您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页Efficient Algorithms for Universal Portfolios

Efficient Algorithms for Universal Portfolios

来源:爱go旅游网
JournalofMachineLearningResearch3(2002)423-440Submitted11/01;Published11/02

EfficientAlgorithmsforUniversalPortfolios

AdamKalaiSantoshVempala

DepartmentofMathematics

MassachusettsInstituteofTechnologyCambridgeMA,02139Editor:PhilipM.Long

akalai@mit.edu

vempala@math.mit.edu

Abstract

Aconstantrebalancedportfolioisaninvestmentstrategythatkeepsthesamedistributionofwealthamongasetofstocksfromdaytoday.TherehasbeenmuchworkonCover’sUniversalalgorithm,whichiscompetitivewiththebestconstantrebalancedportfoliode-terminedinhindsight(Cover,1991,Helmboldetal,1998,BlumandKalai,1999,FosterandVohra,1999,Vovk,1998,CoverandOrdentlich,1996a,Cover,1996c).Whilethisal-gorithmhasgoodperformanceguarantees,allknownimplementationsareexponentialinthenumberofstocks,restrictingthenumberofstocksusedinexperiments(Helmboldetal,1998,CoverandOrdentlich,1996a,OrdentlichandCover,1996b,Cover,1996c,BlumandKalai,1999).WepresentanefficientimplementationoftheUniversalalgorithmthatisbasedonnon-uniformrandomwalksthatarerapidlymixing(ApplegateandKannan,1991,LovaszandSimonovits,1992,FriezeandKannan,1999).Thissameimplementationalsoworksfornon-financialapplicationsoftheUniversalalgorithm,suchasdatacompression(Cover,1996c)andlanguagemodeling(Chenetal,1999).

1.Introduction

Aconstantrebalancedportfolio(CRP)isaninvestmentstrategywhichkeepsthesamedistributionofwealthamongasetofstocksfromdaytoday.Thatis,theproportionoftotalwealthinagivenstockisthesameatthebeginningofeachday.Recentlytherehasbeenworkonon-lineinvestmentstrategieswhicharecompetitivewiththebestCRPdeterminedinhindsight(Cover,1991,Helmboldetal,1998,BlumandKalai,1999,FosterandVohra,1999,Vovk,1998,CoverandOrdentlich,1996a,OrdentlichandCover,1996b,Cover,1996c).Specifically,thedailyperformanceofthesealgorithmsonamarketapproachesthatofthebestCRPforthatmarket,choseninhindsight,asthelengthsofthesemarketsincreasewithoutbound.

AsanexampleofausefulCRP,considerthefollowingmarketwithjusttwostocks(Helmboldetal,1998,OrdentlichandCover,1996b).Thepriceofonestockremainsconstant,andthepriceoftheotherstockalternatelyhalvesanddoubles.Investingina

1

singlestockwillnotincreasethewealthbymorethanafactoroftwo.However,a(12,2)CRPwillincreaseitswealthexponentially.Attheendofeachdayittradesstocksothatithasanequalworthineachstock.Onalternatedaysthetotalvaluewillchangebyafactor

c2002AdamKalaiandSantoshVempala.󰀃

KalaiandVempala

113113

of12(1)+2(2)=4and2(1)+2(2)=2,thusincreasingtotalworthbyafactorof9/8everytwodays.

ThemaincontributionofthispaperisanefficientimplementationofCover’sUNIVER-SALalgorithmforportfolios(Cover,1991).Ithasbeenshown(CoverandOrdentlich,1996a)that,inamarketwithnstocks,overtdays,

performanceofUNIVERSAL1

≥.

performanceofbestCRP(t+1)n−1Byperformance,wemeanthereturnperdollaronaninvestment.Theaboveratioisa

decreasingfunctionoft.However,theaverageper-dayratio,(1/(t+1)n−1)1/t,increasesto1astincreaseswithoutbound.Forexample,ifthebestCRPmakes1.5timesasmuchaswedoeachdayoveraperiodof22years,itisonlymakingafactorof1.51/22≈1.02asmuchaswedoperyear.Inthispaper,wedonotconsidertheDirichlet(1/2,...,1/2)UNIVERSAL󰀂

(CoverandOrdentlich,1996a)whichhasthebetterguaranteedratioof21/(t+1)n−1.

AllpreviousimplementationsofCover’salgorithmareexponentialinthenumberofstockswithworst-caseruntimesofΘ(tn−1).Insomesense,Cover’salgorithmdividesitsmoneyevenlyamongallCRPs.Unfortunately,forsomemarketsequences,thenumberofCRPswhichperformnearoptimallycanbeassmallas1/Θ(tn−1).Inthesecases,BlumandKalai’srandomizedapproximationbasedonsamplingfromtheuniformdistribution,requiresΘ(tn−1)samplestoperformnearlyaswellasUNIVERSAL,withhighprobability.

Weshowthatbysamplingportfoliosfromanon-uniformdistribution,onlypolynomi-allymanysamplesarerequiredtohaveahighprobabilityofperformingnearlyaswellasUNIVERSAL.Thisnon-uniformsamplingcanbeachievedbyrandomwalksonthesimplexofportfolios.

2.NotationandDefinitions

Apricerelativeforagivenstockisthenonnegativeratioofclosingpricetoopeningpriceduringagivenday.IfthemarkethasnstocksandtradingtakesplaceduringTdays,then

x2,...,󰀋xT),󰀋xi∈themarket’sperformancecanbeexpressedbyTpricerelativevectors,(󰀋x1,󰀋

j

󰀐n+,wherexiisthenonnegativepricerelativeofthejthstockfortheithday.

