J.N.BahcallandP.I.Krastev
SchoolofNaturalSciences,InstituteforAdvancedStudy
Princeton,NJ080
Wecalculateaccuratelythenumberofsolarneutrinoeventsexpectedas
afunctionofsolarzenithangle,withandwithoutneutrinooscillations,fordetectorsatthelocationsofSuper-Kamiokande,SNO,andtheGranSassoNationalLaboratory.Usingdifferentearthmodelstoestimategeophysicaluncertainties,anddifferentsolarmodelstoestimatesolaruncertainties,weevaluatedistortionspredictedbytheMSWeffectinthezenithangledistribu-tionsofsolarneutrinoevents.Thedistortionsarecausedbyoscillationsandbyν−einteractionsintheearththatregenerateνefromνµorντ.Weshowthatthefirsttwomomentsofthezenith-angledistributionaremoresensitivetothesmallmixingangleMSWsolutionthantheconventionallystudiedday-nightasymmetry.Wepresentiso-sigmacontoursthatillustratethepotentialofSuper-Kamiokande,SNO,BOREXINO,ICARUSandHERON/HELLAZfordetectingtheearthregenerationeffectattheiractuallocations(andattheequator).MSWsolutionsfavoredbythefourpioneeringsolarneutrinoexperimentspredictcharacteristicdistortionsforSuper-Kamiokande,SNO,BOREXINO,andICARUSthatrangefrombeingunmeasurablysmallto>5σ(stat)afteronlyafewyearsofobservations.
0
I.INTRODUCTION
Fouroperatingsolarneutrinoexperiments(Chlorine[1],Kamiokande[2],GALLEX[3])andSAGE[4]havedetectedneutrinosfromnuclearfusionintheinteriorofthesunwithap-proximatelythenumbersandenergiesexpectedfromstandardsolarmodels[5,6].Moreover,soundspeedscalculatedfromthestandardsolarmodelsagreewiththehelioseismologicallydeterminedsoundspeedstoarmsaccuracyofbetterthan0.2%throughoutessentiallytheentiresun[7].
Nevertheless,quantitativediscrepancieshavepersistedforalmostthreedecadesbetweenthepredictionsofthestandardsolarmodelsandtheobservationsofsolarneutrinoexper-iments[8–10].Severalsuggestedmodificationsofneutrinopropertiesprovideexcellentfitstotheexistingsolarneutrinodata[11].
Aretherepotential“smokinggun”indicationsofnewphysics?Yes,themostpopularneutrinophysicssolution,theMikheyev-Smirnov-Wolfenstein(MSW)effect[12],predictsseveralcharacteristicanduniquephenomena.TheMSWeffectexplainssolarneutrinoob-servationsastheresultofconversionsinthesolarinteriorofνeproducedinnuclearreactionstothemoredifficulttodetectνµorντ.
PotentiallydecisivesignaturesofnewphysicsthataresuggestedbytheMSWeffectincludeobservingthatthesunisbrighterinneutrinosatnight(the‘earthregenerationeffect’)[13–15],detectingdistortionsintheincidentsolarneutrinoenergyspectrum[16],andobservingthatthefluxofalltypesofneutrinosexceedsthefluxofjustelectrontypeneutrinos[17,18].Ademonstrationthatanyofthesephenomenaexistswouldprovideevidenceforphysicsbeyondtheminimalstandardelectroweakmodel.
Theregenerationeffectisanespeciallypowerfuldiagnosticofnewphysicssincenodiffer-enceispredictedbetweenthecountingratesobservedduringthedayandatnight(or,moregenerally,anydependenceofthecountingrateonthesolarzeithangle)bysuchpopularal-ternativestotheMSWeffectasvacuumoscillations[19],magneticmomenttransitions[20],orviolationsoftheequivalenceprinciple[21].
1
Inthispaper,weinvestigatethesensitivityofnewsolarneutrinoexperiments,Super-Kamiokande[22],SNO[23],ICARUS[24],BOREXINO[25],HERON[26]andHELLAZ[27],totheearthregenerationeffect.TheMSWeffectpredictsthat,forcertainvaluesoftheneutrinomassesandmixingangles,ν−einteractionsintheearth(atnight)mayconvertνµorντfromthesunbackintothemoreeasilydetectableνe.
AnaccurateevaluationofthesystematicsignificanceofexperimentalresultswillrequirethedetailedMonteCarlosimulationsthatwillbecarriedoutbytheexperimentalcollab-orations;thecollaborationswilldeterminethebestestimatesanduncertaintiesforallthequantitiesthataffecttheexperimentalresult.Theseresultswillthenbeanalyzedusingcomputercodesthatincludetheexperimentaldetailsandwhichmakeuseofoptimalsta-tisticaltechniquessuchasmaximumlikelihoodanalysis.IntheabsenceofdetailedMonteCarlosimulationsoftheexperimentalcharacteristics(yettobedetermined),weestimateinthispaperthestatisticalsignificanceofexpectedresultsbycomparingthepredictionsofvariousMSWscenarioswithrespecttotheno-oscillationscenarioincludingonlystatisticalerrorsandanalyzingtheresultswithaχ2statistic.
ThereaderwhowantstoseetheapproximatepowerofthenewexperimentscanturnimmediatelytoFig.9,whichshowsthesignificancelevel(statisticalerrorsonly)withwhichnewsolarexperimentscoulddetecttheregenerationeffect.Experiencewiththeoperatingexperimentsoveraperiodofyearsmaybenecessarytodeterminethesizeofthesystematicerrors.
Thispaperisorganizedasfollows.InSec.IIwesummarizethegeneralfeaturesofνeregenerationintheearth.WethendescribeinSec.IIIthedifferentmodelsoftheearthusedforestimatingtheuncertaintiesinthenumericalcalculationsduetouncertaintiesinthedensityprofileandthechemicalcompositionoftheearth’sinterior.Inthedetailedcalculationsthatfollow,weusethedifferencesbetweentheresultsobtainedfromthedifferentmodelsoftheearthtodeterminethegeophysicaluncertaintiesintheMSWpredictions.Afterthesepreliminaryconsiderations,wedetermineinSec.IVtheregionsinthemixingangleandmassdifferenceplane,sin22θ-∆m2,thatareallowedbythelatestsolarneutrino
2
data,takingintoaccounttheinfluenceofearthregenerationonthepredictedcountingratesinthechlorine,Kamiokande,GALLEX,andSAGEexperiments.InadditiontothefamiliarlargemixingangleandsmallmixingangleMSWsolutions,wefindanadditionalLOWsolution(largemixingangle,smallerneutrinomassdifference)thathasanacceptableconfidencelevelonlywhenearthregenerationisincludedinthecalculations.
Wetheninvestigatethesensitivityofnext-generationsolarneutrinoexperimentstotheearthregenerationeffect.Webeginbydefiningandcalculatingthezenith-angleexposurefunctioninSec.V.Thisfunctiondependsonlyonthelocationofaneutrinodetectoronthesurfaceoftheearth;itisindependentofthecharacteristicsofthedetector.WealsocalculateinSec.Vthedistortedzenithangledistributionthattakesaccountofregenerationintheearth.
TheresultsforMSWregenerationgivenpreviouslyintheliteratureinvolvemakingapproximationseitherinthemodeldescriptionoftheearthorinthecalculationoftheaveragesurvivalprobabilityafterregeneration,orboth.Instead,weintegratenumericallythedifferentialequationsdescribingtheevolutionoftheneutrinostatesintraversinganaccuratemodeloftheearth,therebyavoidingthenecessityofarguingthatanapproximationschemeissufficientlyaccurate.Inseveraltablesinthispaper,wepresentnumericalresultstoaprecisionof0.01%,anaccuracymuchhigherthancanbemeasuredexperimentally.Theseprecisenumericalpredictionsaregiveninordertoillustratethesmalleffectonmeasurablequantitiesofsomeofthesystematicdifferences.
WeintroduceinSec.VIthefirsttwomomentsofthezenith-angledistributionofneu-trinoeventsandcalculatethedependenceofthemomentsonneutrinoparametersforthenewsolarneutrinoexperiments:Super-Kamiokande,SNO,ICARUS,BOREXINOandHERON/HELLAZ.Forcomparison,wecalculateaccuratelyinSec.VIItheconventionalday-nightasymmetry;wepresentvaluesoftheday-nightasymmetryforthenewsolarneu-trinodetectorsmentionedabove.
Whichcharacterizationismoresensitivetonewphysics:themomentsofthezenith-angledistributionortheday-nightasymmetry?WeshowinSec.VIIIthatthemomentsaremore
3
sensitivetothesmallmixingangleMSWsolutionandtheday-nightasymmetryismoresensitivetothelargemixinganglesolution.AlthoughlessstatisticallypowerfulthanthefullMonteCarlosimulationsthatwillbecarriedoutbytheexperimentalcollaborations,theanalysesusing,e..g,momentsortheday-nightasymmetrycanbecarriedoutquicklybytheoreticiansinterestedindeterminingwhethernewparticlephysicsscenarioscanbetestedbytheexperimentsorwhethertheyarealreadyinconsistentwithdatathathavebeenpublished.Forcompleteness,wepresentinSec.IXthemomentsoftheelectronrecoilenergyspectrumforSuper-KamiokandeandSNOthatwerecomputedincludingtheearthregenerationeffect.
WethenshowinSec.XthattheMSWpredictionsforregenerationintheearthdependonlyslightlyontheadopteddensityprofileoftheearth,thechemicalcompositionoftheearth,andthedetailsofthesolarmodel.
FollowingthesuggestionofGelb,Kwong,andRosen[28],wecalculateinSec.XItheincreaseinthesensitivitytotheregenerationeffectthatcouldbeachievedbybuildingdetectorsattheequator.WediscussandsummarizeourmainresultsinSec.XII.
II.THEEARTHREGENERATIONEFFECT
Weworkinatwo-neutrinomixingschemeinvolvingνe(producedinthesun)andeitherνµorντ(producedbyoscillations).SoonafterMikheyevandSmirnovsuggestedtheMSWeffect[12]asapossiblesolutionofthesolarneutrinoproblems,severalauthorspointedout[13]thatday-nightvariationsoftheeventratesinsolarneutrinodetectorscouldprovidespectacularconfirmationoftheMSWeffectandthusofnewphysics.
TheMSWsolutionofthesolarneutrinoproblemsrequiresthatelectronneutrinospro-ducedinnuclearreactionsinthecenterofthesunareconvertedtomuonortauneutrinosbyinteractionswithsolarelectronsontheirwayfromtheinteriorofthesuntothedetectoronearth.Theconversioninthesunisprimarilyaresonancephenomenon,whichoccursataspecificdensitythatcorrespondstoadefiniteneutrinoenergy(foraspecifiedneutrinomass
4
difference).
Duringday-time,thehigher-energyneutrinosarrivingateartharemostlyνµ(orντ)withsomeadmixtureofνe.Atnight-time,neutrinosmustpassthroughtheearthinordertoreachthedetector.Asaresultoftraversingtheearth,thefractionofthemoreeasilydetectedνeincreasesbecauseoftheconversionofνµ(orντ)toνebyneutrinooscillations.ForthesmallmixingangleMSWsolution,interactionswithelectronsintheearthincreasetheeffectivemixingangleandenhancetheconversionprocess.ForthelargemixingangleMSWsolution,theconversionofνµ(orντ)toνeoccursbyoscillationsthatareonlyslightlyenhancedovervacuummixing.Thisprocessofincreasingintheearththefractionoftheneutrinosthatareνeiscalledthe“regenerationeffect”andhastheoppositeeffecttotheconversionofνetoνµ(orντ)inthesun.
