April2005
RomanianIMOTST2005
DayI
1.Solvetheequation3x=2xy+1inpositiveintegers.
2.Letn≥1beanintegerandletXbeasetofn2+1positiveintegerssuchthatinanysubsetofXwithn+1elementsthereexisttwoelementsx=ysuchthatx|y.Provethatthereexistsasubset{x1,x2,...,xn+1}∈Xsuchthatxi|xi+1foralli=1,2,...,n.3.Provethatifthedistancefromapointinsideaconvexpolyhedrawithnfacestotheverticesofthepolyhedraisatmost1,thenthesumofthedistancesfromthispointtothefacesofthepolyhedraissmallerthann−2.
Workingtime:4hours
TranslatedbyValentinVornicu–MathLinks.ro
RomanianIMOTST2005
DayII
4.Provethatinanyconvexpolygonwith4n+2sides(n≥1)thereexisttwoconsecutive
1
sideswhichformatriangleofareaatmostoftheareaofthepolygon.
6n5.Letm,nbeco-primeintegers,suchthatmisevenandnisodd.Provethatthefollowingexpressiondoesnotdependonthevaluesofmandn:
mk1+(−1)[n]2n
k=1n−1
mkn
.
6.Asequenceofrealnumbers{an}niscalledabssequenceifan=|an+1−an+2|,foralln≥0.Provethatabssequenceisboundedifandonlyifthefunctionfgivenbyf(n,k)=anak(an−ak),foralln,k≥0isthenullfunction.
Workingtime:4hours
TranslatedbyValentinVornicu–MathLinks.ro
RomanianIMOTST2005
DayIII
7.LetA0A1A2A3A4A5beaconvexhexagoninscribedinacircle.DefinethepointsA0,
A2,A4onthecircle,suchthat
A0A0A2A4,
A2A2A4A0,
A4A4A2A0.
LetthelinesA0A3andA2A4intersectinA3,thelinesA2A5andA0A4intersectin
A5andthelinesA4A1andA0A2intersectinA1.
ProvethatifthelinesA0A3,A1A4andA2A5areconcurrentthenthelinesA0A3,A4A1andA2A5arealsoconcurrent.8.LetABCbeatriangle,andletD,E,Fbe3pointsonthesidesBC,CAandAB
respectively,suchthattheinradiiofthetrianglesAEF,BDFandCDEareequalwithhalfoftheinradiusofthetriangleABC.ProvethatD,E,FarethemidpointsofthesidesofthetriangleABC.9.LetPbeapolygon(notnecessarilyconvex)withnvertices,suchthatallitssidesanddiagonals√arelessorequalwith1inlength.Provethattheareaofthepolygon
3islessthan.
2
Workingtime:4hours
TranslatedbyValentinVornicu–MathLinks.ro
RomanianIMOTST2005
DayIV
10.Leta∈R−{0}.Findallfunctionsf:R→Rsuchthatf(a+x)=f(x)−xforall
x∈R.
DanSchwartz
11.Ontheedgesofaconvexpolyhedrawedrawarrowssuchthatfromeachvertexat
leastanarrowispointinginandatleastoneispointingout.Provethatthereexistsafaceofthepolyhedrasuchthatthearrowsonitsedgesformacircuit.
DanSchwartz
12.Letn≥0beanintegerandletp≡7(mod8)beaprimenumber.Provethat
p−12nkk=1
1
−p2
=
p−1
.2
C˘alinPopescu
13.a)Provethatthereexistsasequenceofdigits{cn}n≥1suchthatoreachn≥1no
matterhowweinterlacekndigits,1≤kn≤9,betweencnandcn+1,theinfinitesequencethusobtaineddoesnotrepresentthefractionalpartofarationalnumber.
b)Provethatfor1≤kn≤10thereisnosuchsequence{cn}n≥1.
DanSchwartz
Workingtime:4hours
TranslatedbyValentinVornicu–MathLinks.ro
RomanianIMOTST2005
DayV
14.Ona2004×2004chesstablethereare2004queenssuchthatnotwoareattacking
eachother1.
Provethatthereexisttwoqueenssuchthatintherectangleinwhichthecenterofthesquaresonwhichthequeensliearetwooppositecorners,hasasemiperimeterof2004.
15.Letn≥2beaninteger.Findthesmallestrealvalueρ(n)suchthatforanyxi>0,
i=1,2,...,nwithx1x2···xn=1,theinequality
nn1
≤xrixii=1
i=1
istrueforallr≥ρ(n).
16.LetN={1,2,...}.Findallfunctionsf:N→Nsuchthatforallm,n∈Nthe
numberf2(m)+f(n)isadivisorof(m2+n)2.17.Weconsiderapolyhedrawhichhasexactlytwoverticesadjacentwithanoddnumber
ofedges,andthesetwoverticesarelyingonthesameedge.
Provethatforallintegersn≥3thereexistsafaceofthepolyhedrawithanumberofsidesnotdivisiblebyn.
Workingtime:4hours
TranslatedbyValentinVornicu–MathLinks.ro
twoqueensattackeachotheriftheylieonthesamerow,columnordirectionparallelwithonofthemaindiagonalsofthetable
1
因篇幅问题不能全部显示,请点此查看更多更全内容