Aportfolioissimplyadistributionofwealthamongthestocks.Assuch,itisreallyann−1dimensionalquantitywherethelastcomponentcanbedeterminedfromtheothern−1.Weviewthesetofportfoliosasthe(n−1)-dimensionalsimplex,

∆={󰀋b∈󰀐n−1|

n−1󰀏j=1

bj≤1∧bj≥0}.

Wealsoconsideraportfolioalsoasann-dimensionalvector,where

bn=1−

n−1󰀏1

bj.

Thisabuseofnotationallowsustoviewtheportfolioasanncomponentvectorandthe

setofportfoliosasan(n−1)-dimensionalset,whereverconvenient.Thisisespecially

424

AlgorithmsforUniversalPortfolios

valuable,sincetherandomwalkresultwewillbeusing(FriezeandKannan,1999)isforafull-dimensionalsetsuchas∆.

,redistributesitswealthTheCRPinvestmentstrategyforaparticularportfolio󰀋b,CRP󰀅b

attheendofeachdaysothattheproportionofmoneyinthejthstockisbj.Aninvestmentusinga󰀉portfolio󰀋bduringadaywithpricerelatives󰀋xincreasesone’swealthbyafactorof

n󰀋is,b·󰀋x=1bjxj.Therefore,overtdays,thewealthachievedbyCRP󰀅

b

b)=Pt(󰀋

t󰀒i=1

󰀋b·󰀋xi.

(1)

Finally,weletµbetheuniformdistributionon∆.

3.UniversalPortfolios

Beforewedefinetheuniversalportfolio,considertheproblemofbeingcompetitivewith

respecttothebestsinglestock.Inotherwords,youwanttomaximizetheworst-caseratioofyourwealthtothatofthebeststock.Inthiscase,agoodstrategyissimplytodivide

1

timesasyourmoneyamongthenstocksandletitsit.Youwillalwayshaveatleastnmuchmoneyasthebeststock.Notethatthisdeterministicstrategyachievestheexpectedwealthoftherandomizedstrategythatjustplacesallitsmoneyinarandomstock.

NowconsidertheproblemofcompetingwiththebestCRP.Cover’suniversalportfolioalgorithmissimilartotheabove.ItsplitsitsmoneyevenlyamongallCRPsandletsitsitintheseCRPstrategies.(Itdoesnottransfermoneybetweenthestrategies.)Likewise,italwaysachievestheexpectedwealthoftherandomizedstrategywhichinvestsallitsmoneyinarandomCRP.Inparticular,thebookkeepingworksasfollows:

Definition1(UNIVERSAL)Theuniversalportfolioalgorithmattimethasportfolio󰀋ut,whichforstockjis,onthefirstdayuj0=1/n,andontheendofthetthday,

󰀌j

v)dµ(󰀋v)∆vPt(󰀋󰀌uj,i=1,2,...=t

P(󰀋v)dµ(󰀋v)t∆(Recallthatµistheuniformdistributionoverthe(n−1)-dimensionalsimplexofportfolios,

∆.)

ThisistheforminwhichCoverdefinesthealgorithm.Healsonotes(CoverandOr-dentlich,1996a)thatUNIVERSALachievestheaverageperformanceofallCRPs,i.e.,

PerformanceofUNIVERSAL=

=

∆T󰀒t=1󰀖

󰀋ut−1·󰀋xtPT(󰀋v)dµ(󰀋v)

4.EfficientApproximation

Unfortunately,thestraightforwardmethodofevaluatingtheintegralinthedefinitionof

UNIVERSALtakestimeexponentialinthenumberofstocks.SinceUNIVERSALisreally

425

KalaiandVempala

justanaverageofCRP’s,itisnaturaltoapproximatetheportfoliobysampling(BlumandKalai,1999).Simplyimaginedividingthewealthintomanyrandomportfoliosandseewhatdistributionofwealthonewouldhave.Inparticular,youwouldjusttakeaweightedaverageoftheportfoliosyou’vechosen,withweightsproportionaltotheirperformance.Theproblemisthattheremaybeaverysmallsetofportfoliosthatdidwellwhilemostportfoliosdidverypoorly.Inordertogetagoodsample,onewouldneedtogetadrawfromthisset,whichcanrequireΩ(tn−1)samplesintheworstcase.

Thekeytoouralgorithmissamplingaccordingtoabiaseddistribution.Insteadofsamplingaccordingtoµ,theuniformdistributionon∆,wesampleaccordingtoρt,whichweightsportfoliosinproportiontotheirperformance,i.e.,

b)dµ(󰀋b)Pt(󰀋󰀋dρt(b)=󰀌v)dµ(󰀋v)∆Pt(󰀋

UNIVERSALcanbethoughtofascomputingeachcomponentoftheportfoliobytaking󰀋󰀎󰀌jjtheexpectationofdrawsfromρt,i.e.,ujv)=E󰀅v∈ρtv.t=∆vdρt(󰀋

Weuseexistingrandomwalktheoremstoshowonecansamplefromρtintimepolyno-mialintandn.Thecurrentbestprovableboundsareforsamplingonadiscretizationofthesimplex,althoughmanyotherrandomwalksmightalsowork.Forthepurposeofthisrandomwalk,wewillneedthefollowingmodificationQtofthewealthfunctionPt:

󰀐󰀔󰀓󰀍n

−2δb0

Qt(󰀋,1.(2)b)=Pt(󰀋b)minexp

nδR-UNIVERSAL(δ0,δ,m,S)//δ0=minimumcoordinate//δ=spacingofgrid

//m=numberofsamples

//S=numberofstepsinrandomwalk

Oneachday,wetaketheaverageofmsamplesobtainedasfollows:

111

1.Starteachoneatthepoint󰀋r=(n,n,...,n).