Becauseofthechangeofneutrinotypeintheearth,theMSWmechanismpredictsthatsolarneutrinodetectorsshouldgenerallymeasurehighereventratesatnightthanduringday-time.
Figure1illustratesaschematicviewofasolarneutrinodetectoratthegeographiclatitude,φ.SincetheearthissphericallysymmetrictoO(10−2.5),itissufficienttoconsiderthecross-sectionsliceshowninthefigure.∗Twolinesdeterminethegeometry:onelinedefinesthezenithdirection,andtheotherlineisthetrajectoryoftheneutrino.Thezenithangleα(00<α<1800)betweenthesetwolinesspecifiestheneutrinotrajectoryintheearth.Thesurvivalprobabilitydependsontheneutrinooscillationparameters,∆m2andsin22θ,ontheneutrinoenergy,E,andonthepath(i.e.,α)theneutrinotravelsthroughtheearth.Sinceαchangesduetotheapparentmotionofthesun,theneutrinosurvivalprobabilityshouldchangewithtimeaswell,resultinginanasymmetricdistortionoftheangulardistributionofevents.
Real-timedetectors,whichrecordthetimesatwhichneutrinosinteractwithinthedetec-tor,arebestsuitedforstudyingtheearthregenerationeffect.Inradiochemicalexperimentsthetimeofdetectionispoorlyknown,sinceatypicalrunusuallylastsbetweenseveralweeks(gallium)andseveralmonths(chlorine).
†
Kamiokande,areal-timeneutrinoelectronscatteringdetector,didnotseeanysignalfortheearthregenerationeffect.TheKamiokandecollaborationusedthisnon-observationtoruleoutanimportantregioninparameterspaceforwhichthepredictedday-nightasymme-try,orzenith-angledependence,islarge[30].However,thesensitivityoftheKamiokandedetectorwasinsufficienttoprobethefull∆m2-sin22θparameterspaceforwhichtheremightbeanappreciableday-nighteffect,measurablebySuper-KamiokandeorSNO.Thereareseveralcalculationsintheliterature[31–35]oftheexpectedmagnitudeoftheregenerationeffectinfutureexperiments.Differentgroupsofresearchershaveuseddifferentmodelsoftheearthintheircalculations.Noquantitativeestimatehasbeenmadepreviouslyofthesensitivityofthemeasurablequantitiestotheadopteddensityprofileoftheearth;eachgrouphastypicallypresentedresultsusingaspecificdensityprofile,oftennotthebestavailableprofile.Inthesubsequentsections,wedescribedirectnumericalcomputationsoftheearthregenerationeffectforsixdifferentmodelsoftheearth.Thuswequantifythedependenceofthecalculatedcharacteristicsoftheearthregenerationeffectonthemodeloftheearthandexhibitthecorrespondinguncertaintieswhichturnouttoberathersmall.ThedensityprofilesinthesixmodelsoftheeartharedescribedinSec.III.
III.EARTHMODELS
TheMSWeffectintheearthdependsupontheelectronnumberdensityasafunctionofradius.Inthissection,wedeterminebest-estimatesandarangeofuncertaintiesforthe
totalmassdensityandforthechemicalcomposition.Weusethebestavailableearthmodelsandchemicalcompositionformostofthecalculationsperformedinthispaper,butwealsocarryoutcalculationsforfiveoldermassmodelsinordertodeterminetheuncertaintiesinthepredictedMSWeffectsthatarisefromuncertaintiesinthemodeloftheearth’sdensityprofile.Weuseabest-estimatechemicalcompositionforthecorethatisinferredfromtheseismologicalmeasurements.TotestthesensitivityoftheMSWpredictionstotheassumedchemicalcompositionoftheearth,wemakeextremeassumptionsthatmaximizeorminimizetheaveragechargetomassratioandcarryoutcalculationsalsofortheseextremecases.
A.DensityProfiles
Thedensitydistributioninsidetheearthisknownwithaprecisionofafewpercent[36].Alargesetofseismicmeasurementshasbeenusedtoobtainthemostaccuratemodel,PREM[37](thePreliminaryReferenceEarthModel),fortheearth’sdensitydistribution.WewillusethePREMmodelforallofourbest-estimatecalculations.ThismodelhasalsobeenusedbyLisiandMontanino[34]asthebasisoftheirrecentanalyticstudyofearthregeneration.OthermodelsaredescribedinRefs.[38]and[39].Todeterminethesensitivitytotheassumeddensityprofile,wehaveperformedcalculationswitharepresentativesetofsixdifferentearthmodels,allsphericallysymmetricandwiththesameradius,R⊕=6371km.
Figure2showsthedensityprofilesofthesixearthmodels.Thedensitydistributionsinthesemodelsaredividedintofivezones:a)acrustwithathicknessofafewtensofkilometers,b)anuppermantleextendingdownfromthecrusttoabout1000km,c)alowermantledowntoabout2900km,d)anoutercorebetween1250kmand3480kmfromthecenter,ande)aninnercoreofradius≈1220km.Thedensitychangesabruptlybetweentheinnerandoutercore,andalsoattheborderbetweenthelowermantleandtheoutercore.Thepositionsoftheseabruptchangesareknownwithanaccuracyofbetterthanapercentfromseismologicaldata.
7
TableIcomparesthemassandmomentofinertiathatwehavecomputedforeachofthesixearthmodelswiththemeasuredvalues.Therecentmodelsgivenin[37]and[39]reproducethetotalmassandmomentofinertiawithexcellentprecision.Theoldermodels[40–43]giveslightlyworsefitstothemassandmomentofinertia.ThemodelslistedinthethirdtosixthrowinTableIareinconflictwithseismologicalmeasurements.
Thesetofsixmodelsrepresentsasamplethatallowsforvariationsofthedensitydistri-butionlargerthantheuncertaintiesinthePREMmodel.AsshowninSec.VI(andthelastfourcolumnsofTableI),thelargedifferencesbetweenthesixdensitymodelsproducerela-tivelysmall(butnotalwaysnegligible,seeSec.VI)changesinthepredictedcharacteristicsoftheearthregenerationeffectfortheSuper-Kamiokande,SNO,BOREXINO,ICARUS,andHERON/HELLAZexperiments.
Figure2showsthatthelargestdifferencesbetweenthesixmodelsoftheearthareinthecore,below2000km.Theoperatingsolarneutrinoexperiments,andthosecurrentlyunderdevelopment,arelocatedatrelativelyhighnorthernlatitudes.Solarneutrinosthataredetectedintheseexperimentsnevercrosstheinnercoreoftheearth.Amongthereal-timeexperimentsthatarecurrentlyoperatingorareunderconstruction,Super-Kamiokandeismostsensitivetothecoredistribution.Nevertheless,thefractionofayearduringwhichtheneutrinoscrosstheoutercoreattheKamiokasiteissmall(≃7%).
B.ChemicalCompositions
Measurementsofthepropagationofseismologicalwavesintheearth’sinteriorandstudiesofthepropertiesofmineralsunderhighpressure,havebeencombinedtodeterminethechemicalcompositionoftheearth’sinteriorwithrelativelyhighaccuracy[44,45].Usingtheresultsofreferences[44,45],weadoptabest-estimatechargetomassratio,Z/A,of0.468forthecore(83%Fe,9%Ni,and8%lightelementswithZ/A=0.5)and0.497forthemantle(41.2%SiO2,52.7%MgOand6.1%FeO).
Alowerlimitforthechargetomassratiointhecoreis0.465,whichcorrespondsto
8
assumingacompositionof100%iron.Fromtheseismicandmineraldata,geophysicistshaveconcluded[44]thattheminimumamountofironinthecoreis80%.WedetermineamaximumvalueofZ/A=0.472inthecorebyassumingacompositionof80%ironand20%lightelements.Thetotalrangeoftheelectronnumberdensityduetotheimperfectlyknowncompositionofthecoreisabout1.5%.
Thechemicalcompositioninthemantleisbelievedknowntoabout1%(seeref.[36]).Weconsiderherevariationsof−1%and−2%.ThevalueofZ/Xinthemantlecannotbeincreasedsignificantlyabovethestandardvalueof0.496becausethatwouldrequirethepresenceofalargeamountofhydrogeninthemantle.
IV.AVERAGEEVENTRATESANDMSWSOLUTIONS
Includingtheearthregenerationeffect,wehavecalculatedtheexpectedone-yearaver-ageeventratesasfunctionsoftheneutrinooscillationparameters∆m2andsin22θforallfouroperatingexperimentswhichhavepublishedresultsfromtheirmeasurementsofsolarneutrinoeventrates.Theseincludethechlorineexperiment,Kamiokande,GALLEXandSAGE.ThusweupdateourpreviousresultsgiveninRef.[11],inwhichtheeartheffectwasneglected.Wetakeintoaccount,asbefore,theknownthresholdandcross-sectionforeachdetector.InthecaseofKamiokande,wealsotakeintoaccounttheknownenergyresolution(20%1σatelectronenergy10MeV)andtriggerefficiencyfunction[46].
¯SE,foralargenumberofWefirstcalculatetheoneyearaveragesurvivalprobability,P
valuesof∆m2andsin22θusingthemethoddescribedinAppendixA.Thenwecomputethecorrespondingoneyearaverageeventratesineachdetector.Weperformaχ2analysistakingintoaccounttheoreticaluncertaintiesandexperimentalerrorsasdescribedin[47].TableIIsummarizesthereportedmeaneventratesfromeachdetector.Weobtainallowedregionsin∆m2-sin22θparameterspacebyfindingtheminimumχ2andplotting
22
contoursofconstantχ2=χ2min+∆χwhere∆χ=5.99for95%C.L.and9.21for99%
9
C.L.‡.
Thebestfitisobtainedforthesmallmixingangle(SMA)solution:
∆m2=5.0×10−6eV2,(1a)sin22θ=8.7×10−3,
(1b)
whichhasaχ2min=0.25.Therearetwomorelocalminimaofχ2
.Thebestfitforthewell
knownlargemixingangle(LMA)solutionoccursat
∆m2=1.3×10−5eV2,(2a)sin22θ=0.63,
(2b)
withχ2min=1.1.Thereisalsoalessprobablesolution,whichwerefertoastheLOWsolution(lowprobability,lowmass),at[48,31]
∆m2=1.1×10−7eV2,(3a)sin22θ=0.83.
(3b)
withχ2min=6.9.TheLOWsolutionisacceptableonlyat96.5%C.L.
Figure3showstheallowedregionsintheplanedefinedby∆m2andsin22θ.TheC.L.is95%fortheallowedregionsoftheSMAandLMAsolutionsand99%fortheLOWsolution.Theblackdotswithineachallowedregionindicatethepositionofthelocalbest-fitpointinparameterspace.TheresultsshowninFig.3werecalculatedusingthepredictionsofthe1995standardsolarmodelofBahcallandPinsonneault[6],whichincludesheliumandheavyelementdiffusion;theshapeoftheallowedcontoursdependsonlyslightlyupontheassumedsolarmodel(seeFig.1ofref.[11]).
