您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页Fast Computation of Substrate Resistances in Large Circuits

Fast Computation of Substrate Resistances in Large Circuits

来源:爱go旅游网
FastComputationofSubstrateResistancesinLargeCircuits

A.J.vanGenderen,N.P.vanderMeijsandT.Smedes*

DelftUniversityofTechnology,Mekelweg4,2628CDDelft,TheNetherlands*nowwith:PhilipsSemiconductors,Gerstweg2,6534AENijmegen,TheNetherlandse-mail:arjan@cas.et.tudelft.nl,nick@cas.et.tudelft.nl,smedes@nlnmg04.seminy.philips.nlAbstract

Inthispaper,wedescribeamethodtoquicklyandac-curatelyestimatesubstratecouplingeffectsinanalogandmixeddigital/analogintegratedcircuits.Unlikenumericalmethods,thatcanbeusedforcircuitscontainingonlyafewhundredsofsubstrateterminals,thenewmethodcanquicklyextractcircuitscontainingmanythousandsofsubstrateter-minals.Examplesaregiventhatshowthatthemethodissufficientlyaccurateforpracticalcircuitverification.Themethodhasbeenimplementedinthelayout-to-circuitex-tractorSpace.

1Introduction

Inmodernanalogcircuitsandmixeddigital/analogcir-cuits,couplingeffectsviathesubstratecanbeanimportantcauseofmalfunctioningofthecircuit.Thisproblembe-comesmoreprominentas(1)thereisatrendtointegratemoreandmoredifferentcomponentsonachip,(2)thede-creaseofwirewidthandincreaseofwirelengthcausestheinterconnectparasiticsandhencethelevelofnoiseonthechiptoincrease,and(3)theuseoflowersupplyvoltagesmakesthecircuitsmoresensitivetointernalpotentialvaria-tions.

Thesubstratecouplingeffectsinintegratedcircuitscanbeverifiedbycomputingthesubstrateresistancesbetweenallcircuitspartsthatinjectnoiseintothesubstrateand/orthataresensitivetoit.Thenoiseinjectorsaremainlythecon-tactsthatconnectthesubstrateandthewellstothesupplyvoltages.Thecurrentvariationsinthesupplylinescausefluctuatingpotentialsovertheirresistancesandinductances,thatareinjectedintothesubstrateviathesubstratecontactsandthewellcontacts.Thenoisereceiversareoftenthebulkconnectionsofthetransistors.Otherpartsthatmaygener-atenoiseand/orthataresensitivetoitare(1)drain/sourceareasoftransistors,(2)on-chipresistorsandcapacitors,and(3)interconnectwiresthatarecoupledtothesubstrateviaa(large)substratecapacitance.Inthefollowing,wewillcallthepartsofthecircuitthatgeneratenoiseand/orthataresen-sitivetoit,thesubstrateterminalsofthecircuit.

Severalpublicationsalreadydescribehowsubstratecou-

plingeffectscanbeverifiedpriortothefabricationofthecircuit.In[1]and[2],a2Ddevicesimulatorisusedtosim-ulatethesubstratecouplingeffects.Thismethodallowstoinvestigatethegeneraleffectsofguard-rings,substratecon-tacts,etc.,butitisnotwellsuitedforpracticalcircuitde-sign.Moregeneralmethods,thatgeneratea3Dmeshforthesubstratetodeterminethecouplingeffects,aredescribedine.g.[3]and[4].Methodsthatusea3Dboundary-elementmethodandthatgeneratemuchfewerelementsarefoundin[5,6]and[7].However,becauseofhighmemoryusageandlongcomputationtimes,thesenumericalmethodsdonothandlecircuitscontainingmorethanafewhundredsofsub-strateterminals.

