您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页通信机房走线架结构隔震方法的可行性分析

通信机房走线架结构隔震方法的可行性分析

来源:爱go旅游网
通信机房走线架结构隔震方法的可行性分析

屈文俊;陆霆寰;刘扬明

【摘 要】从隔震角度出发,探讨了隔震措施能否提高某一典型的通信机房走线架结构的抗震性能,在其设备楼板与承重支架间设置铅芯橡胶支座进行隔震处理,利用ANSYS有限元程序对其进行动力时程分析。结果表明:结构第1阶振型的自振周期由2.33s延长至3.59s,有效避开了场地卓越周期;走线架上部在地震作用下的相对变形大幅降低(降幅为58.5%);结构顶部加速度响应及基底地震剪力都有一定程度的减弱(降幅分别为10.4%,36.4%);对走线架结构的隔震处理能够有效提高其抗震性能,隔震措施切实可行。%Basing on the seismic isolation ,seismic isolation technology was taken into account to improve the seismic performance of the cable tray structure for a typical

communication room . Taking advantage of seismic isolation technology by setting rubber seismic isolation bears between equipment floor and bearing member .Based on ANSYS finite element software , the dynamic time history analysis was carried out .The results show that the self-vibration period of the first vibration mode is from 2 .33 s to 3 .59 s ,w hich avoids the site predominant period effectively .The relative deformation of cable tray structures on top decreases obviously (the reduction of 58 .5% ) .T he acceleration responses at the top of cable tray and the base shear get a certain degree of decrease(the reduction of 10 .4% and 36 .4% ,respectively) .By adopting seismic isolation technology ,the seismic performance of the construction of cable tray structures can be improved and certain effects have achieved through seismic isolation .

【期刊名称】《建筑科学与工程学报》 【年(卷),期】2014(000)001 【总页数】8页(P36-43)

【关键词】通信机房;走线架;隔震;自振周期;振型;动力时程分析 【作 者】屈文俊;陆霆寰;刘扬明

【作者单位】同济大学 建筑工程系,上海 200092;同济大学 建筑工程系,上海 200092;同济大学 建筑工程系,上海 200092 【正文语种】中 文 【中图分类】TU352.1 0 引 言

目前中国通信机房内的通信设备安装设计主要采用传统的抗震设计思想,《通信设备安装抗震设计规范》(YD 5059—98)的基本点仍是抵御地震作用[1],即走线架的各支撑架及相关加固点用螺栓或预埋件锚固于楼面,走线架顶部通过刚性连接拉结于结构柱或墙上。本文中笔者则是从隔震的角度出发,通过设置隔震楼板,阻隔地震动向上部通信设备的传递,减小上部设备的地震作用,实现隔震的目的。 隔震楼板的原理是,将通信机房内设置的一活动楼板作为通信设备的受力层,走线架、电源机柜等设备锚固于该设备楼板上,然后在设备楼板和结构承重构件(梁、楼板)之间设置隔震支座。在地震作用下,隔震装置能够有效地阻隔、吸收结构楼板传递给设备的地震动能量,大大降低活动设备楼板的地震作用,削减设备的动力响应峰值,从而使通信设备在强烈的地震作用下免遭损毁。

1 隔震支座的有限元模型

设备楼板与结构承重构件之间的隔震装置通常采用的是铅芯橡胶支座(LRB)。铅芯橡胶支座是由普通的橡胶支座插入铅芯而构成,由于铅具有较低的屈服点和较高的塑性变形能力,使铅芯橡胶支座的阻尼比可以达到20%~30%。铅芯具有提高支座吸能能力,确保支座有适度的阻尼,同时还能增加支座的初始刚度。铅芯橡胶支座既具有隔震作用,又具有阻尼作用,无需加设阻尼器,使隔震系统变得简单[2]。

