3002 lJu 32 ]AF.tham[ 1v2137030/tham:viXraDANIELPELLEGRINO
Abstract.Weintroduceageneraldefinitionofalmostp-summingmappingsandgiveseveralconcreteexamplesofsuchmappings.Someknownresultsareconsiderablygeneralizedandwepresentvarioussituationsinwhichthespaceofalmostp-summingmultilinearmappingscoincideswiththewholespaceofcontinuousmultilinearmappings.
1.Introduction
Therapiddevelopmentofthetheoryofabsolutelysumminglinearmappingshasleadtothestudyofinnumerousnewclassesofmultilinearmappingsandpolynomi-alsbetweenBanachspaces(see[10],[7],[3],[1]).Recently,Botelho[3]andBotelho-Braunss-Junek[2]introducedtheconceptofalmostp-summingmultilinearmap-pingsandgavethefirstexamplesandpropertiesofsuchmappings.TherecentworkofMatos[8],concerningabsolutelysummingarbitrarymappings,turnsnaturaltoaskwhetheritispossibletofollowthesamelineofthoughtwithalmostp-summingmappings.Inthispaperwewillpresentamoregeneraldefinitionofalmostp-summingmappings,severalexamplesandanaturalversionofaDvoretzky-RogersTheoremforthiskindofapplications.Itwillbeshownthatalmostp-summingmultilinearmappingsaremuchmorecommonthanitwasknownuntilnow.Forexample,weprovethateverycontinuousn-linearmappingfromC(K)×...×C(K)intoaBanachspaceFisalmost2-summing,generalizingarecentresultobtainedin[2].Thispaperalsoanalyzestheconnectionsofalmostp-summingmappingsandtype/cotypeandprovidesvariousexamplesofanalyticalmostp-summingmappings.
2.Absolutelysummingmappings
ThroughoutthispaperE,E1,...,En,FwillstandforBanachspaces.Forp∈[1,∞[,thelinearspaceofallsequences(xj)∞j=1inEsuchthat
∞(xj)∞j=1p
=(x1
jp)j=1
p
.
2DANIELPELLEGRINO
Thelinearsubspaceoflwp(E)ofallsequences(xj)∞j=1∈lw
p(E),suchthat
mlim→∞
(xj)∞j=mw,p=0
willbedenotedbylup(E).Thesequencesinlup(E)arecalledunconditionallyp-summable.
ThemultilineartheoryofabsolutelysummingmappingswasfirstsketchedbyPietschin[14]andhasbeenbroadlyexplored(see[11],[10],[6]).Thenextdefinitioncanbefoundin[10].
Definition1.AmultilinearmappingT:E1summingif
×...×En→Fisabsolutely(p;q1,...,qn)-(T(x(1)(n)
j,...,xj))∞j=1p(F)
forevery(x(s)
∈labsolutelyj)∞j=1w
(p;q)-summing∈lqs(Es),s=1,...,n.Ann-homogeneouspolynomialP:E→Fisif
(P(xj))∞j=1∈lp(F)
whenever(xj)∞j=1∈lw
q(E).Itisworthobservingthat,inDefinition1,thereisnodifferenceifweconsider
lu
qs
(E)(luq(E))insteadoflw
(E)(lwq(E))(see[10,Proposition2.4]forpolynomials,andthemultilinearcaseisqs
analogous).
Thefollowingwellknowncharacterizationcanbefoundin[4,Theorem1.2(ii)],andissometimesuseful.
Theorem1.LetT:E1statementsareequivalent:
×...×En→Fbeamultilinearmapping.Thefollowing(1)Tisabsolutely(p;q1,...,qn)-summing.
(2)ThereexistsL>0suchthatforeverynaturalkandanyx(l)
j∈El,(2.1)
(kT(x(1)
(n)1j,...,xj)p)j=1
ALMOSTSUMMINGMAPPINGS3
Proof.Sincefisanalyticata,thereareC≥0andc>0suchthat
1
2
T
j=1
n
λj.