Althoughthenumericalmethodsthatarementionedabovecanadvantageouslybeusedtoverifysmallcircuitsorlocaleffectsinlargecircuits,inpractice,substratecouplingeffectsoftenoccurforrelativelylargecircuits.Hencethereisaneedformethodsthatcanquicklyestimatesubstratere-sistancesforlargecircuits.Attemptstospeed-upthecompu-tationofsubstrateresistancesarefoundin[8]and[9].In[8],parameterizedlumpedmodelsaregivenforseveraldiffer-entisolationschemesusingguard-rings.In[9],thespeed-upisobtainedbyprecomputingpoint-to-pointimpedances,whicharethenusedtofindtheadmittancematrixfortheac-tualterminalconfiguration.Alsohierarchyanddelimitationareusedin[9]toreducecomputationcomplexity.However,thelattermethodstillrequiresmatrixinversion.

Inthispaper,wedescribeanewmethodforsubstratere-sistancecomputationthatissimple,fastandgeneral,andthathasmoreoverbeenimplementedinalayout-to-circuitextractortoextractthesubstrateresistancesincombinationwiththerestofthecircuit,includinginterconnectparasitics.Theoutputoftheextractorcandirectlybeverified,e.g.us-ingacircuitsimulator.

Tosimplifythecomputationofthesubstrateresistancesandtoreducethecomplexityoftheoutputcircuit,themethodusesthenotionofa“substratenode”towhichallsubstrateterminalsareconnectedviaaresistance.Directcouplingresistancesbetweensubstrateterminalsareonlycomputedbetweenterminalsthatare“neighbors”ofeach

d

A

B

Rab

Ra

Rbsubstrate node

Figure1:Substratemodelforaconfigurationwithtwosub-strateterminals.

other.Whetherornottwoterminalsareconsideredneigh-borsisdeterminedbyaDelaunaytriangulationoftheareabetweentheterminals.Thespeed-upisfurtherobtainedbyusinginterpolationtechniquesincombinationwithresultsforstandardterminalconfigurations.

Wecomparethenewmethodwithanumericalmethodandshowthatthemethodissufficientlyaccurateforprac-ticalcircuitverification.Wealsoshowthatthemethodcanquicklyextractcircuitscontainingmanythousandsofsub-strateterminals.

Thestructureofthispaperisasfollows.First,inSection2,wedescribethemodelthatisusedtocomputesubstrateresistances.Next,inSection3,wediscusstheselectionoftheterminalpairsforwhichdirectcouplingresistancesarecomputed.Then,inSection4,wedescribethecomputationofthevaluesofthesubstrateresistances.InSection5,wepresentresultsofthemethod.Finally,inSection6,wegiveadiscussion.

2TheSubstrateModel

ThesubstratemodelthatweusetocomputethesubstrateresistancesisillustratedinFigure1.Thefigureshowstworectangularsubstrateterminals,representingsubstratecon-tactsortransistorbulkconnections,etc.

Inthesubstratemodel,wedefineacommonsubstratenodetowhichallsubstrateterminalsaredirectlyconnectedviaaresistance.Forexample,inFigure1,terminalAiscon-nectedtothesubstratenodeviaresistanceRa,andterminalBisconnectedtothesubstratenodeviaresistanceRb.Thesubstratenodeisidenticaltothereferencenodeorgroundnodethatisfoundwiththeboundary-elementmethod[5–7].Usuallythesubstratenodecanbeassumedtobepresentatinfinity.However,forsubstratesthathaveawell-conductingbottomlayerorametalbackplane,thesubstratenodeaccu-ratelyrepresentsthispartofthecircuit[1].

Thevalueoftheresistancebetweenaterminalandthesubstratenodeisprimarilydeterminedbythepropertiesofthesubstrateandthegeometryoftheterminal.