2.Fromeachofthem,takeSstepsofthefollowingrandomwalk:

(a)Choose1≤j≤n−1atrandom

//We’lltrytoincrementordecrementrjwithequalprobability.(b)ChooseX∈{−1,+1}randomly.Ifδ0≤ri+Xδandδ0≤rn−Xδ,

i.Letx:=Qt(r1,r2,...,rn).

ii.Lety:=Qt(r1,r2,...,rj+Xδ,...,rn−1,rn−Xδ).iii.WithprobabilityMin(1,x/y),

•rj:=rj+Xδ•rn:=rn−Xδ

ThefunctionQtisaslightly“damped”versionofPt:itisequaltoPtonaslightlysmallersimplex,namelytheset{󰀋b∈∆|bn≥2δ0}andfallsoffrapidlyoutsidethisset.We

426

AlgorithmsforUniversalPortfolios

introduceitfortechnicalreasons;itisquitepossiblethatthealgorithmbelowworkswithPtinplaceofQt(seeSection7).Theparameterδ0willbespecifiedinSection5.3.Wealsoonlysamplegridpointswhosecoordinatesareatleastδ0each(againfortechnicalreasons).WerefertothealgorithmasR-UNIVERSALbecauseit’sarandomizedapproximation.

AlsoQtcanbeevaluatedintimeO(nt).ThustheruntimeofthealgorithmondaytisO(mSnt).Intheanalysissection,wewillshowthatmandScanbechosentobepolynomialinnandt.

5.Analysis

Hereweshowthat,withnon-uniformsampling,thealgorithmapproximatestheportfolioefficiently.Withhighprobability(1−η),wecanachieveperformanceofatleast(1−󰀸)timestheperformanceofUNIVERSAL,withS(numberofsteps)polynomialin1/󰀸,log(1/η),n(thenumberofstocks),andT(thenumberofdays).Wewillshowthefollowing:Theorem2ThereisaconstantAsuchthat,forall󰀸,η,δ,andδ0with

δ0≤

󰀸δ0󰀸1=,δlog,

8nT(n+T)2δA(n+T)2Tm≥64T2(n+T)ln(nT/η)/󰀸2samplesoneachday,andS≥Anlogn+󰀝δstepsoftherandomδ2walkpersample,R-UNIVERSALperformsatleast(1−󰀸)timesaswellasUNIVERSALwithprobabilityatleast1−η.

Aswillbecomeclearinthenexttwosections,therandomwalk,whichisthebasisofoursamplingalgorithm,tendstoastationarydistributionproportionaltothefunctionQt.Thekeyobservationthatleadstoapolynomial-timeimplementationisthefactthatQtisalog-concavefunction(asisPt).Suchfunctionscanbesampledinpolynomial-time,albeitwithseveraltechnicalrestrictions.Itisthelatterthatforceustointroducetheparameterδ0andalsotouseQtinsteadofjustPt.UsingFriezeandKannan’stheorem(ourTheorem3),weshowthattherandomwalkquicklyconvergestoitsstationarydistribution(Theorem11)inSection6.

Itthenremainstoshowthattheapproximationprovidedbytherandomwalkissufficientforthealgorithm.ThisisdoneinSection5.3.TheabovetheoremfollowsfromTheorems4and11.Let’sbeginbydescribingwhathasbeenanalyzed.5.1AnalysisOverview

Tocomputeu󰀋t,WewouldliketocomputetheexpectationofrandompointsdrawnaccordingtothedistributionPt.Aswewillshow,Ptisalog-concavefunction.Thissuggestsusingexistingtechnologybasedonrandomwalksforsamplingfromlog-concavedistributions(FriezeandKannan,1999)overanarbitraryconvexsetK.However,theiralgorithmsworkbydiscretizingspaceintocubesandsamplingfromcubecenters.OneimportantparameteroftheiralgorithmisthetotalprobabilityofcubesthatarenotcompletelycontainedinK.Inourapplication,theshapeofoursetisasimplex,soitisimpossibletodiscretizeitinsuchawaythattherearefewsuchbordercubes.However,wewillshowthatthemeanofPtisnotneartheborderofthesimplex.Then,weuseadampedfunctionQttoreducethe

427

KalaiandVempala

probabilityofbordercubes,insuchawaythatthemeanofQtisneartothemeanofPtandQtislog-concavewhilesufficientlysmallnearthebordersofthesimplex.5.2SummaryofFrieze-Kannan’97(FriezeandKannan,1999)

Supposeyouhavesomenonnegativelog-concavefunctionfon󰀐n,meaningsimplythatlogfisaconcavefunction.ThegoalistosamplefromfrestrictedtosomeconvexsetK⊂󰀐n.Theyfirstdividethespaceintocubesofsidelengthδ.Thespacingδhastobe

Figure1:AconvexsetKandthesetofallcubesthatintersectK.Thecentersofthese

cubesformthesetC,whileC1/2isthesetofcentersofthecubesthathavemorethanhalfoftheirvolumeintheset.Thesecubesaretheunshadedcubes.smallenoughsothatthefunctionfvariesbyafactorofatmostaconstantfactorwithinacube.ThentheyperformallfutureoperationsonthecentersofthecubeswhichintersectK,asetcalledC,asshowninthefigure.LetC(󰀋x)bethecubecenteredat󰀋x∈Cofwidthδ.

Considerthefollowingwalk.•Startatsomearbitrarycubecenter󰀋x∈C.