铅芯橡胶隔震支座采用修正双线性Ramberg-Osgood弹塑性恢复力模型,如图1所示,其中,Q为荷载,δ为变形,Ku为铅芯屈服前的刚度,δd为铅芯的屈服变形,Qd为铅芯的屈服荷载,Kd为LRB屈服后的刚度,Keq为LRB的水平有效刚度,δu为隔震支座的极限变形量。

本文隔震方案中的隔震装置分布于设备楼板与结构承重构件之间,在建立隔震后的走线架有限元模型时进行了一定简化,根据总水平刚度、竖向刚度、屈服荷载相等的原则,将隔震装置等效为每根支撑立杆下的隔震支座。

支撑架杆底部隔震支座的参数主要有:屈服前刚度Ku,屈服后刚度Kd,屈服荷载Qd,阻尼比ξ和竖向刚度Kv等[3]。

为保证机房设备楼板的正常使用并保证在当地设防烈度的常遇地震作用下,不至于产生过大的变形,选定隔震支座的屈服荷载应当大于走线架在常遇地震作用下支撑架底部剪力。针对一实际通信机房走线架,假设质量(包括走线架质量及其上布的线缆质量)为31 817 kg,折算为等效总重力荷载代表值为249.45 kN,上海地区7度常遇地震下地震影响系数α为

式中:Tg为场地特征周期;T为结构自振周期;η2为阻尼调整系数;αmax为地震影响系数最大值;γ为衰减指数。

通过计算可得支撑架底部地震剪力标准值为8.5 kN,假定该地震剪力由支撑架承担,则每根支撑杆承受的地震剪力为0.124 kN,取支撑架下部隔震支座的屈服荷载Qd=0.2 kN。

由半刚接走线架模态分析结果可知,支撑架一阶平动自振频率f=0.504 Hz,走线架结构总质量M=31 817 kg,则总抗侧刚度K为 K=ω2M=(2πf)2M=319 065 N·m-1 式中:ω为支撑架角频率。

支撑立杆平均抗侧刚度为4.7 kN·m-1,笔者通过多次的试算,选定隔震支座屈服前的水平剪切刚度Ku=4 kN·m-1,屈服后的剪切刚度Kd=0.3 kN·m-1。 隔震支座的附加阻尼比取ξ=0.20[2],则阻尼系数c为

式中:ccr为临界阻尼系数;f1为隔震支座自振频率。

隔震支座的力学模型可以简化为由水平2个方向的非线性弹簧、粘滞阻尼器以及竖向的线性弹簧所组成。在ANSYS中,可以由若干单元组合来实现隔震支座的模拟。竖向刚度的模拟采用Combin14单元,在水平2个方向刚度的模拟则采用Combin40单元,3个弹簧单元不相交的各节点约束所有自由度,交点处节点约束转动自由度,交点处与支撑架杆底部联结[4],见图2。

水平隔震单元采用Combin40单元(图3),隔震单元水平方向的基本参数对应

Combin40单元中的实参数为:K2=Kd,K1=Ku-Kd。图3中,C为阻尼比换算的阻尼系数。竖向单元采用Combin14单元来模拟,单元实常数取隔震单元竖向刚度,竖向弹簧长度为0.1 m,模拟100 mm厚的隔震层。

通过在走线架有限元模型各支撑架立杆的底部设置隔震单元来实现结构的隔震,选定的实际通信机房走线架结构的平面见图4,走线架有限元模型见图5,支撑架的截面见图6,走线架结构局部立面见图7,材质为铝合金,其基本材性为抗拉强度Fy=245 MPa,弹性模量Ez=68 GPa。 2 隔震后的动态模型分析

对隔震后的走线架有限元模型进行动力模态分析,得到前9阶弹性阶段的动力参数,见表1,相应的各阶振型见图8。

由表1及图8可知,走线架结构的第1阶振型表现为结构的整体扭转,这说明结构整体的抗扭刚度较差。结构第2阶振型表现为y方向的平动,第3阶振型表现为x方向的平动,且各立杆剪切变形均很小,相对位移主要集中在底部隔震单元上,上部结构近似表现为一个整体,结构发生整体平动。前3阶自振频率比较接近,且数值远小于其后的高阶自振频率,有效质量达到99%,这说明结构的动力特性由前3阶振型主导。第9阶振型仍为局部模态,其出现得较晚,对结构动力分析的影响可以忽略不计。