Inthesubstratemodel,aresistanceisalsocomputedbe-tweenterminalsthatare“neighbors”ofeachother(seeSec-tion3forthedefinitionof“neighbor”terminals).InFig-

ure1,suchadirectcouplingresistancehasbeencomputedforterminalAandterminalBandiscalledRab.Thedirectcouplingresistancebetweentwoterminalscarriesthecur-rentbetweenthoseterminalsthatisnotflowingviathesub-stratenode.Itsvalueisdependentonthepropertiesofthesubstrate,onthegeometriesoftheterminalsandonthepo-sitionoftheterminalswithrespecttoeachother.Thevalueofthedirectcouplingresistanceislargeiftheterminalsarefarapartanditbecomessmallerwhenthedistancebetweentheterminalsbecomessmaller.

Todemonstratethevalidityoftheabovesubstratemodel,weconsidertheconfigurationthatisshowninFigure2.Itconsistsofaheavilydopedsubstrateof300µ(resistivity0.05Ω·cm)withalightlydopedepitaxiallayerof7µ(re-sistivity15Ω·cm)grownonit.Thedimensionsofthesub-strateandtheepi-layerinhorizontaldirectionsareconsid-eredinfinite.Ontopoftheepi-layertherearetwoterminalsofsizeW×Wthatareatadistanced.Substrateresistanceshavebeencomputedforthisconfigurationusingthe3Dsub-strateresistancecomputationprogramdescribedin[7].

d

WABW15 Ohm cm

0.05 Ohm cm

300µ

Figure2:Heavilydopedsubstratewithalightlydopedepi-layerandtwoterminals.

InFigure3,theresistancebetweenthetwoterminalsinFigure2isshownasafunctionoftheirdistance,fordiffer-entsizesoftheterminals.Fromtheresultswenotethattheresistancebetweentheterminalsapproachesanasymptoticvalue—dependingonthegeometryoftheterminals—asthedistancebetweentheterminalsisincreased.Thiscanbeexplainedbythefactthatwhenthedistancebetweentheter-minalsislargecomparedtothethicknessoftheepi-layer,almostthecompletecurrentbetweentheterminalswillflowviathewell-conductingbottomlayer(seealso[1]).Theto-talresistanceisthenprimarilydeterminedbytheresistancebetweenterminalAandthebottomlayer,andtheresistancebetweenterminalBandthebottomlayer,whichcorrespondtorespectivelyresistanceRaandresistanceRbinthemodelinFigure1.

Whenthedistancedbecomessmaller,thetotalresistancebetweenterminalAandterminalBismoreandmoredeter-minedbytheresistanceofthatpartoftheepi-layerthatisbetweenterminalAandterminalB.Thisresistanceisrepre-sentedinFigure1bytheresistanceRab.

150

󰁧󰁧󰁧󰁧󰁧󰁧󰁧W=1µ

󰁧100RinkΩ

50

󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧W=2µ

󰁧W=4µ

󰁧󰁧󰁧󰁧󰁧0

110dinµ

1001000Figure3:ResistancebetweenthetwoterminalsinFigure2asafunctionoftheirdistanced,fordifferentterminalsizes.

150

󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧W=1µ

󰁧100RinkΩ

50

󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧W=2µ

󰁧W=4µ

󰁧0

110dinµ

1001000Figure4:Resistancebetweentwoterminalsontopofa300µthicklightlydopedsubstrate(resistivity15Ω·cm)asafunc-tionoftheirdistanced,fordifferentterminalsizes.AlthoughthevalidityofthemodelinFigure1isintu-itivelyverifiedforsubstrateswithawell-conductingbottomlayerasshowninFigure2,itappearsthatthemodelcanalsobeusedforothertypesofsubstrates.ThisisillustratedinFigure4bycomputingtheresistancebetweentwoterminalsontopofasubstratethatissimilartothefirsttypebutthathasnoepi-layerandconsistsofonlya300µthicklightlydopedsubstrate(resistivity15Ω·cm).TheresultsshowasimilarbehaviorasinFigure3.TheresultsinFigure4areconfirmedbytheoreticalworkthatshowsthattheresistancebetweentwoterminalsontopofaconductinghalf-space,fordistancesmuchlargerthanthesizesofthecontacts,isinde-pendentofthedistancebetweenthecontacts(see[10]).