Usingthepolynomialversionofthisresult,itisnothardtoprovethat(see
[12,Theorem4])wheneverFhasfinitecotypeq,everyboundedn-homogeneous(n≥2)polynomialP:E→Fisabsolutely(q;2)-summingandPas(q;2)≤
n−2
Cq(F)KG3
k!
df(a)as(q;2)≤D1Dk
2D,δa},
∧k
1
m1
f(a+xj)−f(a)q)(j=1
wehavek!k!
df(a)(xj)q)
∧
k
1
∧k
1
df(a)(xj)q]
k!
≤
k
df(a)as(q;2)(xj)mj=1w,2
∞
∧k
D1(xj)mj=1w,2
Dk
k=1
p
≤
k,m→∞
ra
limCa(xj)mj=kw,p=0
and,bythecompletenessoflp(F),weobtain(f(a+xj)−f(a))∞j=1∈lp(F).
AnimmediateoutcomeofProposition1isthatDefinition2appliedforn-homogeneouspolynomialsandtheusualdefinitionofabsolutely(p,q)-summing
4DANIELPELLEGRINO
polynomialscoincidesata=0.InordertoprovethatDefinition2forn-linearmappingsactuallygeneralizesthestandarddefinition(Definition1)ofabsolutely(p;q1,...,qn)-summingmultilinearmappingsforq1=...=qn=q,weneedthefollowingLemma,whichisasimpleconsequenceoftheOpenMappingTheorem.Proposition2.Ann-linearmappingTis(p;q,...,q)-summingintheusualsenseif,andonlyif,itisabsolutely(p;q)-summingattheorigininthesenseofDefinition2.
Proof.Consideranabsolutely(p;q)-summing(inthesenseofDefinition2,at
(1)
theorigin)n-linearmapping,T:E1×...×En→F.Then,given(xj)∞j=1∈byProposition1,(T(xj,....,xj))∞j=1∈lp(F).Thus,bytheusualdefinition,itfollowsthatTisabsolutely(p;q,...,q)-summing.
Conversely,consideranabsolutely(p;q,...,q)-summingn-linearmappingTin
(l)(l)
theusualmeaning.Then,ifx1,...,xk∈El,l=1,...,n,wehave
k1(n)(1)
(T(xj,...,xj)p)(j=1
∞uuu
lq(E1),....,(xj)∞j=1∈lq(En),wehave(xj,...,xj)j=1∈lq(E1×....×En).Hence,
(1)
(n)
(n)
(1)
(n)
uuuLemma1.lq(E1×...×En)isisomorphictolq(E1)×....×lq(En).
C
k1(n)(1)
(T(xj,...,xj)p)(j=1
2
k≤C(xj)kj=1w,p1...(xj)j=1w,pn
(1)(n)
foreverykandanyxjinEl,l=1,...,nandj=1,...,k.Ann-homogeneouspoly-nomialP:E→Fissaidalmostp-summingwhenPisalmost(p,...,p)-summing.
Thespaceofallalmostp-summingpolynomialsisdenotedbyPal,p(nE;F).
∨
(l)
ALMOSTSUMMINGMAPPINGS5
Theorem3.([2,Theorem3.3])For1≤p≤2nandP∈Pal,p(nE;F),thefollowingpropertiesareequivalent:
(i)Pisalmostp-summing.
(ii)Pmapsunconditionallyp-summablesequencesinEintoalmostuncondi-tionallysummablesequencesinF.
ThefollowingdefinitionisanaturalgeneralizationofDefinition3andallowsustogiveexamplesofanalyticalmostp-summingmappings.
Definition4.Amappingf:E→Fissaidtobealmostp-summingata∈EifthereexistCa>0,ǫa>0andra>0suchthat
(1k
(f(a+x1
j)−f(a))rj(t)2dt)
0
j=1
n!2ne1...enP(e1(a1+x(1)(n)
j)+...+en(an+xj)]−
ei=1
,−1
−[
1
n!2n
e1...en[P((e1a1+...+enan)+(e1x(1)j+...+enx(n)
j))−
ei=1
,−1
−P(e1a1+...+enan)].