对比结构隔震前后的动力参数,各阶振型出现的顺序完全一致,前4阶低阶振型自振频率有较大程度的减小,高阶振型变化不大。这说明通过设置隔震单元,没有改变结构整体的刚度分布,有效地延长了占结构动力特性主导地位的低阶振型的自振周期,使结构进一步避开场地卓越周期,减小结构地震作用。

3 隔震后的动力时程分析

在设置隔震支座后的走线架有限元整体模型上施以y方向上海人工SHWN2地震波,地震波峰值加速度为2.20 m·s-2,步长0.02 s,地震波持时30 s。对结构进行弹塑性时程分析,后处理提取得走线架顶部相对支撑架底y方向相对位移响应及隔震层位移时程曲线如图9,10所示,其中,t为时间。

由图9可知,走线架采取隔震措施后,在y方向上海人工SHWN2地震波作用下,结构顶部相对支撑架底部y方向相对位移响应峰值出现于第6.88 s,其峰值为141.4 mm,相对应的支撑架倾斜角为0.061 rad。由图10可知,隔震层最大位移响应发生于第7.3 s,其峰值为248.3 mm,结构的相对位移主要集中在抗侧刚度较小的隔震层,隔震支座在罕遇地震作用下,其最大相对位移满足《建筑抗震设计规范》(GB 50011—2010)[5]中有关限值的规定,对于橡胶隔震支座,该限值不超过隔震层内橡胶总厚度的3倍[5],为300 mm。

表1 隔震后走线架前9阶振型Tab.1The First Nine Vibration Modes of Cable Tray Structures After Seismic Isolation阶次f/HzT/sx方向平动参与系数/%y方向平动参与系数/%振型描述10.2923.4200.610.02整体扭转

20.3133.1920.0099.73y方向一阶平动30.3422.92198.980.00x方向一阶平动40.4762.1010.040.00整体二阶扭转50.6521.5320.000.08y方向整体弯曲60.9031.1080.000.01y方向整体二阶弯曲70.9411.0630.190.00x方向整体弯曲81.2830.7800.000.00y方向整体三阶弯曲91.5820.6320.000.00局部模态

隔震后走线架顶部加速度响应和速度响应见图11,12。由图11可知,对走线架结构进行隔震后,在y方向地震波作用下,结构顶部加速度响应峰值出现在第5.58 s,其值为2.41 m·s-2,相应于y方向基底输入的地震波激励加速度峰值2.20 m·s-2,动力放大系数为1.10。结构整体的抗侧刚度较小,其在地震加速度激励下,结构所受地震作用较小,顶部加速度响应放大较小。由图12可知,速度响应峰值为0.63 m·s-1,其发生于第6.12 s。

图13,14为隔震后走线架在y方向地震作用下的各结构层峰值相对位移曲线和各桥架层层间位移角时程曲线。由图13可知,走线架采取隔震措施后,在地震波作用下,结构的相对位移主要集中在支撑架底部的隔震层,上部结构各桥架层的相对变形很小,发生整体平动为主的相对位移。由图14可知:上部结构近似发生刚体平动,最大层间位移角发生在支撑架层,其峰值为0.061 rad;各桥架层层间位移角相对很小,其最大值仅为0.008 6 rad。

图15为隔震后走线架在y方向地震作用下的基底剪力时程曲线。隔震加固后,基底剪力最大值发生于第6.84 s,其峰值为29.7 kN。图16为隔震后y方向基底剪力-相对位移时程曲线。