3NetworkReduction

WhenNisthenumberofsubstrateterminalsandwhenadirectcouplingresistanceiscomputedforeachpairofsub-strateterminals,thetotalnumberofdirectcouplingresis-tancesis1

Figure6:ExampleofaDelaunaytriangulation.Thetermi-nalsaredrawninsolidlines.AdirectcouplingresistanceiscomputedbetweentwoterminalsifthereisatleastonelineoftheDelaunaytriangulationthatdirectlyconnectsthem.IfweconsidertheDelaunaytriangulationasagraphinwhichtheterminalsarethenodesofthegraphandthereisanedgewheneverthereisatleastonelineconnectingtheter-minals,thenthenumberofresistancesintheoutputnetworkcanbeincreasedbycomputingadirectcouplingresistancebetweeneachpairofterminalsiftheterminalsareatadis-tance≤Linthecorrespondinggraph.

4ResistanceComputation

Thevaluesoftheresistancesinthesubstratemodelarecomputedviainterpolationbetweenknownresistanceval-uesforsomestandardconfigurations.Theresistancevaluesforthestandardconfigurationscanbeobtainedviameasure-mentonrealcircuitsor—aswedid—byusinganumericalmethod[7].

InFigure7.a,thevalueoftheconductancebetweenater-minalandthesubstratenodeisshownasfunctionoftheareaoftheterminalforahomogeneoussubstrate.InFigure7.b,thevalueofthesameconductanceisshownasafunctionoftheperimeteroftheterminal.Notethatinbothcasesthereis(approximately)alineardependencybetweentheconduc-tanceandtheareaortheperimeter.Therefore,fortheresis-tancebetweenaterminalandthesubstratenode,thefollow-inginterpolationformulaisused(seealso[1])

Rsub

1

k1

k2P

k3A

(1)

wherePistheperimeteroftheterminal,Aistheareaoftheterminal,andk1,k2andk3areempiricalfittingparametersthatareobtainedfromtheresistancevaluesofatleast3dif-ferentconfigurations.

Thedirectcouplingresistancebetweentwoterminalsasafunctionofthedistancebetweentheterminals,fordiffer-entterminalgeometries,isplottedinFigure8.Basedalsoonotherexperiments,wehavefoundthatareasonablevalueforthedirectcouplingresistancebetweentwoterminalsisob-tainedviatheinterpolationformula

Rdir

Kdp

Aa

W=1󰁧µ

10000

W=2󰁧µ󰁧󰁧R

󰁧󰁧󰁧W=4󰁧µinkΩ

󰁧1000

󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧󰁧100

󰁧125dinµ

102050Figure8:Directcouplingresistancebetweentwoterminalsasafunctionofthedistance.

3

3

4

5

24

1

12

(a)(b)

Figure9:(a)Terminalconfiguration1.(b)Terminalconfig-uration2.

Table1:Resistances(inkΩ)fortheterminalconfigurationinFigure9.aonaheavilydopedsubstratewithepi-layer(lay.=2)andonalightlydopedsubstrate(lay.=1).BEM=methodin[7],interp.=methodinthispaper.

2BEM

85.451612613653.6197

%diff.5.58.5-4.85.8-9.1-8.6interp.90.866112114350.7178

Table2:AsinTable1butnowfortheterminalconfigurationinFigure9.b

2BEM

263412191530418188531172480123

%diff.2.72.2-3.1-3.42.6-4.8-1.5-4.7-1.74.8interp.258396202547418182586167519126

VccRcRf110410RoOut6InT1T2T3R1260Rb160Re12GndFigure10:Schematic(a)andsimplifiedlayout(b)ofabipo-laramplifier.Greyareasindicatethepositionofatransistor(fromlefttorightT1,T2,T3aandT3b),blackareasindicatethepositionofasubstratecontact.

conductingbottomlayerthanforhomogeneoussubstrates.Thisisbecausewithawell-conductingbottomlayertheconductancetothesubstratenodeismoredominantcom-paredtothecouplingconductancesandhencetheerrorthatismadebyindependentlycomputingthecouplingconduc-tancesislessimportant.