Theresultsgivenherediffersomewhatfromthosegivenearlierinref.[11],bothbecausewearenowincludingtheregenerationeffectandalsobecauseweareusingmorerecentexperimentaldataforthepioneeringsolarneutrinoexperiments.Comparingtheresults
giveninEqs.(1)–(3)andFigs.3withthecorrespondingallowedregionsobtainedforthesameinputneutrinoexperimentaldatabutwithoutincludingtheeartheffectshowsthatterrestrialregenerationchangesonlyslightlythebest-fitsolutionsfortheSMAsolution<5%in∆m2andsin22θ)andtheLMAsolution(<10%in∆m2andsin22θ).The(∼∼regenerationeffectisincluded;otherwise,theLOWsolutionisruledoutat99.9%C.L.Figure4comparesthecomputedsurvivalprobabilitiesfortheday(noregeneration),thenight(withregeneration),andtheannualaverage.Theseresultsareusefulinunderstandingtheday-nightshiftsintheenergyspectrumthatarecomputedanddiscussedinSec.IX.TheresultsinthefigurerefertoadetectoratthelocationofSuper-Kamiokande,butthediffer-encesareverysmallbetweenthesurvivalprobabilitiesatthepositionsofSuper-Kamiokande,SNO,andtheGranSassoUndergroundLaboratory.
valuesofχ2minarealsonotsignificantlyaffected.TheLOWsolutionisacceptableonlyifthe
V.THEZENITH-ANGLEEXPOSUREFUNCTIONANDTHEZENITH-ANGLE
DISTRIBUTIONFUNCTION
Inthissection,wedefineandcalculatethezenith-angleexposurefunctionandshowhowtheexposurefunctioncanbedistortedbyoscillationsandbyneutrino-electroninteractionsintheearthintothezenith-angledistributionfunction.
Thefractionalnumberofneutrinoeventsobservedasafunctionofsolarzenithangle,α(seeFig.1),is,forstandardneutrinophysics,determinedonlybythelatitudeoftheneutrinodetector.Thenumberofeventsislargestforzenithanglesatwhichthesunspendsthemosttimeinitsapparentmotionaroundtheearth.Inwhatfollows,weshallrefertothenormalizednumberdistributionofevents,Y(α),asthe“zenith-angleexposurefunction”;thisfunctiondescribestherelativeamountoftimethedetectorisexposedtothesunatafixedzenithangle.Wepresentinthissectionthezenith-angleexposurefunctioncalculatedassumingmasslessneutrinos(nooscillations)anddetectorsplacedatKamioka,Japan(KamiokandeandSuper-Kamiokande),Sudbury,Canada(SNO),andtheGranSasso
11
UndergroundLaboratory(GALLEX,ICARUS,BOREXINOandHERON/HELLAZ).TheexposurefunctionfortheHomestakedetectorhasbeencalculatedbyCherryandLande‘[13].
Thezenith-angledistributionofeventscanbedistortedbytheearthregenerationeffectimpliedbyMSWsolutions,sinceatsolarzenithangleslargerthan900neutrinospassthroughtheearthontheirwaytothedetectorandthereforeνe’scanberegeneratedbyinteractionswithelectronsintheearth’sinterior.Thedistorteddistributionfunction,f(α),willbereferredtoasthe“zenith-angledistribution.”Themaingoalofthispaperistocalculateandanalyzetheshapeoff(α)predictedbydifferentMSWsolutionsandtoestimatethesensitivityofdetectorstothedifferencebetweenf(α)andthezenith-angleexposurefunction,Y(α).
A.Zenith-AngleExposureFunction
Inordertorepresentaccuratelythezenith-angleexposurefunction,weconsider360angles,αi,separatedby0.5◦intervalsbetween0and180◦.Thefractionoftimeinayearduringwhichthezenithangle,α,(seeFig.1)ofthesunisclosetoαkisproportionalto:
Y(αk)=
′
Ni=1
θ(α(ti)−αk)θ(αk+1−α(ti))[1AU/R(ti)]−2.
(4)
Hereα(ti)isthesolarzenithangleattimeti,N=T/∆t,Tisthedurationofonecalendaryear,and∆tisthetime-step.Thefunctionθisthewellknownstep-functionθ(x)=0,x<0andθ(x)=1,x≥0.ThefunctionR(t)istheinstantaneousearth-sundistance,and1AUistheoneyearaverageearth-sundistanceforwhichsolarneutrinofluxesareroutinelycalculatedinstandardsolarmodels(seeAppendixBforanexplicitrepresentationofthetime-dependentearth-sundistance).
ThesuminEq.(4)wascomputedbysimulatingthemotionofthesunonthecelestialsphereduringonecalendaryearusingtheformulaeinAppendixB.Computationswithdifferenttimestepsbetweenafewsecondstoafewminutesarepracticallyequivalentforcalculatingeventratesinthevarioussolarneutrinodetectors.
12
Thenormalizedzenith-angleexposurefunction,Y(αk),isobtaineddirectlyfromEq.(2),
Y(αk)=Y(αk)/
′
Ni=1
Y(αi).
′
(5)
ThusY(αk)isthefractionofthetimeduringonecalendaryearthatthesun’szenithangleiswithintheinterval(αk−0.250,αk+0.250).Ifthesolarneutrinofluxisconstantintime(noneutrinooscillationsoccur),thenthefunctionY(α)willbethenormalizedangulardistributionofeventsinthedetector.WeusetheanalyticalexpressionsforR(t)giveninRef.[49](seeEq.B2).Thezenithangleexposurefunctionwascalculatedanalyticallyinref.[34],withoutincludingthevariationduetothechangingearth-sundistance.
Figures5and6showtheundistortedzenith-angleexposurefunctionsforSuper-Kamiokande,SNO,and,thedetectorsassumedtooperateatGranSasso(ICARUS,BOREX-INO,andHERON/HELLAZ).ConvenientnumericaltablesfortheY(αk)areavailableathttp://www.sns.ias.edu/∼jnb.TableIIIliststhelatitudes(allnorthern)ofeachofthesolarneutrinodetectors.
ThepositionsofthesharppeaksinFigs.5and6aredeterminedbythelocationofthedetectorandbytheobliquity,ǫ,oftheearth’sorbit(approximately23.40).Theabsolutevalueofthedifferencebetweenthemaximum(orminimum)possiblezenithangleforagivenlocationandthepositionoftheclosestpeakisequaltoφ+ǫ.Atsummersolstice,thesun’szenithanglechangesfromtheminimumpossibletotheanglecorrespondingtothesecondpeak(atanangle>900).Atwintersolsticethesungoesbetweenthepeakatangle<900andthemaximumpossiblezenithangle.Thusduringwintersolarneutrinospassclosertotheearth’scenter,whereasduringsummertheygothroughlowerdensitylayersofthemantle.
B.Zenith-AngleDistributionFunction
Wecalculatetheeventrates,Qi,alongeachdirection,αi,withtheaidofasetofsurvival
i
probabilities,PSE,computed(justonceforeachdirection,mixingangle,andE/∆m2)along
13
afixedsetoftrajectoriesthroughtheearth.ThenumericalvalueofeachQiisobtainedfromEq.C1ofAppendixC.Thenormalizedzenith-angledistributionfunctionis
f(αi)=Q(αi)Y(αi)/
k
Q(αk)Y(αk).(6)
Intheabsenceofoscillations,thedetectoreventrate,Qi,isindependentofdirectionanddisappearsfromtheright-handsideoftheequation.Inthiscasef(α)≡Y(α).
InFigs.5and6,wepresenttheexpecteddistortedangulardistributionsfortheSMA,LMA,andLOWsolutionsinSuper-Kamiokande,SNO,ICARUS,BOREXINOandHERON/HELLAZ.InthepanelsforSuper-Kamiokande,SNOandICARUS,weshowonlythedistributionscorrespondingtothebest-fitpointsintheSMAandLMAsolutions;thecurvescorrespondingtotheLOWsolutionarevirtuallyundistorted.Correspondingly,inthepanelsforBOREXINOandHERON/HELLAZ,weshowonlytheexpectedangulardis-tributionfortheLOWsolution(seeEq.3b),sincetheSMAandLMAsolutionsimplyonlyanegligibledistortionofthezenith-angledistributionfortheselowenergydetectors.
VI.MOMENTSOFTHEZENITH-ANGLEDISTRIBUTION
Inthissection,weevaluatetheexpectedMSWdistortionsoftheangulardistributionandcomparethefirsttwomomentsofthepredictedangulardistributionofeventswiththecalculatedmomentsexpectedintheabsenceofoscillations.Thiscomparisonconstitutesanewand,forthesmallmixinganglesolution,amorepowerfulwayofanalyzingthetimedependenceoftheobservedneutrinoevents.ThepredicteddistortionsoftherecoilelectronenergyspectrainSuper-KamiokandeandinSNOwereinvestigatedinRef.[50,34]intermsoftheanalogousmomentsoftheenergydistribution.
InSec.VIA,wedefinethefirstandsecondmomentsofthezenith-angledistributionandthencalculateinSec.VIBthepredictedMSWchangesinthezenith-angledistributions.Weplottherelativeshiftofthefirstmomentintheplaneoftheneutrinooscillationparameters∆m2andsin22θ,illustratingtherangeofpossiblevaluesoftheshiftofthefirstmoment
14
withinthe95%C.L.allowedbytheChlorine[1],Kamiokande[2],GALLEX[3],andSAGE[4]experiments.
HowsensitivewilltheSuper-Kamiokande,SNO,ICARUS,BOREXINOandHEL-LAZ/HERONexperimentsbetotheregenerationeffect?
Weanswerthisquestionin
Sec.VIBbyplottingthenumberofstandarddeviationseachMSWsolutionisseparatedfromtheno-oscillationsolutionintheplanedefinedbythevaluesofthefirsttwomoments.
A.MomentDefinitions
Thefirsttwomomentsofthezenith-angledistributionaredefinedby
α=
and
σ=
2
αf(α)dα,(7a)
(α−α)2f(α)dα.
(7b)
Thefractionalshiftsinthesetwomomentsaredefinedas
∆α
2σ0
22
=(σ2−σ0)/σ0,
(8b)
2
whereα0andσ0arethemomentsofthezenith-angleexposurefunctiondistribution(no
oscillations)andαandσ2arethemomentsofthedistorted(byoscillations)zenith-angledistribution.BecauseofthesymmetryofY(α)aboutα=90deg,α0=π/2forallthedetectorlocations.Thevaluesoftheundistortedsecondmoment,σ0,are:37.90(Super-Kamiokande),32.90(SNO),34.90(GranSasso),33.90(Homestake),34.50(Baksan),and47.50(Equator).
TheKamiokandecollaborationexcludedasignificantregionin∆m2-sin22θparameterspacebygroupingtheeventsfrombelowthehorizonintofivebins,correspondingtodifferent
15
zenithangles[2].LisiandMontaninoinRef.[34]calculatedbinnedangulardistributionsforSuper-KamiokandeandSNOfordifferentvaluesof∆m2andθ2.
