学生姓名 上课时间 课 题 年 级 初三 学 科 教师姓名 一次函数(二) 1、能根据实际问题中变量之间的关系,确定一次函数关系式; 2、会画一次函数的图象,根据图象与表达式探索并理解其性质; 数学 教学目标 3、能将简单的实际问题转化为数学问题,从而解决实际问题; 4、在应用一次函数解决实际问题的过程中,体会数学应用的广泛性 5、掌握一次函数与方程、不等式的关系,根据一次函数的图象求二元一次方程组的近似解。 教学过程 教师活动 学生活动 课前热身 1.如图,直线y=ax+b过点A(0,3)和点B(﹣5,0),则方程ax+b=0的解是( ) A.x=3 B.x=0 C.x=﹣1 D.x=﹣5 2. 如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x≥ax+5的解集为 1
3. 一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为 米 4. 黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元. (1)求每件甲种、乙种玩具的进价分别是多少元? (2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式; (3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱. 2
遗漏分析 知识精讲 【基础知识重温】 一、一次函数和一元一次方程的关系 一次函数y=kx+b的函数值为0时,相应的自变量的值即为方程kx+b=0的 ;若从图象上来看,则可看做函数y=kx+b的图象与x轴的交点的 ,即为方程kx+b=0的解. 二、一次函数和一元一次不等式的关系 任何一元一次不等式都可以转化为类似ax+b>0或ax+b<0的形式,所以解一元一次不等式可以看做:当一次函数y=ax+b的值大(小)于0时,求自变量相应的取值范围;反之,求一次函数y=ax+b的值何时大(小)于0时,只要求出不等式ax+b>0或ax+b<0的解集即可. ①如图1,一次函数ykxb的图象与x轴交于点(x0,0).当它在x轴上方的部分时,对应不等式为 ,其解为 ;当它在x轴下方的部分时,对应不等式为 ,其解为 . yyy2=k2x+b2y=kx+by1=k1x+b1x0xx0x图1 图2 ② 如图2,一次函数y1k1xb1与y2k2xb2的图象交点的横坐标为x0.当y2k2xb2的图象在y1k1xb1上方的部分时,对应不等式
3
为 ,其解为 ;当y2k2xb2的图象在y1k1xb1下方的部分时,对应不等式为 ,其解为 . 二、一次函数的实际应用 (1)通过图象获取信息 通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看 分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系. 观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助. (2)一次函数图象的应用 一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.在实际问题中,当自变量的取值范围受到一定的时,函数y=kx+b(k≠0)的图象就不再是一条直线.要根据实际情况进行分析,其图象可能是 等等. 四、例题分析 题型一、两条直线平行或相交 【例1】(2016湖南株洲)已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y1=k1x+b1,直线CD的表达式为y2=k2x+b2,则k1k2= . 【趁热打铁】 1.直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是( ) A.m>-1 B.m<1 C.-1<m<1 D.-1≤m≤1 2. 如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x的方程kx+3=﹣x+b的解是 . 4
题型二、一次函数与一元一次不等式 【例2】(2016山东东营)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________. 【趁热打铁】 1. 如图,函数y=3x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为 . 2. 如上题图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为 . 题型三、方案设计 【例3】(2016山东临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克. (1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克) 5
之间的函数关系式; (2)小明选择哪家快递公司更省钱? 【趁热打铁】 黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元. (1)求每件甲种、乙种玩具的进价分别是多少元? (2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式; (3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱. 题型四、分段函数 【例4】(2016生产建设兵团)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示. 6
(1)从小刚家到该景区乘车一共用了多少时间? (2)求线段AB对应的函数解析式; (3)小刚一家出发2.5小时时离目的地多远? 【趁热打铁】 一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题: (1)甲乙两地之间的距离为 千米; (2)求快车和慢车的速度; (3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.