AnotherexampleisshowninFigure10.Westudythehighfrequencybehaviorofabipolaramplifieronasubstrateconsistingofa14µ015Ω·cmtoplayeranda300µ4Ω·cmbottomlayer.ThecircuitinFigure10wasextractedwithoutsubstrateresistances,usingthesubstrateresistancecompu-tationmethodin[7]andusingthemethoddescribedinthispaper.Inallcases,theresultingcircuitwassimulatedus-ingSpice.ThesimulationresultsarepresentedinFigure11.Theyshowthatthesubstratecouplingeffectsthatareesti-matedusingthenewmethodarealmostidenticaltothere-sultsthatareobtainedusingthemethodin[7].

OnanHP9000/735computer,extractionoftheampli-fier,usingthemethodin[7],took3minutesand4seconds(248elementswereused).Extractiononthesamecomputer,usingthenewmethod,tooklessthan1second.Moreper-formancefiguresforthenewsubstrateresistanceextractionmethodarepresentedinTable3.

6Discussion

Inthispaper,wehavedescribedamethodtoquicklycom-puteaccuratesubstrateresistancesforlargecircuits.Prob-lemsthatarecausedbysubstratecouplingareusuallyglobalproblemsthatrequirethesimulationofthecompletecir-cuitinordertouncoverthem.Therefore,wehaveaimedat

1.5

....................................................mag.1

indB

0.5

nosub.res.BEM

.........interpolated

........................................Table3:Totalextractiontimes(onanHP9000/735)forcir-cuitshavingdifferentnumbersofsubstrateterminals.

(a)

...................pla

processormemory32814676360418135770576.427.7320.1

0.010.11frequencyinGHz

..............................................10......................................150phase100

indeg.

50

00.01(b)

...nosub.res.BEM

.........interpolated

...................0.11frequencyinGHz

10Figure11:Simulatedmagnitude(a)andphase(b)ofthetransferfunctionsoftheamplifiervs.frequency.

thedevelopmentofamethodthatcomputesinareasonableamountoftimeallrelevantsubstrateresistancesofacom-pletecircuit.

Toefficientlycomputethesubstrateresistances,themethodusesthenotionofa(virtual)substratenodetowhichallsubstrateterminalsareconnected.Itcomputesdirectcouplingresistancesonlybetweensubstrateterminalsthatareclosetoeachother.Notethatthismodelismoreorlesssimilartothemodelthatisusedtocomputecapacitancesus-inganarea/perimetermethod:Thesubstratenodeinthesub-strateresistancemodelisequivalenttothegroundnodeinthecapacitancemodeland,inanalogytothecouplingcapac-itancesbetweenwiresinthecapacitancemodel,directcou-plingresistancesbetweensubstrateterminalsareonlycom-putedbetweenneighborterminals.

Becauseofthespeedofextractionmethod,thecircuitsim-ulationthatisperformedafterwardswill,ingeneral,requiremuchmoretimethanthecomputationofthesubstratere-sistances.Hence,itbecomesmoreandmoreimportanttoinvestigateotherverificationtechniquesthatcanbeusedincombinationwiththemethodforfastsubstrateresistanceex-traction.

Acknowledgements

ThisresearchissponsoredinpartbytheDutchTechnol-ogyFoundation(STW)undergrantnr.DEL11.2450andgrantnr.DEL22.2810,andhasbeencarriedoutinthecon-textofDIMES,theDelftInstituteofMicroelectronicsandSubmicronTechnology.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务