2021年辽宁省本溪市中考数学试卷
一、选择题(本题共10个小题,每小题3分,共30分。在每小题给出的四个选项中,只有一项是符合题目要求的) 1.﹣5的相反数是( ) A.
B.
C.﹣5
D.5
2.下列漂亮的图案中似乎包含了一些曲线,其实它们这种神韵是由多条线段呈现出来的,这些图案中既是中心对称图形又是轴对称图形的是( )
A.
B.
C.
D.
3.下列运算正确的是( ) A.x2•x=2x2 C.x6÷x3=x2
4.如图,该几何体的左视图是( )
B.(xy3)2=x2y6 D.x2+x=x3
1
A. B.
C. D.
5.下表是有关企业和世界卫生组织统计的5种新冠疫苗的有效率,则这5种疫苗有效率的中位数是( )
疫苗名称 克尔来福 阿斯利康 莫德纳 有效率 A.79%
79%
76% B.92%
95%
辉瑞 95% C.95%
卫星V 92%
D.76%
6.反比例函数y=的图象分别位于第二、四象限,则直线y=kx+k不经过的象限是( ) A.第一象限
B.第二象限
C.第三象限
D.第四象限
7.如图为本溪、辽阳6月1日至5日最低气温的折线统计图,由此可知本溪,辽阳两地这5天最低气温波动情况是( )
A.本溪波动大 C.本溪、辽阳波动一样
B.辽阳波动大 D.无法比较
8.一副三角板如图所示摆放,若∠1=80°,则∠2的度数是( )
2
A.80°
B.95°
C.100°
D.110°
9.如图,在△ABC中,AB=BC,由图中的尺规作图痕迹得到的射线BD与AC交于点E,点F为BC的中点,连接EF,若BE=AC=2,则△CEF的周长为( )
A.
+1
B.
+3
C.
+1
D.4
10.如图,在矩形ABCD中,BC=1,∠ADB=60°,动点P沿折线AD→DB运动到点B,同时动点Q沿折线DB→BC运动到点C,点PQ在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,△PBQ的面积为S,则下列图象能大致反映S与t之间函数关系的是( )
A. B.
C.
3
D.
二、填空题(本题共8个小题,每小题3分,共24分) 11.若
在实数范围内有意义,则x的取值范围是 .
12.分解因式:2x2﹣4x+2= . 13.有5张看上去无差别的卡片,上面分别写着﹣张,则抽出卡片上写的数是
,﹣1,0,
,2.从中随机抽取一
的概率为 .
14.若关于x的一元二次方程3x2﹣2x﹣k=0有两个相等的实数根,则k的值为 .
15.为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A种奖品的单价比B种奖品的单价多10元,用300元购买A种奖品的数量与用240元购买B种奖品的数量相同.设B种奖品的单价是x元,则可列分式方程为 .
16.如图,由边长为1的小正方形组成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C和点D,则tan∠ADC= .
17.如图,AB是半圆的直径,C为半圆的中点,A(2,0),B(0,1),反比例函数y=(x>0)的图象经过点C,则k的值为 .
18.如图,将正方形纸片ABCD沿PQ折叠,使点C的对称点E落在边AB上,点D的对称点为点F,EF交AD于点G,连接CG交PQ于点H,连接CE.下列四个结论中:①
4
△PBE~△QFG;②S△CEG=S△CBE+S四边形CDQH;③EC平分∠BEG;④EG2﹣CH2=GQ•GD,正确的是 (填序号即可).
三、解答题(第19题10分,第20题12分,共22分) 19.先化简,再求值:
÷(1+
),其中a=2sin30°+3.
20.为迎接建党100周年,某校组织学生开展了党史知识竞赛活动.竞赛项目有:A.回顾重要事件;B.列举先烈;C.讲述英雄故事;D.歌颂时代精神.学校要求学生全员参加且每人只能参加一项,为了解学生参加竞赛情况,随机调查了部分学生,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中信息解答下列问题:
(1)本次被调查的学生共有 名;
(2)在扇形统计图中“B项目”所对应的扇形圆心角的度数为 ,并把条形统计图补充完整;
(3)从本次被调查的小华、小光、小艳、小萍这四名学生中,随机抽出2名同学去做宣讲员,请用列表或画树状图的方法求出恰好小华和小艳被抽中的概率. 四、解答题(第21题12分,第22题12分,共24分)
21.某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135
5
元,购买5本手绘纪念册和2本图片纪念册共需225元. (1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?
(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?
22.如图,某地为解决当地农户网络销售农特产品物流不畅问题,计划打通一条东西方向的隧道AB.无机从点A的正上方点C,沿正东方向以8m/s的速度飞行15s到达点D,测得A的俯角为60°,然后以同样的速度沿正东方向又飞行50s到达点E,测得点B的俯角为37°.
(1)求无人机的高度AC(结果保留根号); (2)求AB的长度(结果精确到1m).
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,
≈1.73)
五、解答题(满分12分)
23.某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个. (1)请直接写出y(个)与x(元)之间的函数关系式;
(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?
(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元? 六、解答题(满分12分)
24.如图,在Rt△ABC中,∠ACB=90°,延长CA到点D,以AD为直径作⊙O,交BA的延长线于点E,延长BC到点F,使BF=EF. (1)求证:EF是⊙O的切线;
(2)若OC=9,AC=4,AE=8,求BF的长.
6
七、解答题(满分12分)
25.在▱ABCD中,∠BAD=α,DE平分∠ADC,交对角线AC于点G,交射线AB于点E,将线段EB绕点E顺时针旋转α得线段EP.
(1)如图1,当α=120°时,连接AP,请直接写出线段AP和线段AC的数量关系; (2)如图2,当α=90°时,过点B作BF⊥EP于点,连接AF,请写出线段AF,AB,AD之间的数量关系,并说明理由;
(3)当α=120°时,连接AP,若BE=AB,请直接写出△APE与△CDG面积的比值.
八、解答题(满分14分)
26.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD⊥x轴于点D,交AB于点E.
(1)求抛物线的解析式;
7
(2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF的面积是△BOC面积的3倍时,求点P的坐标;
(3)如图2,当点P运动到抛物线的顶点时,点Q在直线PD上,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.
8
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务