对于长周期隔震结构,文献[6]中建议对中国规范的设计反应谱长周期衰减曲线不分段,建议的反应谱曲线如图17所示,其中,η为斜率调整系数,

由模态分析结果可知,采取隔震措施后,走线架结构第1阶振型的自振周期为3.42 s,故地震作用影响系数为

结构总水平地震作用标准值FEK为 FEK=αGeq=35.44 kN

式中:Geq为结构等效总重力荷载。

时程分析得到走线架结构y方向最大基底剪力为29.7 kN=0.84FEK,时程分析结果与理论计算结果吻合较好。

图16中的曲线形状大致呈长梭状,这说明结构由于采用了隔震措施,结构上地震作用减小,结构杆件或节点未产生足够大的塑性变形,结构的耗能能力较差。

图18,19分别为采取隔震措施后,走线架相对支撑架底部的峰值变形及隔震层的峰值变形云图。由图18可以看出,走线架相对变形峰值发生于第6.88 s,此时走线架顶部绝对位移为341.4 mm,走线架自身的相对变形为141.4 mm,桥架各层间相对位移可忽略不计,即桥架层发生整体平动,结构的相对位移主要集中在隔震层以及桥架下方的支撑架层。由图19可以看出,隔震层的相对位移峰值出现于第7.30 s,其最大变形为253.2 mm,略微小于相关规范对隔震层最大变形的限值300 mm(3倍隔震层橡胶垫厚度)。隔震后走线架结构上的地震作用明显减小,各型材杆件最大应力出现于第6.86 s,为174 MPa,小于杆件铝合金型材的非比例延性强度245 MPa,杆件还未进入塑性状态。 4 隔震效果分析

将隔震前后结构模态分析及7度罕遇y方向上海人工SHWN2地震波作用下弹塑性时程分析的结果进行对比,如表2所示。

由表2可知,通过在走线架支撑架底部设置隔震支座,能有效增大结构第1阶振型的自振周期(结构一阶自振周期由2.33 s进一步延长为3.59 s),使结构有效避开场地卓越周期,使结构更加具有柔性,有效抵御地震的作用。通过采取隔震措施,走线架顶部的加速度响应略微降低(加速度响应峰值降低为2.41 m·s-2,降幅为10.4%);基底地震剪力峰值减小(最大基底剪力减小为29.7 kN,降幅36.4%),对应的水平方向的减震系数为0.636,从基底剪力控制角度来看,隔震效果比较理想。 表2 走线架加固前后对比Tab.2Comparisons of Cable Tray Before and After Strengthening参数隔震前隔震后基本自振周期/s2.333.59最大位移

/mm340.5141.4最大速度/(m·s-1)0.710.63最大加速度/(m·s-2)2.692.41最大基

底剪力/kN46.729.7支撑架最大倾斜角/rad0.1460.061桥架最大层间位移角/rad0.007 40.008 6

通过采取隔震措施,走线架主体结构相对位移显著减小(结构相对位移峰值减小为141.4 mm,降幅58.5%);支撑架以及桥架层发生的相对变形很小,各结构层最大层间位移角显著减小(支撑架最大倾斜角降为0.061 rad,降幅58.2%),从结构相对位移控制角度来看,隔震取得了一定的效果。但是上部结构的相对变形大幅减小,是牺牲隔震层的变形来实现的。本算例在罕遇上海人工SHWN2地震波作用下,结构相对位移主要集中在隔震层上,隔震层相对位移峰值达到248.3 mm,隔震层的大变形减小了上部结构的地震作用,从而减小了地震破坏。中国抗震规范规定,隔震层应具有适宜的竖向承载力、侧向刚度和阻尼,以满足预期的水平方向减震系数和位移控制要求。在罕遇地震作用下,隔震支座自身的水平位移也需要严格控制。