•Choosearandomcoordinateandaddorsubtractδinthatcoordinatewithequalprobability,togetanothercubecenter󰀋y.•If󰀋y∈C(haven’tsteppedoutoftheset),thenmoveto󰀋ywithprobabilitymin(1,f(󰀋y)/f(󰀋x)).Theyfirstobservethatthestationarydistributionofthiswalkis

π(󰀋x)=󰀉f(󰀋x)

x󰀆)󰀅x󰀅∈Cf(󰀋

∀󰀋x∈C

Thisfollowsfromthefactthatthewalkistimereversible.Thatis,whenintheabove

distribution,onasinglestep,theprobabilityofbeingat󰀋xandmovingto󰀋yisequaltothe

428

AlgorithmsforUniversalPortfolios

probabilityofbeingat󰀋yandgoingto󰀋x,i.e.,

󰀍󰀐1f(󰀋y)f(󰀋x)

󰀉min1,=󰀆)2nf(󰀋xf(󰀋x)󰀅󰀅x∈C

=

1

min(f(󰀋y),f(󰀋x))󰀆)2nf(󰀋x󰀅󰀅x∈C

󰀍󰀐

f(󰀋y)1f(󰀋x)󰀉min1,.󰀆)2nf(󰀋xf(󰀋y)󰀅󰀅x∈C󰀉1

Now,thereareseveralparametersfortheanalysisofthiswalk.ThediameterofKis

d.Thedimensionalityisn.Thestationarydistributionisπ,andπ∗=minπ.Letpsbethedistributionobtainedaftersstepsofthewalk.Forany0≤θ≤1,letCθ={󰀋x∈

󰀉(󰀅x)p(󰀅x)p00x).Finally,letM=max󰀅C|vol(C(󰀋x)∩K)≥θδn}andπθ=󰀅x∈Cπ(󰀅x∈/Cθπ(󰀋x)logπ(󰀅x).Theorem3(Theorem1ofFriezeandKannan,1999)Assumed≥δn1/2.Thenthereis

anabsoluteconstantγ>0suchthat,

󰀃󰀆2󰀍󰀐󰀏γsδ2Mπ1/2nd21−2+2|ps(󰀋x)−π(󰀋x)|≤endlog.π∗γδ2󰀅x∈C

Inourproblem,thedimensionalityisactuallyn−1iftherearenstocks,butthiscanbe

absorbedbyγ.ForusMcanbeverylarge,butwe’llchooseparametersthatmakeπ1/2smallenoughtocompensate.5.3ApproximationSuffices

ToapplyTheorem3,wefirstneedtoensurethatπvariesbyatmostaconstantfactorwithintheδ-cubearoundanygridpoint.Thisisthetechnicalreasonwhyweuseaslightlysmallersimplex∆󰀆.Inthefullsimplex∆,thefunctionPt(andhenceρt)canvaryalotwithinasmalldistance.Inthissection,weshowthatthisapproximationisgoodenoughforthealgorithm.

Therandomwalkactuallysamplesfromthefollowingsimplex:

v∈∆|vj≥δ0forj=1,2,...,n}.∆󰀆={󰀋

LetC󰀆denotethesetofcubecenterscontainedin∆󰀆.Thestationarydistributionofthe

x∈C󰀆,walkisproportionaltoQt;letitbecalledπt.Notethatforany󰀋

x)=󰀉πt(󰀋

x)Qt(󰀋

.Q(󰀋y)󰀅t󰀅y∈C

Lettheactualdistributionobtainedonthem(aftersomenumberofstepsoftherandom

walk)beπ˜t.Themaintheoremofthissectionshowsthatthissufficesaslongasπ˜tissufficientlyclosetoπt.

󰀝0,δ≤8T(󰀝δTheorem4Supposethatδ0≤8nT(nn+T),andwecansamplegridpointsin+T)2thesimplex∆󰀆accordingtoadistributionπ˜twhere

󰀏󰀸

.|π˜t(x)−πt(x)|≤

4T(n+T)󰀅

x∈C

Thenwithm≥64T2(n+T)ln(nT/η)/󰀸2,thealgorithmR-UNIVERSALperformsatleast

(1−󰀸)aswellasUNIVERSALwithprobabilityatleast1−η.

429

KalaiandVempala

Toprovethetheorem,wewillneedseverallemmas.First,weobservethatsubsetsofthesimplexofsufficientsizewillhavelargevolumeunderρt.

Lemma5Letβbeasubsetofthesimplex,shrunkenbyafactorof1−zfor0≤z≤1,i.e.,forsomew󰀋∈∆,

󰀋󰀆,v󰀋󰀆∈∆}.β=zw󰀋+(1−z)∆={󰀋v∈∆|󰀋v=zw󰀋+(1−z)v

(3)

Theprobabilitythatarandomportfolioselectedinproportiontoitsperformanceisinβisatleast,

ρt(β)≥(1−z)t+n−1Proof.Geometrically,βisalsoasimplex,translatedbyw󰀋andshrunkenbyafactorof(1−z).Sincethesimplexhasdimensionn−1,thissethasvolumeatleast,

µ(β)=(1−z)n−1,

undertheuniformmeasureµonthesimplex.

󰀋󰀆∈∆.Furthermore,Asindicatedin(3),thereisasimplebijectionbetween󰀋v∈βandv

onanydaytheperformanceof󰀋vmustbeatleast(1−z)timesasgoodastheperformance

󰀋󰀆sincea(1−z)fractionofitsholdingsaredistributedexactlylikeofthecorrespondingv

󰀋󰀆.Overtdays,weseethatv

󰀋󰀆)v)≥(1−z)tPt(vPt(󰀋Consequently,theperformanceofauniformlyrandomportfolioinβisatleast(1−z)tas

goodasauniformlyrandomportfolioin∆.Sincea(1−z)n−1fractionoftheportfoliosareinβ,

ρt(β)≥(1−z)t(1−z)n−1=(1−z)t+n−1

󰀁

Acorollary,whichwewilluselateris,Corollary6Forallj≤nandt,

ujt≥

1

n+t

Proof.WLOGj=1.Usingthelemma,itiseasytoseethatu1t≥1/(e(n+t)).Thisis

111becauseut=Eρt[v]andthesetofportfolioswithv≥1/(n+t)hasvolumeatleast1/e,

i.e.,

󰀍󰀍󰀐󰀐󰀍󰀐t+n−1

1111ρt≥(1,0,0,...,0)+1−∆≥1−

n+tn+tn+teToremove󰀌1the1/efactor,notethattheexpectationofarandomvariable0≤X≤1is

E[X]=0Prob(X≥z)dz.