Thecalculationofthefirsttwomomentsofthezenith-angledistributionissubjecttofewercomplicationsthanthemoretraditionalmethodusedinreferences[2,34]ofbinningthedataanddoingaχ2analysis.Forbinneddata,theaprioriunknownnormalizationandtheangulardependenceofthedetectorsensitivityare,forexample,twooftheaspectsofneutrinoexperimentsthatintroducebin-to-bincorrelationswhichareoftendifficulttoestimatefromtheobservationsortoevaluateincludingalloftherelevantdetectorcharacteristics.Ontheotherhand,thecalculationofthefirstandsecondmomentsdirectlyfromthedataisstraightforward.
B.PredictedMSWMoments
Figures7and8showtheexpectedshiftsinthefirsttwomomentsasafunctionoftheneutrinooscillationparameters,∆m2andsin22θ.WeplotinFig.7(Fig.8)contoursofcon-2
stantfractionalshift,∆α/α0(∆σ2/σ0),ofthefirstmoment(secondmoment)inthe∆m2-
sin22θplane.Thefivepanelsare,forbothfigures,forSuper-Kamiokande,SNO,ICARUS,BOREXINOandHERON/HELLAZ.ForSuper-Kamiokande,∆α/α0variesbetween−0.1%and3%intheSMAregionandbetween0.5%and7%intheLMAregion.ThecorrespondingrangesforSNOare(−0.1,4.5)%(SMA)and(0.3,15)%(LMA).SNOissomewhatmoresen-sitivethanSuper-Kamiokandetotheshiftofthefirstmomentbecauseνµs(andντs)donotcontributetothecharged-currentsignalinSNO.ICARUSandSNOhavesimilarsensitivi-tiestotheregenerationeffectsincebothobservechargedcurrentreactionswithhigh-energythresholdsof10.9MeVand6MeV,respectively.Thelow-energyexperiments,BOREXINOandHERON/HELLAZ,areinsensitivetoboththeSMAandLMAallowedregions,butwillbeabletotesttheLOWsolutiontowhichneitherSNOnorSuper-Kamiokandearesensitive.Theresultsforthesecondmoment,showninFig.8,exhibitsimilartrends.
Figure9summarizesthepotentialofthesecondgenerationofsolarneutrinoexperiments
16
fordiscoveringnewphysicsviatheearthregenerationeffect.Thefiguredisplaysiso-sigmaellipses,statisticalerrorsonly,intheplaneofthefractionalpercentageshiftsofthefirst
twomoments,∆α/α0and∆σ2/σ2
0.Assumingatotalnumberofeventsof30000,(which
correspondsto∼5yearsofstandardoperationforSuper-Kamiokandeand∼10yearsforSNO),wehavecomputedthesamplingerrorsonthefirsttwomomentsaswellasthe
correlationoftheerrorsusingthefollowingwellknownformulae[51]:σ(m1)=
N
,σ(m2)=
N
,andρ(m1,m2)=
µ√
µ3
2
Weevaluatenumericallytheday-nightasymmetryforSuper-Kamiokande,SNO,ICARUS,BOREXINO,andHERON/HELLAZ.Wepresentquantitativeestimatesofthesensitivityoffutureexperimentstothepredicteddifferenceinnight-timeandday-timeeventrates.
Theday-nightasymmetryisdefinedas:
AQn−d=
n−Qd
ThedifferencesbetweenSNOandICARUSaremainlyduetothedifferentassumedneu-trinothresholds(6.4MeVand10.9MeV,respectively)andtothelocationsofthedetectors.Forlargemixingangles,forwhichtheregenerationeffecttakesplacemainlyintheman-tle,thesensitivitiesofthetwodetectorsareparticularlysimilar.Atsmallmixingangles(sin22θ<0.3)and5×10−6<∆m2/eV2<10−5,ICARUSisslightlymoresensitivetotheeartheffectbecauseitislocatedatalowerlatitudethanSNO.
Thethreefuturedetectorsthatwillmeasurelow-energyneutrinos,BOREXINO(7Be),HERON(pp),andHELLAZ(pp),willbesensitivetothelargeday-nightasymmetriespre-dictedintheLOWsolution,butinsensitivetotheasymmetriespredictedbytheSMAandLMAsolutions.Therangeofday-nightasymmetriesexpectedfortheLOWsolutionare(16±5%)forHERON/HELLAZand(16±8%)forBOREXINO.
VIII.WHICHSTATISTICALTESTISBEST?
Whichstatisticaltestsaremostpowerfulindetectingnewphysics?Whattypeofanalysiswillmostclearlyshowdeparturesfromthezenith-angleexposurefunctionduetotheregen-erationeffect?Byanalyzingsimulateddatainthissection,weshallseethatthepreferredstatisticalanalysisdependsuponwhichsolutionNaturehaschosen.
TableVIcomparesthesensitivityofSuper-KamiokandeandSNOtotheearthregener-ationeffectforthreedifferentstatisticaltests.Wehavecomputedthenumberofstandarddeviationsbywhichthebest-fitMSWsolutions(describedinSec.IV)differfromtheundis-tortedzenith-angleexposurefunction.Weconsiderthefirstandsecondmomentsofthezenith-angledistribution(seeSectionV),theday-nightasymmetry(An−d)(seeSec.VI),andtheKolmogorov-Smirnovtestofthedistortedzenith-angledistribution.Weassume30000eventsaredetectedinthecaseoftheSMAsolution.Thecomparisonismadeafteronly5000eventsareobservedforthemore-easilyrecognizedLMAsolution.
FortheSMAsolution,themomentsanalysisismostsensitive.ThedifferenceforSNO,between4.9σ(day-nightanalysis)and6.5σ(momentsdistribution),correspondsto20000
19
events,orapproximately7yearsofdatataking.Allthreestatisticaltestscaneasilyrevealthebest-fitLMAsolution,althoughtheday-nightasymmetryisthemostefficientchar-acterizationinthiscase.TheKolmogorov-SmirnovtestistheleastsensitivetotheSMAsolution,butperformsbetterthanthemomentsmethodfortheLMAsolution.
WecanunderstandphysicallywhytheSMAdistortionismosteasilydetectedbymeasur-ingthemomentswhiletheLMAdistortionismostprominentintheday-nightasymmetry.Figure11showsforSuper-Kamiokandethefractionaldistortion,[f(α)−Y(α)]/Y(α),ofthezenith-angledistributionforthebest-fitSMAandLMAsolutions.Onecancrudelyapproximatethedistortionsby,fortheSMAsolution,adelta-functionnearthemaximumallowedzenithangleand,fortheLMAsolution,astepfunctionnearπ/2.Withthesesimpleapproximations,onecanshowanalyticallythatthefirstmomentandtheday-nightasymmetryhavesimilarstatisticalpowerfortheSMAsolution,andthesecondmomentismorediscriminatorythaneitherthefirstmomentortheday-nightasymmetry.ThereasonthatthesecondmomentissousefulfortheSMAsolutionisthatinthiscasethedistortionmostlyariseswhentheneutrinospassthroughthecoreatlargezenithangles.Becausethevacuummixingangleissmall,theenhancedmixing[ρres=7gcm−3(E/10MeV)]duetotheearthmattereffectisparticularlysignificantwhentheneutrinostraversethecore.SincethevacuummixingangleislargefortheLMA,thematterenhancementisnotespeciallysignificantinthiscaseandthemainregenerationfortheLMAsolutionisduetooscillationsthatoccurinthemantle,i.e.,wheneverα>π/2.Theday-nightasymmetryiswell-tunedtothisdistortionsinceAn−dcomparestheaverageeventrateforα>π/2withtheeventrateforα<π/2.TheLOWsolutionproducesarelativedistortion,[f(α)−Y(α)]/Y(α),thathasashapesimilartotheLMAsolutionandisthereforemosteasilydetectedbytheday-nightasymmetry.TheKolmogorov-SmirnovtestisnotoptimallytunedtoanyofthethreebestMSWsolutionsandisthereforenotaspowerfulasthemomentsortheday-nightasymmetry.
20
IX.MOMENTSOFTHEENERGYSPECTRUM
Werefineinthissectionourpreviouscalculationsofthefirsttwomomentsoftheenergyspectrumfromelectronrecoilsproducedbyinteractionswith8Bneutrinos.WeuseheretheslightlyimprovedMSWsolutions,describedinSec.IV,thatincluderegenerationintheearth.Thereaderisreferredtoourearlierpaper[50]fortherelevantdefinitionsandnotation(seealsoref.[34]forasimilarcalculation).
TableVIIpresents,foranassumedthresholdof5MeV,thefirstandsecondmomentsoftheelectronrecoilenergyspectrum,andthepercentageshiftswithrespecttotheaverageelectronkineticenergy,T0,andthedispersioninthekineticenergy,σ0,intheabsenceofoscillations.TheresultsforT0andσ0differbysmallamounts(<1%)fromourearlierresultsgiveninref.[50];thepresentresultsarenumericallymoreprecise.TheresultsinTableVIIaregivenforthebest-estimateMSWsolutions(SMA,LMA,andLOW)describedinSec.IV.Forcompleteness,welisttheoneyearaveragemomentsoftheenergyspectrumforday-time,night-time,andthetotalyear.ThecalculatedmomentsfortheSuper-KamiokandeexperimentaregivenintheupperpartofthetableandthemomentsforSNOarelistedinthelowerpartofthetable.TableVIIIpresentsthesameresultsforanassumedthresholdof6MeV.
WedidnotincludeinourcalculationtheunknowntriggerefficienciesofSuper-KamiokandeorSNO.TheinclusionofthesetriggerfunctionscanchangethepredictedfirstandsecondmomentsoftheenergydistributionbyafewpercentandwillcertainlybeincludedinthecarefulMonteCarlocalculationsthatwillbeperformedultimatelybytheSuper-KamiokandeandSNOexperimentalgroups.
Comparingthecalculateddayandnightrates,TableVIIandTableVIIIshowthatregenerationintheearthslightlydecreases,forboththeSMAandtheLOWsolutions,theaveragekineticenergyoftherecoilelectronsinbothSuper-KamiokandeandSNO.Thisdecreaseoccursbecauseinthesunthesetwosolutionspreferentiallytransformlowenergyneutrinosfromνetoνµ(orντ)andthereforethereisarelativelylargerchanceatlowenergy
21
ofregeneratingνefromνµ(orντ)intheearth.FortheLMAsolution,regenerationincreasestheaveragekineticenergysinceinthiscasethehigh-energypartofthe8Bneutrinoenergyspectrumispreferentiallydepletedofνeinthesun.
TheshiftbetweendayandnightofthemomentsismostsignificantfortheLMAsolution.Infact,ifthenaturehaschosentheLMAsolution,thenthespectraldistortionmaybehighlightedbycomparingtheday-timeandnight-timemoments.
X.SENSITIVITYTOEARTHMODELSANDSOLARMODELS
WecalculateinSec.XAthesensitivityoftheMSWpredictionstotheassumeddensityprofileandchemicalcompositionoftheearthmodelandinSec.XBthedependenceupontheassumedmodelofthesun.