7
题型五、求最值 【例5】(2016湖南湘西)某商店购进甲、乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同. (1)求甲、乙商品的进货单价; (2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案? (3)在条件(2)下,并且不再考虑其他因素,若甲、乙两种商品全部售完,哪种方案利润最大?最大利润是多少? 8
【趁热打铁】 我市为创建“国家级森林城市”将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,.某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表: 品种 购买价(元/棵)成活率 90% 甲 乙 20 32 95% 设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题: (1)求y与x之间的函数关系式,并写出自变量取值范围; (2)承包商要获得不低于中标价16%的利润,应如何选购树苗? (3)与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则城府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少? 9
五、牛刀小试 1、直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是( ) A.x≤3 B.x≥3 C.x≥﹣3 D.x≤0 2、明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( ) A.300m2 B.150m2 C.330m2 D.450m2 3、已知直线l1:y=﹣3x+b与直线l2:y=﹣kx+1在同一坐标系中的图象交于点(1,﹣2),那么方程组3xyb的解是( ) kxy1A.x1x1x1x1 B. C. D. y2y2y2y24、周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象. (1)小芳骑车的速度为 km/h,H点坐标 . (2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远? (3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地? 10
5、随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加. (1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率; (2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t. ①若该养老中心建成后可提供养老床位200个,求t的值; ②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个? 6、为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若 11
计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系. (1)求y与x的函数关系式; (2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用. 巩固练习 1. 如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是( ) A.x=2 B.x=0 C.x=﹣1 D.x=﹣3 2. 甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有( ) ①甲车的速度为50km/h ②乙车用了3h到达B城 12
③甲车出发4h时,乙车追上甲车 ④乙车出发后经过1h或3h两车相距50km. A.1个 B.2个 C.3个 D.4个 3.两直线l1:y=2x-1,l2:y=x+1的交点坐标为( ) A.(-2,3) B.(2,-3) C.(-2,-3) D.(2,3) 4. 若直线x+2y=2m与直线2x+y=2m+3(m为常数)的交点在第四象限,则整数m的值为( ) A.-3,-2,-1,0 B.-2,-1,0,1 C.-1,0,1,2 D.0,1,2,3 5.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论: ①l1描述的是无月租费的收费方式; ②l2描述的是有月租费的收费方式; ③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱. 其中,正确结论的个数是( ) A.0 B.1 C.2 D.3 6.如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0解集是( ) A.x>0 B.x>-3 C.x>2 D.-3<x<2 13
课堂小结 强化提升 1. 一次函数y=kx+b(k、b为常数,且k≠0)的图象如图所示.根据图象信息可求得关于x的方程kx+b=6的解为 . 2. 如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(1,3),则不等式kx>ax+4的解集为 . 3. 一辆货车从甲地匀速驶往乙地,到达后用了半小时卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍.货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示.则a= (小时). 14
4.一次函数y=ax+b(a,b都是常数)的图象过点P(-2,1),与x轴相交于A(-3,0),则根据图象可得关于x的不等式组0≤ax+b<-1x的解集为 . 2 课后作业 1.(本题满分10分)某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如下表所示:(教师按成人票价购买,学生按学生票价购买) 运行区间 出发站 南靖 终点站 厦门 成人票价(元/张) 一等座 26 二等座 22 学生票价(元/张) 二等座 16 若师生均购买二等座票,则共需1020元. (1)参加活动的教师有_________人,学生有___________人; (2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元. ①求y关于x的函数关系式; ②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人? 15
2. 如图,过点A(2,0)的两条直线l1,l2 分别交 𝑦 轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=13. (1)求点B的坐标; (2)若△ABC的面积为4,求l2的解析式. 3. (本题满分10分)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.
16
(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式; (2)分别求该公司3月,4月的利润; (3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本) 4.(本题满分10分)小李是某服装厂的一名工人,负责加工A,B两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A型服装1件可得20元,加工B型服装1件可得12元.已知小李每天可加工A型服装4件或B型服装8件,设他每月加工A型服装的时间为x天,月收入为y元. (1) 求y与x的函数关系式; (2) 根据服装厂要求,小李每月加工A型服装数量应不少于B型服装数量的,那么他的月收入最高能达到多少元? 35 17
5. (本题满分10分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题: (1)A、B两点之间的距离是 米,甲机器人前2分钟的速度为 米/分; (2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式; (3)若线段FG∥x轴,则此段时间,甲机器人的速度为 米/分; (4)求A、C两点之间的距离; (5)直接写出两机器人出发多长时间相距28米.
18
19
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务