Forany(x(1)
(n)
j)kj=1,...,(xj)k
j=1,inordertosimplifynotation,wewillwrite
A=(1k
(P∨(a1+x(1)
(n)∨1j,...,an+xj)−P(a1,...,an))rj(t)2dt)0
j=1
6DANIELPELLEGRINO
Lemma1assertsthatthereexistsD>0sothat((x(1)
(n)
(1)
j)kj=1w,p+...+(xj)k
j=1w,p)≤D(xj,...,x(n)
j)kj=1foreveryk.Nowsuppose
w,p
(x(1)
(n)
j,...,xj)kj=11
w,p<
n!2n
a1+...enan)+(e1x(1))
j+...+enx(nj))−
ei=1
e1...en[P((e1,−1
−P(e1
1a1+...+enan)]rj(t)2dt)n!2n
(
e1...en[P((e1a1+...+enan)+(e1x(1)
(n)j+...+enxj))−ei
=1,−110
k
j=1
−P(e1
1a1+...+en!2nnan)]rj(t)2dt)
Ce(1)
1a1
+...+enan+...+ex(n))ki
−1(e1xj
njj=1rw,p(e1a1+...+enan)e=1,≤
1
n
Ce(1)
(n)
r(ea1
+...+enan)
n!21a1+...+enanD
r
(e1a1+...+enan)
ei=1,−1(x1
j,...,xj)kj=1w,p
≤D1(x(1)
(n)
)kmin{r(e1a1+...+enan)}
j,...,xjj=1w,p
if(x(1)
(n)
j,...,xj)kj=1w,p<δ=
1
ALMOSTSUMMINGMAPPINGS7
foranynaturalk,everyx1,...,xkinEand(xj)kj=1w,p<δ,thenfisalmostp-summingata.Proof.
1k
1
(f(a+xj)−f(a))rj(t)2dt)(
0
j=1
k!
dg(a)≤Cckforeveryk≥1.
∧
k
Then,foranyboundedlinearfunctionalϕ,definedonF,weobtain
1
k!
dg(a)≤Cckϕforeveryk≥1.
∧k
By(2.2)wehave
1
2
λkCckϕforeveryk≥2.
Therefore,definingδaastheradiusofconvergenceofgarounda,ifweassume(xj)mj=1suchthat
(xj)mj=1w,2≤δ=min{
1
,δa},3λc)
8DANIELPELLEGRINO
weobtain
mj=1
∞1|ϕg(a+xj)−ϕg(a)|≤
k=2
k−1
dϕg(a)as(1;2)(xj)mj=1w,2∧k
k!
k−2∞K3G
ò(xj)mj=1w,2
(2k=2
2
foreverycontinuousn-linearmappingT:E×...×E→F.Then,usingtheestimates
ofProposition6,wehave
1m
1(n)(1)
T(xj,...,xj)rj(t)2dt)(
0
j=1
m
T(xj)mj=1w,2...(xj)j=1w,2
(1)(n)
n!2n
(ei=1,−1),i=1,...,n
e1e2...enP(e1x+(e2+...+en)a)
ALMOSTSUMMINGMAPPINGS9
=
n
n!2−
n
(n
e2...en[P(x+(e2+...+en)a)−P((e2+...+en)a)])−
(ei=1,−1),i=2,...,n
2
=
1k
n
=(
0
j=1
2
≤≤
n
2
n
2
+
1k
1
Qe2...en(−xj)rj(t)2dt)+(
0
j=1
n!2n
(ei=1,−1),i=2,...,n
(e2+...+en)a
2C(e2+...+en)a(xj)kj=1w,p
r
≤D(xj)kj=1w,p
min{r(e2...en)a}
for(xj)kj=1w,p<δand0<δ thenforp≤2wehave IfdimE=∞andp>1,thenPal,p(E)(nE;E)=P(nE;E).Themultilinearversionisalsovalid. Proof.IfdimE<∞,letusconsider{e1,...,en}and{ϕ1,...,ϕn}basisforEandEsothatϕj(ek)=δjk.Givenann-homogeneouspolynomialPfromEintoE,wehave mm∨∨n ϕj1(x)...ϕjn(x)P(ej1,...,ejn).ϕj(x)ej)=P(x)=P( ′ j=1 j1,...,jn=1 Pal,p(E)(nE;E)=P(nE;E). Sinceeveryfinitetypen-homogeneousboundedpolynomialisalmostp-summing (atzero)forp≤2n(see[2,Proposition3.1(ii)]),itisnothardtoprovethatPisalmostp-summingeverywhere,forp≤2. 