1

u1v∈ρt[v]t=E󰀅

󰀖1=ρt({󰀋v∈∆|v1≥z})dz

0

430

AlgorithmsforUniversalPortfolios

󰀖=

󰀖≥=

0

1

󰀋󰀆,v󰀋󰀆∈∆})dzρt({󰀋v∈∆|󰀋v=z(1,0,0,...,0)+(1−z)v(1−z)t+n−1dz

1

1

n+t

󰀁

0

Lemma7Foranygridpoint󰀋zinC󰀆,andanypoint󰀋v∈C(z),wehave

z)≤Pt(󰀋v)≤(1+δ/δ0)TPt(󰀋z).(1−δ/δ0)TPt(󰀋

Proof.Since󰀋v∈C(z)and󰀋z∈∆󰀆,

vj

≤zj+δ≤(1+δ/δ0)zj

(Theaboveholdsforδ/2aswell.)Therefore,overtdays,

v)=Pt(󰀋

t󰀒i=1

t󰀒i=1

󰀋v·x󰀋i

(1+δ/δ0)󰀋z·x󰀋i

=(1+δ/δ0)tPt(󰀋z)

TheRHSfollowsfromt≤T,andtheotherinequalityissimilar.

󰀁

Themainlemmaofthissectionisthefollowing.Itsaysthattheaverageover∆󰀆isclose

totheonecomputedbyUNIVERSALover∆.

Thenforeachstockjonanydayt,󰀇󰀸󰀊jj

Eπt[v]≥1−ut.

2T

Proof.Theuniversalportfoliois

󰀖

utvjdρt(󰀋v)j=

∆󰀌

Pt(󰀋v)vjdµ(󰀋v)∆

=󰀌v)dµ(󰀋v)∆Pt(󰀋Lemma8Letδ0≤

󰀝,8nT(n+T)2δ≤

󰀝δ08T(n+T).

(4)

WearesamplingthefunctionQtovercubecenterscontainedin∆󰀆ratherthantheset∆.Whatwehaveis,

󰀏

j

Eπt[v]=πt(󰀋v)vj

󰀅v∈∆󰀅

=

󰀉

v)vj󰀅v∈C󰀅Qt(󰀋󰀉.Q(󰀋v)󰀅t󰀅v∈C

(5)

431

KalaiandVempala

So,inordertoprovethelemma,wehavetoshowthatin(5),thenumeratorislargeenoughandthedenominatorissmallenoughcomparedtothequantitiesin(4).

Now,byLemma7,wecansaythattheintegraloveracubeisboundedbyitsvalueinthecenter󰀋z,i.e.,

󰀖1

(1−δ/δ0)TPt(󰀋z)≤Pt(󰀋v)dµ(󰀋v),and

δn−1󰀅v∈C(󰀅z)

󰀖1

(1+δ/δ0)T+1Pt(󰀋z)zj≥Pt(󰀋v)vjdµ(󰀋v)n−1δ󰀅v∈C(󰀅z)Alsonoticethattheunionofallcubeswithcentersin∆󰀆iscontainedin∆.Toseethis,

takeanygridpoint󰀋z∈C󰀆and󰀋v∈C(󰀋z).Clearlythefirstn−1coordinatesof󰀋vareallatleastδ0−δ/2>0andthenthcoordinateis,

v

n

=z+

n

n−1󰀏1

zj−vj

≥δ0−nδ/2≥0.

v)≤Pt(󰀋v)forallpoints,thedenominatorin(5)isatmost,So󰀋v∈∆.SinceQt(󰀋

󰀖󰀏11

Qt(󰀋v)≤Pt(󰀋v)dµ(󰀋v)Tδn−1(1−δ/δ)0󰀅v∈∆󰀅

󰀅v∈C

Inordertolowerboundthenumeratorof(5),weconsidertheset∆󰀆󰀆whichisentirely

containedintheunionofcubeswithcentersin∆󰀆,

∆󰀆󰀆={󰀋v∈∆󰀆|vn≥2δ0}.

Toseethat∆󰀆󰀆iscontainedinthisset,takeanypoint󰀋v∈∆󰀆󰀆andletzbethecenterofthe

cubethatcontainsit.Sincevj≥δ0for1≤j≤n−1,wealsohave1zj≥δ0+δ/2.Finally,vn≥2δ0so

zn=vn+

n−1󰀏1

vj−zj

≥2δ0−nδ/2≥δ0.

Thisshowsthat󰀋z∈∆󰀆.

v)=Qt(󰀋v)Since∆󰀆󰀆isentirelycontainedintheunionofcubeswithcentersC󰀆andPt(󰀋

for󰀋v∈∆󰀆󰀆,󰀖󰀏11

Qt(󰀋v)vj≥Pt(󰀋v)vjdµ(󰀋v)Tn−1(1+δ/δ)δ󰀅󰀅0󰀅z∈∆󰀅

󰀅v∈C

1.Wehavechosenδ0andplacedthegridsothat(δ0,δ0,...,δ0)∈󰀁n−1isacornerofacube.