A.UncertaintiesDuetoEarthModels
TableIpresentsthecalculatedpercentageshiftsofthefirsttwomomentsofthezenith-angleeventdistributionforallsixmodelsoftheearthdiscussedinSec.III;thecalculationsweremadeassumingeithertheSMAortheLMAsolutions.Thefractionalchangesofthefirstmomentvarybyonly∼0.02%fortheSMAsolutionand∼0.2%fortheLMAsolution,althoughthedensityprofilesinsomeofthesemodelsaresignificantlydifferentfromtherangeallowedbycurrentseismologicaldata.Weconcludethattheshapeofthezenith-angledistributioncanbecalculatedwithacceptableaccuracyforanyoftherecentlypublisheddensityprofilesoftheearth.
TableIXillustratestheuncertaintiesintheMSWpredictionsoftheshiftsofthefirstandsecondmomentsofthezenith-angledistributionduetouncertaintiesintheelectronnumberdensityinthemantleandinthecore.TherangesofZ/Aincludedinthetable(±2%inthecoreand−1%,−2%inthemantle)arelargerthanthecurrentestimatesofthegeophysicaluncertainties(seethediscussioninSec.IIIandreference[44,45]).Weconclude
22
fromTableIXthatuncertaintiesinthechemicalcompositionaffectthepredictedmomentshiftsduetoregenerationbyatmostafewpercentoftheirvalues.
AsimplifiedmodelwithauniformcompositionofZ/A=0.5hasbeenusedinrefer-ence[35](andinmanyormostoftheearlycalculationsrelatedtotheregenerationeffect,see[13]).Thepredictionsfromthisconstant-compositionmodelarealsogiveninTableIX;thiscrudemodelleadstoimprecise,butnotgrosslyerroneous,predictionsofthemomentsofthezenith-angledistribution.
B.UncertaintiesDuetoSolarModels
Tothebestofourknowledge,allpreviousdiscussionsoftheearthregenerationeffecthavedescribedthisphenomenonasifitwerecompletelyindependentofsolarmodels.Thisimplicitassumptionisnotexactlycorrectsincethesizeoftheearthregenerationeffectdependsupontheflavorcontentoftheincidentneutrinobeam,whichmustbecalculatedbyusingasolarmodeltodescribe(forspecifiedMSWparameters)theproductionandconversionprobabilitiesof8Bsolarneutrinosasafunctionofthepositioninthesunatwhichtheneutrinosarecreatedandtheneutrinoenergy.Theslightlydifferentdensitydistributionsindifferentsolarmodelshavethelargesteffect,whichisstillquitesmallasweshallseebelow,ontheinferredflavorcontentoftheincidentsolarneutrinoflux.
Inordertoquantifythedependenceofthepredictedearthregenerationeffectuponthecharacteristicsofthesolarmodel,wehavecalculatedthefractionalshiftsofthefirstandsecondmomentsofthezenith-angleeventdistributionusingthreedifferentsolarmodels.Asourstandardsolarmodel,weadoptthemodelwithheliumandheavyelementdiffusionofBahcallandPinsonneault[6].Forcomparison,weusethe1992modelofBahcallandPinsonneault[52],whichincludesheliumdiffusion(butnotheavyelementdiffusion)andsomewhatlessaccurateinputphysics.Finally,weusethe1988modelofBahcallandUl-rich[53],whichdoesnotincludeanydiffusionandhaslesspreciseopacities,equationofstate,andotherinputdata.
23
TableIVshowsthattheMSWpredictionsareessentiallyidenticalforthe1992solarmodelwithheliumdiffusionandthe1995solarmodelwithheliumandheavyelementdiffu-sionplusimprovedinputdata.The1988solarmodelleadstopredictionsthatcandifferbyasmuchas10%fortheSMAmomentsthatwillbemeasuredbySNO.However,this1988modelisinconsistentwithrecenthelioseismologicalmeasurementssincethe1988modeldoesnotincludediffusion[7].
Weconcludethatpredictionsoftheearthregenerationeffectarepracticallyindependentofsolarmodelsaslongasthemodelsincludediffusion(i.e.,areconsistentwithhelioseismol-ogy).
XI.FUTUREEXPERIMENTSATTHEEQUATOR
RecentlyGelb,KwongandRosen[28]suggestedbuildinganewdetectorsimilartoSNOclosetotheequatorinordertoincreasethesensitivityoftheexperimenttotheearthregenerationeffect.Anequatoriallocationmaximizesthetimeneutrinospassthroughthecoreoftheearthduringonecalendaryear.
Inthissection,wecalculatethesizeoftheregenerationeffectforhypotheticalequa-torialdetectorsandcomparewiththesensitivityofthedetectorsintheiractualposi-tions.WeconsiderequatorialanaloguesoftheSuper-Kamiokande,SNO,BOREXINO,andHERON/HELLAZdetectors.
Figure12showsthepredictedzenith-angledistributionfordetectorsattheequator.Thecurveintheupperleftpanelisthezenith-angleexposurefunction.TheotherfivepanelsshowthedistortionduetoregenerationforequatorialanaloguesofSuper-Kamiokande,SNO,ICARUS,BOREXINO,andHERON/HELLAZ.Foreachdetector,onlythepredictedangu-lardistributionfunctionsareshownforthebest-fitsolutionstowhichtherelevantdetectorissensitive:SMAandLMAforthehigh-energyboronneutrinodetectors(Super-Kamiokande,SNOandICARUS)andLOWforthelow-energyneutrinodetectors(BOREXINOandHERON/HELLAZ).
24
Figure13showstheiso-sigmaellipsesforthefourequatorialdetectors.BOREXINOandHERON/HELLAXwouldbemoresensitivetotheLOWsolutionifthesedetectorswerebuiltattheequator.However,thehigh-energyneutrinodetectors(Super-Kamiokande,SNO,andICARUS)wouldremaininsensitivetotheLOWsolutioneveniftheyweremovedtotheequator.Low-energyneutrinodetectors(BOREXINOandHERON/HELLAZ)alsoremaininsensitivetotheSMAandLMAsolutionsevenattheequator.
TableXshowsthegaininsensitivitythatwouldoccurifdetectorslikeSuper-KamiokandeandSNOwerebuiltattheequator.Theenhancementisrepresentedinthetablebytheshiftinthefirstandsecondmomentofthezenith-angledistributionandbytheday-nightasymmetry.Theenhancementswouldbeimportantforthebest-fitSMAsolution,butlesssignificantfortheLMAsolution.However,regionsofparameterspaceintheLMAsolutionforwhichthepredictedshiftsinthefirstandsecondmomentsaresmallcouldbeprobedmorepreciselywithdetectorsattheequator.
XII.DISCUSSIONANDCONCLUSIONS
Theconversionintheearthofνµ(orντ)tothemoreeasilydetectedνeisadistinctivepredictionoftheMSWeffectthatoffersthepossibilityofunambiguouslyestablishingtheexistenceofphysicsbeyondthestandardelectroweakmodel.Becauseoftheimportanceofthissubject,wehavecarriedoutprecisenumericalcalculationsofthesizeoftheregenerationeffectpredictedbydifferentMSWparametersthatareconsistentwiththeexperimentalresultsfromthechlorine,Kamiokande,GALLEX,andSAGEexperiments.Ourresultsshowthepotentialofthenewexperiments,Super-Kamiokande,SNO,ICARUS,BOREXINO,HERON,andHELLAZ,fordiscoveringtheregenerationeffect.
Ourresultsprovidethemostprecisepredictionsavailableoftheexpectedzenith-angledistributionofthesolarneutrinoeventsintheabsenceofnewphysicsandinthepresenceofMSWdistortions.TheresultsareobtainedbynumericalcalculationsthatarediscussedinSec.VandillustratedinFig.5(forSuper-KamiokandeandSNO)andFig.6(fortheGran
25
SassoexperimentsICARUS,BOREXINO,andHERON/HELLAZ).
Wepresentthepredictionsforthesmallmixingangle(SMA),largemixingangle(LMA),andlowmass(lowprobability,LOW)MSWsolutionsofthesolarneutrinoproblems.TheparametersoftheseMSWsolutions,whichareconsistentwiththeresultsofthechlorine,Kamiokande,GALLEX,andSAGEexperiments,aregiveninSec.IV.Oursolutionsincludeself-consistentlytheeffectsofearthregeneration.
Figure3showstheallowedregionsofthethreeMSWsolutionsinthe∆m2-sin22θplane.Figure4presentsthesurvivalprobabilitiesasafunctionofenergyforνecreatedinthesun.Thisfigurecomparessurvivalprobabilitiescomputedfortheday(withoutregeneration)withsurvivalprobabilitiesforthenight(withregeneration)andwiththeaverageannualsurvivalprobabilities.
WedescribethepredictedMSWdistortionsintermsofthefirsttwomomentsofthezenithangledistributionofneutrinoevents(seeSec.VI),aswellasintermsofthetraditionalday-nightasymmetry(seeSec.VII).WeanalyzesimulateddatainSec.VIIIandshowthatthemomentsofthezenith-angledistributionaremoresensitivetotheharder-to-detectSMAsolution.ThepredictedlargeeffectoftheLMAsolutionismoreeasilydiscoveredwiththeconventionalday-nightasymmetry.
The“bottomline”isillustratedsuccinctlyinFig.9.Thisfigureshowsthatthecurrentbest-estimateMSWsolutionspredictstatisticallysignificantdeviationsfromtheundistortedzenith-anglemomentsfortheSuper-Kamiokande,SNO,andICARUSexperiments(whicharesensitivetotheSMAandLMAsolutions)andtheBOREXINOandHERON/HELLAZexperiments(whicharesensitivetotheLOWsolution).
Wehaveconsideredanumberofeffectsthathavenotbeenpreviouslyinvestigatedinconnectionwiththeearthregenerationeffect.WehavecalculatedthesensitivityoftheMSWpredictionstoawiderangeofdensityprofilesoftheearthandalsotoasetofextremechemicalcompositions.ThesecalculationsarediscussedinSec.IIIandSec.XA.Wealsoevaluatetheslightdependenceofthepredictedearthregenerationeffectupontheassumedsolarmodelusedtocalculatetheflavorcontentoftheincidentneutrinobeam(seeSec.XB).
26
Ourresultsshowthattheseusually-neglectedeffectsassociatedwiththeearthandsolarmodelsarerathersmall.
Forcompleteness,wehavecarriedoutcalculationsforhypotheticalnewdetectorsthatmightbebuiltneartheequator.ThesecalculationsaredescribedinSec.XIandshowquan-titativelytheenhancedsensitivitytotheearthregenerationeffectofequatorialdetectors,asemphasizedbyGelbetal.[28].
Usingthebest-fitMSWsolutionscalculatedherethatincludetheearthregenerationeffect,wehaveevaluatedthefirstandsecondmomentsoftheelectronrecoilenergyspectrumfor8BneutrinosdetectedinSuper-KamiokandeandSNO.Thesecalculations,summarizedinSec.VIandinTableVIIandTableVIII,refineourearlierresults[50](seealsoref.[34])forthemomentsoftheelectronrecoilspectrum.Perhapsmostimportantly,theyshowthatfortheLMAsolutionthecomparisonoftherecoilelectronenergyspectrumbetweendayandnightmayrevealadistortionthatisnotapparentinthetemporalaverageoftheenergyspectrum.