10DANIELPELLEGRINO Ontheotherhand,supposethatEisaninfinitedimensionalBanachspace.Itsufficestoconsiderthecase1 P(x)=ϕ(x)n−1x. IfwehadPalmostp-summingeverywhere,wewouldhave,byLemma2,dP(a)almostp-summing(atzero).Sinceϕisalmostp-summingand dP(a)(x)=(n−1)ϕ(a)n−2ϕ(x)a+ϕ(a)n−1x, wewouldhaveϕ(a)n−1xalmostp-summing.Sinceϕ(a)=0,wewouldhavethatidEisalmostp-summing,anditisacontradiction. Example1.ItisworthobservingthatbyCorollary3,forn≥2,wehavewhereasTheorem4assertsthatPal,2(c0)(nc0;c0)=P(nc0;c0). Acknowledgment.Thispaperformsaportionoftheauthor’sdoctoralthesis,writtenundersupervisionofProfessorM´arioMatos.TheauthorisindebtedtohimandtoProfessorGeraldoBotelhoforthesuggestions. References [1]F.BombalandM.Fern´andez,Unconditionallyconvergingmultilinearoperators,Math. Nachr.226,5-15(2001). [2]G.Botelho,H.BraunssandH.Junek,Almostp-summingpolynomialsandmultilinearmap-pings,Arch.Math.76109-118(2001). [3]G.Botelho,Almostsummingpolynomials,Math.Nachr.211,25-36(2000). [4]G.Botelho,Cotypeandabsolutelysummingmultilinearmappingsandhomogeneouspoly-nomials,ProceedingsoftheRoyalIrishAcademy,Vol97A,No2,145-153(1997). [5]J.Diestel,H.Jarcow,A.Tonge,AbsolutelySummingOperators,CambridgeUniversityPress, 1995. [6]K.FloretandM.Matos,ApplicationofaKhinchineInequalitytoHolomorphicMappings, Math.Nachr.176,65-72(1995). [7]H.JunekandM.Matos,Onunconditionallyp-summingandweaklyp-convergentpolynomi-als,Arch.Math.70,41-51(1998). [8]M.Matos,NonlinearabsolutelysummingmappingsbetweenBanachspaces,In: Quadrag´esimoSextoSemin´arioBrasileirodeAn´alise,p.462-479,November(1997).[9]M.Matos,Aplica¸co˜esentreespa¸cosdeBanachquepreservamconvergˆenciades´eries,In: Quinquag´esimoSemin´arioBrasileirodeAn´alise,November(2000). [10]M.Matos,Absolutelysummingholomorphicmappings,An.Acad.bras.Ci.,68,1-13(1996).[11]Y.Mel´endez,andA.Tonge,PolynomialsandthePietschdominationtheorem,Proceedings ofTheRoyalIrishAcademy99A(2),195-212(1999). [12]D.Pellegrino,Cotypeandabsolutelysummingmappings,In:Quinquag´esimoQuinto Semin´arioBrasileirodeAn´alise,p.561-576,May(2002).[13]D.P´erez-Garc´ıa,Operadoresmultilinealesabsolutamentesumantes,DissertationUniversidad ComplutensedeMadrid,(2002). [14]A.PietschIdealsofmultilinearfunctionals(designsofatheory),ProceedingsoftheSecond InternationalConferenceonOperatorAlgebras,IdealsandtheirApplicationsinTheoreticalPhysics,185-199.Leipzig.Teubner-Texte,1980.´ticaeEstat´(DanielPellegrino)DeptodeMatemaıstica-CaixaPostal10044-UFPB CampusII-CampinaGrande-PB-BrasilE-mailaddress:dmp@dme.ufcg.edu.br Pal,2(nc0;c0)=P(nc0;c0) 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务