432

AlgorithmsforUniversalPortfolios

Puttingthesetogetherwith(5),weget

󰀉

v)vj󰀅v∈C󰀅Qt(󰀋j

Eπt[v]=󰀉v)󰀅v∈C󰀅Qt(󰀋󰀌󰀍󰀐

v)vjdµ(󰀋v)1−δ/δ0T+1󰀅󰀅󰀅Pt(󰀋v∈∆󰀌≥

1+δ/δ0v)dµ(󰀋v)v∈∆Pt(󰀋󰀖󰀅

vjdρt(󰀋v)≥(1−2δ/δ0)T+1

󰀅v∈∆󰀅󰀅

󰀖

≥(1−2(T+1)δ/δ0)vjdρt(󰀋v)

󰀅v∈∆󰀅󰀅

WeneedtocomparethistoUNIVERSAL,whichisanintegraloverallof∆.UsingLemma

5ontheset,

β=(δ0,δ0,...,δ0,2δ0)+(1−(n+1)δ0)∆,weget,

ρt(∆󰀆󰀆)≥(1−(n+1)δ0)T+n−1

≥1−(T+n−1)(n+1)δ0

󰀸

≥1−

4T(n+T)

Hence,

󰀖

∆󰀅󰀅

vjdρt(󰀋v)=

≥≥

󰀖

ujt−ujt−

vjdρt(󰀋v)−

󰀖

∆\\∆󰀅󰀅

vjdρt(󰀋v)

ρt(∆\\∆󰀆󰀆)

󰀸󰀸j

≥(1−)u.

4T(n+T)4Tt

Thisfinallyimpliesthat

󰀸j

)uEπt[vj]≥(1−2(T+1)δ/δ0)(1−

4Tt

󰀸󰀸j

≥(1−2(T+1))(1−)u

8T(n+T)4Tt

󰀸󰀸j

≥(1−)(1−)u

4T4Tt󰀸j)u.≥(1−

2Tt

󰀁

Proof(ofTheorem4).

Wewillfirstshowthatoneachday,theexpectedvalueofeachstockjascomputedbythealgorithmisclosetoujt.

󰀏

jj

|π˜t(v)−πt(v)|vj|Eπ˜t[v]−Eπt[v]|≤

v∈C󰀅

433

KalaiandVempala

≤≤≤

󰀏

v∈C󰀅

|π˜t(v)−πt(v)|

󰀸

4T(n+T)󰀸ju.4Tt

Herewehaveusedtheassumptionofthetheoremthatπ˜tisclosetoπtandthenCorollary

j

6whichstatesthateachutisatleast1/(n+t).

Next,usingLemma8,wehavethat

󰀸jjj

Eπu˜t[v]≥Eπt[v]−

4Tt󰀸j󰀸j)ut−u≥(1−2T4Tt3󰀸j

≥(1−)u.

4Tt

Finally,weapplyChernoffboundstoshowthatwithprobability1−η,thevalueajtofeachstockjoneachdaytsatisfies

ajt≥(1−

󰀸j

)u.Tt

Then,onanyindividualday,theperformanceofthe󰀋atisatleast(1−󰀸/T)timesasgoodastheperformanceof󰀋ut.Thus,overTdays,ourapproximation’sperformanceisatleast(1−󰀸/T)T≥1−󰀸timestheperformanceofUNIVERSAL.

ThemultiplicativeChernoffboundforapproximatingarandomvariable0≤X≤1,

¯,bythesumSofmindependentdrawsis,withmeanX

󰀋󰀎¯2

¯PrS<(1−α)Xm≤e−mXα/2.

¯≥1/2(n+T)andweInourcase,weareusingmsamplesforeachstock.InourcaseX

wantα=󰀸/4T.SincethismustholdfornTdifferentajt’s,itsufficesfor,

e−m󰀝

2/(64T2(n+T))

η

,nT

󰀁

whichholdsforthenumberofsamplesmchoseninthetheorem.

6.TimePerSample

Inthissectionweshowthattherandomwalkquicklyproducessamplesfromadistributionπ˜(x)satisfyingtherequirementsofTheorem4.TherandomwalkhasstationarydistributionproportionaltoQt.WebeginwiththeobservationthatQtislog-concave.Lemma9ThefunctionQt(󰀋b)islog-concavefornonnegativevectors.

434

AlgorithmsforUniversalPortfolios

Proof.First,weprovethatPtislog-concave.Thisfollowseasilyfromtheconcavityofthelogfunction.

󰀃󰀃󰀆󰀆t󰀒󰀋󰀋󰀋a+b󰀋a+b

=log·󰀋xilogPt

22

i=1

==≥=

n

t󰀏i=1

t󰀏i=1t󰀏i=1

󰀋a+󰀋blog·󰀋xi

2b·󰀋xi󰀋a·󰀋xi+󰀋

log

2log󰀋a·󰀋xi+log󰀋b·󰀋xi

2

logPt(󰀋a)+logPt(󰀋b)

2

2δ0n1Nextweobservethatexp(b−nδ)isalog-concavefunction(itslogislinearinb=1−b−

···bn−1);finallywerecallthattheminimumoftwolog-concavefunctionsislog-concave,andsoistheirproduct.󰀁

Themainissueishowfasttherandomwalkapproachesitsstationarydistribution,πt,whichisproportionaltoQt(x).ToanalyzethiswewillusethetheoremofFriezeandKannan.Toapplytheirtheorem,wefirstneedtoensurethatπtvariesbyatmostaconstantfactorwithintheδ-cubearoundanygridpoint.Inthefullsimplex∆,thefunctionPt(andhenceρt)canvaryalotwithinasmalldistance.2Withthesmallersimplexhowever,thevariationcanbeboundedusingLemma7.Corollary10Withδ≤

δ0T,

foranygridpoint󰀋z∈C󰀆andany󰀋v∈C(󰀋z),

1

Qt(󰀋z)≤Qt(󰀋v)≤5Qt(󰀋z).5

Proof.¿FromLemma7,

(1−1/T)TPt(󰀋z)≤Pt(󰀋v)≤(1+1/T)TPt(󰀋z).