Whatwouldwelearnfromanobservationwhichshowedthattheneutrinocountingratedependeduponsolardirection?TheexperimentaldemonstrationofadependenceofsolarneutrinoeventrateuponthedirectionofthesunwouldnotonlyconstituteadirectproofofnewphysicsbutwouldatthesametimeeliminateanumberofthepopularalternativestotheMSWeffect.ManyofthealternativestotheMSWeffect,suchasvacuumoscillations,magneticmomenttransitions,andviolationsoftheequivalenceprinciplepredictthatthecountingrateisindependentofthezenithanglepositionofthesun.
ACKNOWLEDGMENTS
ThisworkhasbeensupportedbyNSFgrant#PHY-9513835.WeareindebtedtoM.Fukugita,E.Lisi,andA.Smirnovforvaluablecommentsonthedraftmanuscript.WearegratefultoE.Lisi,W.Press,P.Rosen,andA.SmirnovforstimulatingdiscussionsandtoD.L.Anderson,P.Goldreich,F.Press,andA.Rubinforvaluablecommunicationsregarding
27
seismologicalmodelsoftheearth.
APPENDIXA:NEUTRINOSURVIVALPROBABILITIES
Inordertocalculatetheeventratesasafunctionoftimewefirstcompute,followingtheprescriptioninRef.[],theelectronneutrinosurvivalprobabilities,PSE,aftertraversingtheearth.WebeginbyusingtheanalyticalapproximationdevelopedinRef.[55]ofthesurvivalprobabilities,PS,foranelectronneutrinopassingthroughthesun;thesesolarsurvivalprobabilitiesareaveragedovertherelevantneutrinoproductionregionsfor8B,7Be,pp,pep,andCNOneutrinos.Assumingthattheneutrinosarrivingattheearthrepresentanincoherentsuperpositionofmass-eigenstates[56],wecalculatetheelectronneutrinosurvivalprobabilityafterpassingthroughtheearth,PSE,fromtheexpression:
PSE=
PS−sin2θ+P2e(1−2PS)
and
10−4≤sin22θ≤1.
(A2b)
Thenumericalprecisionofthecalculatedsurvivalprobabilitiesalongeachtrajectoryisbetterthan0.1%.
Theone-yearaveragedsurvivalprobabilityisgivenby:
¯SE=P
Ni=1
i
PSEY(αi),
(A3)
wherethesumisoverzenithanglesfrom0to180degrees.(N=360inourcase).Thezenith-angleexposurefunctionisdefinedinSec.V.Correspondingly,theone-yearaveragednight-timesurvivalprobabilityisgivenby
¯nPSE
=
N
iPSEY(αi),
(A4)
i=N/2
wherethesumnowrunsoveranglesfrom90to180degrees.Sincethenight-timeandday-timeintervalswithinoneyearareequal,theday-timeeventrateissimply
¯d=0.5PSE.PSE
(A5)
Withthecalculatedsurvivalprobabilities,itisstraightforwardtodeterminethecorrespond-ingtotaleventrates,aswellastheday-timeandnight-timeone-yearaveragedeventratesinanysolarneutrinodetector.
APPENDIXB:TIMEDEPENDENCEOFTHEZENITHANGLE
Thedependenceofthesolarzenithangleonthetimeoftheyearandonthegeographiclocationofthedetectorsisgivenbythefollowingsetofformulae[49]:
cosα=sinδsinφ+cosδcosφcosH,
sinδ=sinǫsinλ,L=2800.461+00.9856003n,
29
(B1a)(B1b)(B1c)
n=−1462.5+D+H,(B1d)g=3570.528+00.9856003n,
(B1e)
and
λ=L+10.915sing+00.020sin2g.
(B1f)
TheprecisionintheapparentcoordinatesoftheSunis00.01andtheprecisionoftheequationoftimeis6secondsbetweentheyears1950and2050.HereHisthefractionofdayfrom0hUT,Disdayoftheyear(countingfromJanuary1),nisthenumberofdaysfromJulianyear2000.0,λistheeclipticlongitude,Listhemeanlongitudeofthesun(correctedforaberration),ǫ=230.439−0.0000004nistheobliquityoftheecliptic,δisthesun’sdeclination,andgisthemeananomaly§.
Thedistanceofthesunfromtheearthinastronomicalunits(1AU=1.495978706(2)1011m)isgivenbytheformula:
R=1.0014−0.01671cosg−0.00014cos2g.
(B2)
Equation(B2)hasbeenusedinthecalculationoftheday-nightasymmetriesandtheshiftsofthefirsttwomomentsofthezenith-angledistribution.
APPENDIXC:CHARACTERISTICSOFFUTUREDETECTORS
WedescribeinthisAppendixthecharacteristicswehaveassumedforSuper-Kamiokande[22],SNO[23],ICARUS[24],BOREXINO[25],HERON[26]andHELLAZ[27].TheSuper-Kamiokande,SNOandICARUSdetectorsaresensitiveonlytohigh-energy8Bneutrinos,whileBOREXINOissensitiveprimarilyto7Beneutrinos(Eν=0.862MeV)andtheHERONandHELLAZdetectorsarebeingdesignedtodetectlowenergy(Eν<0.44MeV)ppneu-trinos.
FortheSuper-Kamiokandedetector,weadoptathresholdof5MeVandatriggeref-ficiencyof50%atthisenergy[22].TheenergyresolutionfunctionisassumedtohaveagaussianshapewithFWHMof1.6MeVatelectronkineticenergy10MeV.Wehaveper-formedcalculations,whichshowthatthesensitivityofourresultstotheassumedenergyresolutionandtriggerefficiencyofthedetector.
FortheSNOdetector,wecalculateonlytherateoftheCCreaction,namelyνe+d→p+p+e−.Weadopt[58]athresholdof5MeVandanenergyresolutionfunctionwitha1σuncertaintyof1.1MeVat10MeVelectronkineticenergy.TheCCcross-sectionforSNOwastakenfromRef.[18].Thetriggerefficiencyfunctionhasbeenapproximatedwithastepfunctionatthethresholdofthedetector.
Reference[50]givesfurtherdetailsregardingourcharacterizationofSNOandSuper-Kamiokande.
ForICARUS,wehaveconsideredonlythesuperallowedtransitionandhaveusedtheneutrinoabsorptioncrosssectionsgiveninref.[5].Wehaveassumedaneutrinothresholdfordetectionthatcorrespondstoelectronsbeingproducedwithatleast5MeVofenergy,whichrequiresaminimumneutrinoenergyof10.9MeV.
TheBOREXINOdetectorisbeingdevelopedasaneutrino-electronscatteringexper-imentthatwillmeasurethefluxof7Beneutrinos,usingthestepintheenergydistribu-tionofneutrino-electronscatteringeventsatthemaximumrecoil-electronkineticenergyofTe=0.62MeV.Thedetectorcharacteristicsthatareknowableapriori(whichdoesnotincludethecrucialbackgroundrateversusenergy)arenotasimportantasforSNOandSuper-Kamiokandeandweneedtocomputeonlytheνesurvivalprobability.Weincluderadiativecorrectionstotheneutrino-electroncross-section,calculatedin[59],whichforre-coilelectronenergiesbelow0.62MeVarelessthan1%.Theratioofthe(νµe)to(νee)totalcross-sectionsforneutrinoenergy0.862MeVisσνµ,e/σνe,e=0.221.
HERONandHELLAZarealsoneutrino-electronscatteringexperimentswithverydif-ferentpreliminarydesigns,butwiththesametargetmaterial,helium.Theywillmeasurethefluxandspectralshapeofppneutrinos.Wehaveassumedathresholdof0.1MeV
31
andaperfectenergyresolution(deltafunction).Thetriggerefficiencyisrepresentedbyastep-functionatthethresholdofthedetector.Weagainuseneutrino-electroncross-sectionsincludingradiativecorrections[59].
Theeventrate,Q,averagedovercertaintimeinterval,τ,inaneutrino-electron-scatteringexperiment,suchasSuper-Kamiokande,BOREXINO,HERONorHELLAZisgivenby
Qτ=
Emax
0
Φ(Eν)Zνe(Eν)P(Eν)τ+Zνµ(Eν)(1−P(Eν)τ)dEν
(C1)
HereZνe(νµ)aretheresponsefunctionsofthedetectortoeitherνeorνµ,Φisthesolarneutrinofluxtowhichthedetectorissensitive,Eνistheneutrinoenergy,EmaxistheendpointoftheneutrinoenergyspectrumandPτistheaveragesurvivalprobabilityforthechosentimeintervalτ.Theintervalcanbe,e.g.,thetotalday-timeornight-timeduringonecalendaryear,orawholecalendaryearincludingbothdaysandnights.ThecalculationoftheaveragesurvivalprobabilitiesisdescribedinAppendixA(Eqs.A1-A5).Theresponsefunctionsrepresenttheconvolutionoftheabsorptioncrosssectionswiththedetectorcharacteristics(seeRef.[50]fordetails).
[4]V.Gavrinetal.(SAGECollaboration),inNeutrino96,Proceedingsofthe17thInternationalConferenceonNeutrinoPhysicsandAstrophysics,Helsinki,Finland,13–19June1996,editedbyK.Huitu,K/Enqvist,andJ.Maalampi(WorldScientific,Singapore);seealso,G.Nicoetal.,inProceedingsoftheXXVIIInternationalConferenceonHighEnergyPhysics,Glasgow,Scotland,1994,editedbyP.J.BusseyandI.G.Knowles(InstituteofPhysics,Bristol,1995),p.965;J.N.Abdurashitovetal.,Phys.Lett.B328,234(1994).
[5]J.N.Bahcall,NeutrinoAstrophysics(CambridgeUniversityPress,Cambridge,England,19).
[6]J.N.BahcallandM.H.Pinsonneault,Rev.Mod.Phys.67,781(1995).
[7]J.N.Bahcall,M.H.Pinsonneault,S.BasuandJ.Christensen-Dalsgaard,Phys.Rev.Lett.78,171(1997).
[8]J.N.Bahcall,R.Davis,Jr.,P.Parker,A.Smirnov,andR.Ulrich,eds.,SolarNeutrinos,TheFirstThirtyYears,FrontiersinPhysics,Vol.92(Addison-Wesley,Reading,MA,1994).[9]J.N.Bahcall,tobepublishedintheProceedingsofthe18thTexasSymposiumonRelativisticAstrophysics,December15–20,1996,Chicago,Illinois,editedbyA.Olinto,J.Frieman,andD.Schramm(WorldScientific,Singapore)(hep-ph/9702057).
[10]K.M.HeegerandR.G.H.Robertson,Phys.Rev.Lett.77,3720(1996).[11]J.N.BahcallandP.I.Krastev,Phys.Rev.D53,4211(1996).
[12]L.Wolfenstein,Phys.Rev.D17,2369(1978);S.P.MikheyevandA.Yu.Smirnov,Yad.Fiz.
42,1441(1985)[Sov.J.Nucl.Phys.42,913(1985)];NuovoCimentoC9,17(1986).[13]S.P.MikheyevandA.Yu.Smirnov,in’86MassiveNeutrinosinAstrophysicsandinParticle
Physics,proceedingsoftheSixthMoriondWorkshop,editedbyO.FacklerandY.TrˆanThanhVˆan(EditionsFronti`eres,Gif-sur-Yvette,1986),p.355;J.Bouchezetal.,Z.Phys.C32,499(1986);M.Cribier,W.Hampel,J.Rich,andD.Vignaud,Phys.Lett.B182,(1986);M.