对于本工程中的走线架结构,结构整体抗侧刚度较弱,自振周期较长(隔震前的基本自振周期达到2.33 s)。根据中国抗震规范的地震作用反应谱推断,对于长周期建筑,结构已经处于加速度反应谱下降段的平缓区域,通过隔震使结构周期继续延长取得的减震效果将不明显,地震剪力变化不会很大,即长周期结构隔震后基本没有明显的减震效果。而本文中采用时程分析时,长周期走线架结构通过采取隔震措施,仍然取得了一定的减震效果。这是由于长周期结构采取隔震措施后,结构低阶振型质量的参与系数提高。对于非隔震结构,低阶振型质量参与系数相对较小,高阶振型的影响不能忽略,通过各阶振型的地震剪力组合,结构的最终基底剪力会远大于第1阶振型的基底剪力。因此,长周期结构隔震后,在不显著降低一阶振型地震剪力的基础上,隔震结构能降低高阶振型的影响,故长周期结构隔震也能取得一定的减震效果。 5 结语

在支撑架基底设置隔震支座后,结构一阶自振周期从2.33 s延长至3.59 s,进一步避开场地卓越周期,减小结构的地震作用。采取隔震措施后,在y方向地震作用下,结构相对位移主要集中在水平刚度较弱的隔震层,隔震层变形最大值为248.3 mm,走线架自身相对位移峰值则由340.5 mm降低至141.4 mm,从变形角度考虑,取得了较好的隔震效果。走线架顶部加速度响应小幅降低(降幅10.4%),基底地震剪力由46.7 kN降低为29.7 kN,降幅36.4%,水平方向减震系数为0.636,隔震减震效果较理想。隔震方案通过隔震支座的大变形,实现上部结构的隔震减震。因此隔震层需要选定合理的水平刚度等参数,保证上部结构隔震效果的同时,使隔震层自身变形严格控制在规定限值内。对于某一特定结构,隔震层隔震参数的设定、隔震支座布设位置、隔震支座施工工艺、隔震施工经济性的研究在结构隔震方面将具有极为重要的意义。 参考文献: References:

[1] 王恒新.邮电建筑和邮电通信设备安装的隔震减震与控振技术概述[J].邮电技术设计,1999(4):34-39.

WANG Heng-xin.Technical of the Seism-deadening,Shock-absorption and Shock-controlling for the Buildings of P & T and in the Communication Equipment Installation[J].Designing Techniques of Posts and Telecommunications,1999(4):34-39.

[2] 王伟刚.基础隔震结构弹塑性动力分析[D].合肥:合肥工业大学,2005. WANG Wei-gang.Elasto-plastic Dynamic Analysis for the Structure with Base-isolation System[D].Hefei:Hefei University of Technology,2005. [3] 杨青涛,魏陆顺.ANSYS软件隔震结构分析的二次开发[J].低温建筑技术,2012(4):67-69.

YANG Qing-tao,WEI Lu-shun.The Secondary Development of ANSYS Software Analysis of Base Isolated Structures[J].Low Temperature Architecture Technology,2012(4):67-69.

[4] 何文福,霍 达,刘文光,等.长周期隔震结构的地震反应分析[J].北京工业大学学报,2008,34(4):391-397.

HE Wen-fu,HUO Da,LIU Wen-guang,et al.Study on Long Period Portion of Acceleration Design Spectra[J].Journal of Beijing University of Technology,2008,34(4):391-397.

[5] GB 50011—2010,建筑抗震设计规范[S].

GB 50011—2010,Code for Seismic Design of Buildings[S].

[6] 杜东升,王曙光,刘伟庆,等.长周期高层隔震建筑的减震效果探讨[C]//崔京浩.第17届全国结构工程学术会议论文集:第Ⅲ册.北京:《工程力学》杂志社,2008:18-21.

DU Dong-sheng,WANG Shu-guang,LIU Wei-qing,et al.Discussion on the Seismic Reduction Effect of Isolated Long Period High-rise

Buildings[C]//CUI Jing-hao.Proceedings of the 17th National Conference on Structural Engineering:No.Ⅲ.Beijing:Editorial Office of Engineering Mechanics,2008:18-21.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务