Thisgivesboundsof1/eandeontheLHSandRHS,respectively.Also,wecanboundthe

maximumdifference,󰀑󰀑

−1󰀑n󰀑󰀏󰀑nnjj󰀑|z−v|=󰀑v−z󰀑<δn/2󰀑󰀑

1

󰀋)/Pt(w󰀋)=min(1,exp(wThereforeQt(w

󰀋v.Finally,e3/2<5.

n−2δ0nδ))differsbyatmostafactorofe1/2at󰀋zand

󰀁

2.Forexample,oneCRPmayhave0performancePtwhilethecenterofitscubemayhavenonzeroperformance

435

KalaiandVempala

Consideranyparticulardayt,andletthedistributionattainedbytherandomwalkaftersstepsbeps,i.e.ps(x)istheprobabilitythatthewalkisatthegridpointxafterssteps.Thenexttheoremboundstheprogressoftherandomwalktowardsitsstationarydistribution.

Theorem11ThereisaconstantAsuchthatwithδ00,afters≥

Anδ2Tlogn+󰀝δsteps,

1

,(n+T)2δlog1δ=󰀝δ0,A(n+T)2and

󰀏

󰀅x∈C󰀅

|ps(󰀋x)−πt(󰀋x)|≤

󰀸

.

4T(n+T)

Proof.Thediameterofoursetis2.ApplyingthetheoremofFriezeandKannanwegetthat

󰀆2󰀃󰀍󰀐󰀏2Mπ1/2nsγδ21

+|ps(󰀋x)−πt(󰀋x)|≤e−2nlog(6)22πγδ∗󰀅

󰀅x∈C

whereγ>0isaconstant,π∗isminz∈C󰀅π(z),and

π1=

2󰀏

x∈C󰀅:

vol(C(x)∩∆󰀅)1≤2vol(C(x))π(x).

p0(󰀅z)p0(󰀅z)󰀅than1fractionoftheirvolume.TheparameterMismaxlog󰀅z∈C2πt(󰀅z)πt(󰀅z).

Therearetwotermsin(6).IfthesetKwe’resamplingfromwereaperfectcube,thenwewouldhavenocubesthatwereonlypartlyinK,andπ1/2inthesecondtermwouldbe0.Whileitwouldprobablybepossibletoreprovetheirtheoremwithsimplexesratherthancubes,insteadwechosetomodifythewalktomakeπ1/2verysmall.Aswewillshow,the

Inwords,π1/2istheprobabilityofthegridpointswhosecubesintersectthesimplexinless

dampingterminQtdoesexactlythat,reducingbordercubesbyafactorofe−nδ.Withthevalueofδ0wehavechosen,

e

0−nδδ

δ0=δ

A(n+T)2

n󰀍,(7)

aquantitythatissmallerthanbasicallyanyotherquantitywearedealingwith,forsuffi-cientlylargeA.

Firstweboundπ∗.Forany󰀋v,w󰀋∈∆,weseethatvj≥δ0wj,for1≤j≤n,sothateachdayCRP󰀅vdoesatleastδ0aswellasCRPw󰀅.Thisimpliesthat

T

v)≥δ0Pt(w󰀋)Pt(󰀋

T−nδQt(󰀋v)≥δ0eQt(w󰀋)

v)Qt(󰀋

v)=󰀉πt(󰀋

󰀋)w󰀅∈C󰀅Qt(w

T−nδe/(#cubes)≥δ0

δ0δ0436

AlgorithmsforUniversalPortfolios

Becauseδ−nisanupperboundonthenumberofcubes(theyallfitinsidetheunitcube)and(7),

1π∗

0−Tnδδ−nδ0e

δ

≤δ

−2

A(n+T)2

n󰀍(8)

NextweboundM.Let󰀋o=(1/n,1/n,...,1/n).Sincewearestartingwithp0(󰀋o)=1,wehaveM=log(1/πt(󰀋o))/πt(󰀋o).Followinglogicsimilartoabove,if󰀋visanyportfolio,theneachdayCRP󰀅odoesatleast1/naswellasCRP󰀅v.So,overtdays,

Pt(󰀋o)≥n−TPt(󰀋v)o)≥n−T/(#cubes)πt(󰀋

≥n−TδnM

≤nTδ−nlog(nTδ−n)≤δ−2n−2T

Toboundπ1,wedefineKtothebethefollowingset:

2(9)

K={󰀋y∈∆󰀆|yn≥δ0+(n−1)δ/2}.

WiththisdefinitionofK,FriezeandKannan’swalkbecomesexactlythewalkinR-UNIVERSAL.Toshowthis,wemustshowthatthesetofcentersofcubesthatintersectKisexactlyC󰀆.Recallthat(δ0,δ0,...,δ0)∈󰀐n−1waschosenasacornerofacube.First,

j≥δforsuppose󰀋v∈Kand󰀋v∈C(󰀋z)forgridpoint󰀋z.Now,becauseofourgridposition,z0󰀉n−1j

nnjnnj=1,2,...,n−1.Further,z=v+1v−zsoz≥v−(n−1)δ/2,whichmeans

thatz∈∆󰀆.Conversely,suppose󰀋z∈C󰀆,sozj≥δ0+δ/2forjFurther,theonlygridpointswhosecubeshavelessthanhalftheirvolumeinsideKare

z∈/K,i.e.,δ0≤zn<δ0+(n−1)δ/2.Thatisbecausethosepoints󰀋zsuchthat󰀋z∈C󰀆but󰀋

anycutthroughthecenterofacubedividesitintotwocongruentpieces,soanycutthatdoesnotpassthroughthecenterdividesitintoalargerandsmallerpiece,withthecenterinthelargerpiece.LetthissetofgridpointsbedenotedbyF.Forany󰀋z∈F,

󰀐󰀍

−δ0+nδ/2

Qt(󰀋Pt(󰀋z)≤expz)

≤e−nδe1/2Pt(󰀋z).

