitionsonHeckeC*-algebrasandclass-field

theoryoverQ.preprintmath.OA/0410305

[15]Y.ManinRealmultiplicationandnoncommutativegeometry.In:“ThelegacyofNielsHenrik

Abel”,SpringerVerlag,Berlin(2004).

[16]M.Marcolli,Arithmeticnoncommutativegeometry.UniversityLectureSeries,36.American

MathematicalSociety,Providence(2005).

[17]J.P.SerreComplexmultiplication.In:“AlgebraicNumberTheory.”Proc.InstructionalConf.,

Brighton(1965).

[18]H.P.F.Swinnerton-DyerAbriefguidetoalgebraicnumbertheory.LondonMathematical

SocietyStudentTexts,50.CambridgeUniversityPress,Cambridge(2001).MaxPlanckInstituteforMathematics,Vivatsgasse7,Bonn53111,GermanyE-mailaddress:plazas@mpim-bonn.mpg.de

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务