33
L.CherryandK.Lande,Phys.Rev.D36,3571(1987);S.Hiroi,H.Sakuma,T.Yanagida,andM.Yoshimura,Phys.Lett.B198,403(1987);S.Hiroi,H.Sakuma,T.Yanagida,andM.Yoshimura,Prog.Theor.Phys.78,1428(1987);A.Dar,A.Mann,Y.Melina,andD.Zajfman,Phys.Rev.D35,3607(1988);M.SpiroandD.Vignaud,Phys.Lett.B242,279(1990).[14]A.J.BaltzandJ.Weneser,Phys.Rev.D35,528(1987).[15]A.J.BaltzandJ.Weneser,Phys.Rev.D37,33(1988).
[16]H.Bethe,Phys.Rev.Lett.56,1305(1986);S.P.RosenandJ.M.Gelb,Phys.Rev.D34,
969(19);E.W.Kolb,M.S.Turner,andT.P.Walker,Phys.Lett.B175,478(1986).[17]H.H.Chen,Phys.Rev.Lett.55,1534(1985).
[18]J.N.BahcallandE.Lisi,Phys.Rev.D,17(1996).[19]V.N.GribovandB.M.Pontecorvo,Phys.Lett.B28,493(1969).
[20]M.B.Volshin,M.I.Vysotsky,andL.B.Okun,Sov.Phys.JETP,446(1986).[21]M.Gasperini,Phys.Rev.D38,2635(1988).
[22]Y.Totsuka,inTAUP’95,proceedingsoftheInternationalWorkshoponTheoreticaland
PhenomenologicalAspectsofUndergroundPhysics,Toledo,Spain,17–21September1995,editedbyA.Morales,J.Morales,andJ.A.Villar(North-Holland,Amsterdam,1996),p.7[Nucl.Phys.B(Proc.Suppl.)48,1996];A.Suzuki,inPhysicsandAstrophysicsofNeutrinos,editedbyM.FukugitaandA.Suzuki(SpringerVerlag,Tokyo,1994)p.414.
[23]G.T.Ewanetal.(SNOCollaboration),SudburyNeutrinoObservatoryProposal,Report
No.SNO-87-12,1987(unpublished);ScientificandTechnicalDescriptionoftheMarkIISNODetector,editedbyE.W.BeierandD.Sinclair,Queen’sUniversityReportNo.SNO--15,19(unpublished);A.B.McDonald,inParticlePhysicsandCosmology,proceedingsofthe9thLakeLouiseWinterInstitute,editedbyA.Astburyetal.(WorldScientific,Singapore,1995),p.1.
34
[24]AFirst600TonICARUSDetectorInstalledattheGranSassoLaboratory,addendumto
proposalLNGS-94/99IandII,ReportNo.LNGS-95/10,1995(unpublished);J.N.Bahcall,M.Baldo-Ceolin,D.Cline,andC.Rubbia,Phys.Lett.B178,324(1986).
[25]C.Arpesellaetal.,BOREXINOproposal,Vols.1and2,editedbyG.Bellinietal.(Univ.of
Milano,Milano,1992);R.S.Raghavan,Science267,45(1995).
[26]R.E.Lanou,H.J.Maris,andG.M.Seidel,Phys.Rev.Lett.58,2498(1987);S.R.Bandler
etal.,J.LowTemp.Phys.93,785(1993);TheHERONcollaboration,Phys.Rev.Lett.68,2429(1992);Rev.Sci.Instrum.63,230(1992);Phys.Lett.B341,431(1995);Phys.Rev.Lett.74,3169(1995).
[27]G.Laurentietal.,inProceedingsoftheFifthInternationalWorkshoponNeutrinoTelescopes,
Venice,Italy,1993,editedbyM.Baldo-Ceolin(PaduaUniv.,Padua,Italy,1994),p.161;G.Bonvicini,Nucl.Phys.B35,438(1994).
[28]J.M.Gelb,W.Kwong,andS.P.Rosen,Phys.Rev.Lett.78,2296(1997).
[29]R.DavisandK.Lande(privatecommunication);seealsothepaperbyCherryandLandein
ref.[13].
[30]K.S.Hirataetal.,Phys.Rev.Lett.65,1301(1990).
[31]A.J.BaltzandJ.Weneser,Phys.Rev.D50,5971(1994);51,3960(1995).
[32]N.HataandP.Langacker,Phys.Rev.D48,2937(1993);Phys.Rev.D50,632(1994).[33]P.I.Krastev,talkattheDPF’96meeting,August1996,Minneapolis,Minnesota(tobe
publishedintheProceedings),hep-ph/9610339.
[34]E.LisiandD.Montanino,preprintBARI-TH-260-97,hep-ph/9702343,Phys.Rev.D(August
1,1997).
[35]Q.Y.Liu,M.Maris,andS.T.Petcov,preprintSISSA-16-97-EP,hep-ph/9702361;M.Maris
andS.T.Petcov,hep-ph/9703207.
35
[36]V.N.Zharkov,InteriorStructureoftheEarthandPlanets(HarwoodAcademicPublishers,
NewYork,1986).
[37]A.M.DziewonskiandD.L.Anderson,Phys.EarthPlanet.Interior25,207(1981).[38]K.E.Bullen,TheEarth’sDensity(ChapmanandHall,London,1975).[39]F.D.Stacey,PhysicsoftheEarth(JohnWileyandSons,NewYork,1969).[40]K.E.Bullen,TheEarth’sDensity(ChapmanandHall,London,1975),p.359.[41]A.M.DziewonskiandF.Gilbert,Geophys.J.R.Astron.Soc.35,401(1973).[42]T.H.JordanandD.L.Anderson,Geophys.J.R.Astron.Soc.36,411(1974).[43]K.E.BullenandR.A.Haddon,Proc.Nat.Acad.Sci.Wash.58,846(1967).
[44]W.A.AndersonandTh.J.Ahrens,J.Geophys.Res.99,4273(1994);E.KittleandR.
Jeanholz,J.Geophys.Res.96,16169(1991);R.Jeanholz,Annu.Rev.EarthPlanet.Sci.18,357(1990).
[45]Y.ZhaoandD.L.Anderson,Phys.EarthPlanet.Interior,85,273(1994).[46]K.S.Hirataetal.,Phys.Rev.D44,2241(1991);seealsoRef.[2].[47]G.L.FogliandE.Lisi,Astropart.Phys.3,185(1995).
[48]P.I.KrastevandS.T.Petcov,Phys.Lett.B299,99(1993);G.L.Fogli,E.Lisi,andD.
Montanino,Phys.Rev.D,2048(1996).
[49]TheAstronomicalAlmanac,1996(U.S.GovernmentPrintingOffice,Washington).[50]J.N.Bahcall,P.I.Krastev,andE.Lisi,Phys.Rev.C55,494(1997).
[51]M.G.KendallandA.Stuart,TheAdvancedTheoryofStatistics(Hafner,NewYork,1969),
Vol.I.
[52]J.N.BahcallandM.H.Pinsonneault,Rev.Mod.Phys.,885(1992).
36
[53]J.N.BahcallandR.K.Ulrich,Rev.Mod.Phys.60,297(1988).
[]S.P.MikheyevandA.Yu.Smirnov,inNewandExoticPhenomena,proceedingsoftheSeventh
MoriondWorkshop,editedbyO.FacklerandY.TrˆanThanhVˆan(EditionsFronti`eres,Gif-sur-Yvette,1987),p.403.
[55]P.I.KrastevandS.T.Petcov,Phys.Lett.B207,(1988).
[56]S.P.MikheyevandA.Yu.Smirnov,Usp.Fiz.Nauk153,3(1987)[Sov.Phys.–Usp.30,759
(1987)];Prog.Part.Nucl.Phys.23,41(1988).
[57]S.P.MikheyevandA.Yu.Smirnov,NuovoCimento9C,17(1986).[58]E.W.Beier(privatecommunication).
[59]J.N.Bahcall,M.Kamionkowski,andA.Sirlin,Phys.Rev.D51,6146(1995).[60]D.L.Anderson,TheoryoftheEarth,(BlackwellScientificPublications,19).
TABLEI.Sensitivitytothemodeloftheearth.ThetableillustratestheweakdependenceonthemodeloftheearthofthecalculatedchangesinthefirstandsecondmomentsoftheangulardistributionofeventsintheSuper-KamiokandeandSNOdetectors.Thedensitydistributionsinthesixmodelsoftheearthlistedinthetablespanarangeofpossibilitiesthatismuchlargerthansuggestedbycurrentgeophysicalknowledge.Thesecondandthirdcolumnsgivethetotalmass,M⊕(in1027g),andthemomentofinertia,I(in1045gcm2),foreachmodel.Themassoftheearthis5.97370±0.00076,thepolarvalueofthemomentofinertiais0.804,andtheequatorialvalueis0.801[60].]Thelastfourcolumnsgivethefractionalshiftinpercentofthefirsttwomoments
2)ofthezenith-angledistributionofeventsintheSuper-KamiokandeandSNO(∆α/α0and∆σ2/σ0
detectorsfortheSMA(upperentry)andfortheLMA(lowerentry)solutions.
∆α/α0
Model
M⊕
I
Super-Kamiokande(%)
2∆σ2/σ0
∆α/α0SNO(%)
2∆σ2/σ0
Super-Kamiokande(%)SNO(%)
19813.23−0.335.28−2.20
B4971973
5.0670.8001.013.22
2.03−0.26
1.035.26
2.41−2.05
A′′1967
5.9460.7981.003.29
2.01−0.51
1.015.35
2.39−2.55
HOMESTAKEKAMIOKANDEGALLEXSAGE
2.56±0.16±0.142.80±0.19±0.3569.7±6.7±
72
+12+5−10−7
+3.9−4.5
.2
9.5+1−1.4
SNU106cm−2s−1
SNUSNU
0.27±0.0220.42±0.0600.51±0.0580.53±0.095
[1][2][3][4]
6.62
+0.93
−1.12
136.8+8−7136.8+8−7
38
TABLEIII.Northernlatitudes(indegrees)forseveralsolarneutrinodetectors.TheseanglescorrespondtoφinFig.1.Homestake
Kamioka
GranSasso
Baksan
Sudbury
1995
Super-Kamiokande
19921988
1.021.020.96
2.032.031.94
3.223.223.22
−0.32−0.32−0.32
TABLEV.Day-nightasymmetryinSuper-KamiokandeandSNO.Thetablegivesthemagnitudeoftheexpectedday-nightasymmetry(An−d,seeEq.(9))(inpercent)inSuper-KamiokandeandSNOforvaluesoftheneutrinooscillationparameters∆m2andsin22θcorrespondingtothebest-fitSMAandLMAsolutions(seeEqs.1a,1band2a,2b).Theindicateduncertaintiesdescribetheexpectedlimitsat95%C.L.Solution
Super-Kamiokande
SNO
Super-KamiokandeSMALMA
55.5
4.49.2
3.76.3
TABLEVII.MomentsoftheEnergySpectrum.Themomentsintheabsenceofoscillationsare
2=3.391MeV2forSuper-KamiokandeandT=7.6MeVandσ2=3.032T0=7.293MeVandσ000
MeV2forSNO.MSWSolution
T(MeV)
(T−T0)/T0
(%)
σ2(MeV2)
2)/σ2(σ2−σ00
(%)
Day
SMA
NightAverageDay
LMA
NightAverageDay
LOW
NightAverage
7.4087.4037.4057.2757.3107.2947.2987.2907.294
1.581.501.−0.250.230.0080.06−0.040.008
3.5913.5743.5823.3683.4393.4083.4113.3983.404
5.885.385.−0.671.420.480.580.200.38
Day
SMA
NightAverageDay
LMA
NightAverageDay
LOW
NightAverage
7.8697.8467.8587.47.7197.6877.6827.6687.675
2.912.622.76−0.030.950.530.470.280.37
3.1613.1443.1523.0323.1133.0843.0693.0603.0
4.253.683.96−0.032.661.721.220.901.06
41
TABLEVIII.MomentsoftheEnergySpectrum.Themomentsintheabsenceofoscillationsare
2=2.825MeV2forSuper-KamiokandeandT=8.178MeVandσ2=2.348T0=8.057MeVandσ000
MeV2forSNO.MSWSolution
T(MeV)
(T−T0)/T0
(%)
σ2(MeV2)
2)/σ2(σ2−σ00
(%)
Day
SMA
NightAverageDay
LMA
NightAverageDay
LOW
NightAverage
8.1498.1438.1468.0468.0748.0618.08.0588.061
1.141.061.10−0.140.220.050.080.010.046
2.9682.92.9622.8042.8612.8332.8362.8272.832
5.074.5.84−0.761.250.280.400.0480.24
Day
SMA
NightAverageDay
LMA
NightAverageDay
LOW
NightAverage
8.3328.3158.3238.1778.2398.2128.2068.1968.201
1.881.671.77−0.0432.631.840.340.220.28
2.4672.4522.4592.3472.4102.3922.3792.3702.374
5.0.414.72−0.0432.631.841.280.941.11
42
TABLEIX.Dependenceofmomentsonassumedchemicalcomposition.Thetablegivestherelativeshifts(inpercent)ofthefirstandsecondmoments(∆µi/µi)ofthezenith-angledistributioninSuper-KamiokandeandSNOasafunctionoftheassumedchemicalcomposition.TheratioZ/Ainthecorehasbeenvariedby±0.5%,±1%,±2%(seesecondcolumn)fromthecentralvalue[(Z/A)core=0.465]adoptedintherestofthepaper.Theratiointhemantlehasbeenvariedby−1%,−2%fromthestandardvalueof[(Z/A)mantle=0.496].ThelastrowforeachdetectorcorrespondstoasimplifiedmodelwithZ/A=0.5bothinthemantleandinthecore.ThefourcolumnsforeachdetectorcorrespondtothefirstandsecondmomentintheSMAandLMAbest-fitsolutionsrespectively.
SMA
∆(Z/A)/(Z/A)
Detector
(%)
∆α/α0
(%)
2∆σ2/σ0
LMA
∆α/α0
(%)
2∆σ2/σ0
(%)(%)
−1
mantle
−2
1.011.00
2.032.04
3.193.16
−0.336−0.358
−2−1−0.50.0
SNO
+0.5
1.051.041.041.041.04
2.462.442.432.422.41
5.275.275.275.285.28
−2.23−2.22−2.21−2.20−2.20
43
+1+2
1.031.03
2.402.38
5.285.29
−2.19−2.17
Z/A=0.501.012.285.33−2.11
TABLEX.Equatorialenhancement.Themagnitudeoftheregenerationeffectiscomparedfordetectorslocatedattheiractualpositionsandattheequator.Thesizeoftheeffectisrepresentedbythenumberofstandarddeviationsthefirstandsecondmomentsoftheangulardistributiondifferfromtheundistortedexposurefunction(and,inparentheses,theday-nightasymmetryinpercent).Thevaluesoftheneutrinooscillationparameters∆m2andsin22θcorrespondtothebest-fitSMAandLMAsolutions(seeEqs.1a,1band2a,2b).Forcomparison,thebest-fitSMAandLMAsolutionsproduce5σand13σeffectsattheactuallocationofSuper-Kamiokandeand6.5σand25σattheactuallocationofSNO.Location
Solution
Super-Kamiokande
SNO
FIG.1.Schematicviewofdetector’slocationandsun’sdirection.ThezenithisdefinedasthelinefromthecenteroftheEarththroughthecenterofthedetector.Thezenithangle,α,andthelatitudeofthedetector’slocation,φ,arealsoshowninthefigure.
FIG.2.Densityprofilesforsixdifferentmodelsoftheearth.Themodelsare:1)PREM[37],2)Stacey’smodel[39],3)modelHA[43],4)modelHB1[40],5)modelB497[41],and6)modelB1[42].Theradiusisgiveninkilometersfromthecenteroftheearth.Allmodelsaresphericallysymmetric.
FIG.3.AllowedMSWsolutionswithregeneration.Theallowedregionsareshownfortheneutrinooscillationparameters∆m2andsin22θ.TheC.L.fortheouterregionsis99%andtheC.Lfortheinnerregionsis99%(onlyappliestotheLMAandSMAsolutions).Thedatausedherearefromthechlorine[1],Kamiokande[2],GALLEX[3],andSAGE[4]experiments.ThesolarmodelusedisthebeststandardmodelofBahcallandPinsonneault(1995)withheliumandheavyelementdiffusion[6].Thepointswhereχ2hasalocalminimumareindicatedbyacircle.
′
FIG.4.SurvivalprobabilitiesforMSWsolutions.ThefigurepresentsthesurvivalprobabilitiesforaνecreatedinthesuntoremainaνeuponarrivalattheSuper-Kamiokandedetector.Thebest-fitMSWsolutionsincludingregenerationintheeartharedescribedinSec.IV.Thefulllinereferstotheaveragesurvivalprobabilitiescomputedtakingintoaccountregenerationintheearthandthedottedlinereferstocalculationsfortheday-timethatdonotincluderegeneration.Thedashedlineincludesregenerationatnight.ThereareonlyslightdifferencesbetweenthecomputedregenerationprobabilitiesforthedetectorslocatedatthepositionsofSuper-Kamiokande,SNOandtheGranSassoUndergroundLaboratory.
45
FIG.5.Super-KamiokandeandSNOzenith-angledistributions.Thefigureshowstheexpectedzenith-angledistributionofneutrinoeventsduringonecalendaryearintheSuper-KamiokandeandtheSNOdetectors.Theangle,α,representstheangularseparationbetweenthedirectiontothesunandthedirectionofthelocalzenith(seeFig.1).Thetwoleftpanelsdisplaythezenith-angleexposurefunctions,theundistortedangulardistributionsintheabsenceofoscillations.Theex-posurefunctionsaredeterminedbythelocationofthetwodetectorsat,respectively,Kamioka,Japan,andSudbury,Canada.Thedistortedzenith-angledistributionsduetotheregenerationeffectintheEarthareshowninthetworightpanels;theneutrinosolutionsareindicatedby:SMA(solidline)andLMA(dottedline).
FIG.6.GranSassozenith-angledistributions.Thefigureshowstheexpectedzenith-angledistributionofeventsduringonecalendaryearindetectorslocatedattheGranSassoLaboratoryinItaly:ICARUS,BOREXINO,HERONandHELLAZ.Theupperleftpanelshowsthezenith-angleexposurefunction,whichdoesnotdependondetectorcharacteristics.Thethreeadditionalpanelsdisplaythedistortedzenith-angledistributionsduetotheregenerationeffectintheEarth;thesolutionsareindicatedby:SMA(solidline),LMA(dottedline)andLOW(dashedline).
FIG.7.Contoursofconstantrelativeshift(inpercent)oftheaveragezenithangle,(α−α0)/α0,duetoνeregenerationintheearthasafunctionoftheneutrinooscillationparameters,sin22θand∆m2.Hereα0=900istheaverageangleoftheundistortedangulardistributionwithnooscillations.TheshadedregionsinthepanelsforSuper-KamiokandeandSNOareallowedbythelatestsolarneutrinodataat95%C.L.andrepresenttheSMAandLMAsolutions.Inthelowertwopanels(BOREXINOandHERON/HELLAZ)thethreeshadedregionsareallowedat99%C.L.,thelow-massregionrepresentingtheLOWsolution(seetextfordetails).Theblackcirclewithineachallowedregionrepresentsthepointwhichcorresponds(locally)tothebest-fittothedata.
46
FIG.8.Contoursofconstantrelativeshift(inpercent)ofthedispersionofthezenithangle,
2)/σ2,duetoνregenerationintheearthasafunctionoftheneutrinooscillationparameters,(σ2−σ0e02aregiveninthetextforeachoftheexperiments.Thedefinitionsin22θand∆m2.Thevaluesofσ0
oftheshadedregionsisthesameasinFig.7.FIG.9.Howmanysigmas?
ThefigureshowsthesensitivityofSuper-Kamiokande,SNO,
ICARUS,BOREXINOandHERON/HELLAZtotheregenerationeffect.Iso-sigmacontours,sta-tisticalerrorsonly,delineatethefractionalpercentageshiftsofthefirsttwomomentsoftheangulardistributionofeventsforanassumed30000observedevents.ForallbuttheICARUSexperiment,thebest-fitMSWsolutionsareindicatedbyblackcircles(SMA),squares(LMA),andtriangles(LOW);thebest-fitsolutionsarepresentedinSec.IV.Theerrorbarsonthepredictedmomentscorrespondto∆m2andsin22θwithinallowedsolutionspaceat95%C.L.(forSuper-Kamiokande,SNO,andICARUS)or99%C.L.(BOREXINOandHERON/HELLAZ).ForICARUS,wehaveindicatedthebest-fitsolutionsbyatransparentcircle,square,ortriangle.Thebest-fitSMAandLOWsolutionsforICARUSandtheLOWsolutionforSNOareallthreeclosetogetheratabout3σfromthenooscillationsolution.Inordertoavoidtoomuchcrowdinginthefigure,wehavenotshownthetheoreticaluncertaintiesforICARUS.
FIG.10.Contoursofconstantday-nightasymmetry,An−d(seeEq.(9)),inSuper-Kamiokande,SNO,ICARUS,BOREXINOandHERON/HELLAZ.TheshadedregionsarethesameasinFig.7.
FIG.11.RelativedistortionforSuper-Kamiokande.Thefigureshowsthefractionaldistortion,[f(α)−Y(α)]/Y(α),ofthezenith-angledistributionforthebest-estimateSMAandLMAMSWsolutions.
FIG.12.Thezenith-angledistributionforequatorialdetectorswiththecharacteristicsofSu-per-Kamiokande,SNO,ICARUS,BOREXINOandHERON/HELLAZ.NotationisthesameasinFigs.5and6.
47
FIG.13.Howmanysigmasattheequator?Thefigureshowsthesensitivitytotheregenera-tioneffectofequatorialdetectorswiththecharacteristicsofSuper-Kamiokande,SNO,ICARUS,BOREXINOandHERON/HELLAZ.NotationisthesameasinFig.9.
48
ZenithαDetectorφEqtouarEarthνSunFigure149
50
51
52
53
55
56
57
58
59
60
61
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务