Moreover,ifδ0were1/(n+T)thenatmosta1−1/efractionofPtwouldbein∆󰀆\\∆󰀆󰀆,

byLemma5.Theδ0weareusingismuchsmaller,3sowecaneasilysay,

󰀏󰀏

Pt(󰀋v)≤Pt(󰀋v),

󰀅v∈F󰀅v∈C󰀅󰀅

13.Thisistheonlyreasonwehaverequiredδ0<(n+,whichisprobablysmallerthannecessaryatthisT)2point.Butthefinalδ0willbemuchsmalleranyway.

δ0437

KalaiandVempala

andthus,

󰀏

󰀅v∈F

Qt(󰀋v)≤e

01/2−nδδ

e

󰀏

󰀅v∈C󰀅󰀅

Pt(󰀋v).

v∈C󰀆󰀆,SincePt=Qtfor󰀋

π1/2≤e

01/2−nδδ

e

A(n+t)2

n󰀍e1/2

Anδ2Tlogn+󰀝δ,

(10)

Substituting(8),(9),and(10)into(6)andusings≥

󰀃2

󰀏

󰀆2

|ps(󰀋x)−πt(󰀋x)|

≤󰀍󰀸δ

n+T

󰀐Aγ/2

2A(n+

n󰀸

T)2

󰀅x∈C

1

log+

δ

2δ−2n−2Tδ

A(n+t)2

n󰀍e1/2n

γδ2.

Sinceδ1/󰀝<󰀸,bothtermsontherighthandsidebecomesmallerthan󰀸/(n+T)toanyconstantpowerforsufficientlylargeA.󰀁

7.PracticalConsiderations

Inthissection,wegivesomesuggestionswhichmayhelpspeedthingsupinpractice.Ouralgorithmhasanunnaturalasymmetryinthatwetreatcoordinatendifferentlythantherest.IfitwerenotforthetaperingfunctionQt,thenonecouldpicktwoarbitrarycoordinatesi=j,increasevi,anddecreasevj.Alternatively,onecoulddotaperinginanydirection.Thetaperingseemstobeanartifactofouranalysisandthefactthatwearetryingtoanalyzeawalkonasimplexbyagrid.Thisislikefittingatriangularpegintoasquarehole.Itseemsmorenaturaltoimplementitwithoutanytapering.

EvaluatingPtcanbecostlyforlongmarketsequences.Wecansavesomeevaluationsasfollows.Imaginethatthewaywebranchinstep(iii)isbychoosingarandomα∈[0,1]andcheckingifαWealsobelievethatthealgorithmmaybespedupbystartingnearthemaximumofthePtfunctionratherthanatthecenter.Althoughwehavenotheoreticalguaranteeofthis,theideabehindtherandomwalkistospendmostofitstimeinplaceswithhighPt.Thus,itcouldbehelpfultostartthere,andthereareknownsimple,practicaltechniquessuchastheEMalgorithmforefficientlyfindingthebestportfolioinhindsight(Helmboldetal,1997).

Thenaivesamplingapproachdescribedearlier,i.e.pickrandomportfoliosandaveragethemweightedbytheirperformance,hasbeenshowntorequireanumberofsamplesthatisontheorderoftheratiooftheperformanceoftheaverageCRPtothebestCRP.For

438

AlgorithmsforUniversalPortfolios

manymarketsorforshortperiodsoftime,thisratiomaybesmall.Thus,forcalmmarketswithsmallchanges,randomwalksareprobablynotnecessary.Inanycase,itwouldbeinterestingtofindthesituationsandimprovementstothealgorithmwhichmakerandomwalksdobetterthanthenaivesamplingapproach.

8.Conclusions

WehavepresentedanefficientrandomizedapproximationoftheUNIVERSALalgorithm.Withhighprobability(1−η)itiswithin(1−󰀸)timestheperformanceofuniversal,andrunsintimepolynomialinlog(1/η),1/󰀸,thenumberofdays,andthenumberofstocks.Withmoney,itisespeciallyimportanttoachievethisexpectation.Forexample,a50%chanceat10milliondollarsmaynotbeasvaluabletomostpeopleasaguaranteed5milliondollars.

WhileourimplementationcanbeusedforotherapplicationsofUNIVERSAL,suchasdatacompression(Cover,1996c)andlanguagemodeling(Chenetal,1999),wedonotknowanimplementationforthecaseoftransactioncosts(BlumandKalai,1999)orfortheDirichlet(1/2,...,1/2)UNIVERSAL(CoverandOrdentlich,1996a).

Acknowledgments

WearegratefultoPhilipLongandtheanonymousrefereesforverymanyhelpfulsuggestionsandimprovements.ThisresearchwassupportedbyNSFCAREERawardCCR-9875024andanNSFpostdoctoralresearchfellowship.

References

D.ApplegateandR.Kannan.Samplingandintegrationofnearlog-concavefunctions.ProceedingsoftheTwenty-ThirdAnnualACMSymposiumonTheoryofComputing,156-163,1991.

A.BlumandA.Kalai.UniversalPortfoliosWithandWithoutTransactionCosts.MachineLearning,35(3):193-205,1999.

T.M.Cover.Universalportfolios.Math.Finance,1(1):1-29,1991.

T.M.CoverandE.Ordentlich.Universalportfolioswithsideinformation.IEEETransac-tionsonInformationTheory,42(2):348-363,1996.

E.Ordentlich.andT.M.Cover.Onlineportfolioselection.Proceedingsofthe9thAnnualConferenceonComputationalLearningTheory,310-313,1996.

T.M.Cover.Universaldatacompressionandportfolioselection.Proceedingsofthe37thIEEESymposiumonFoundationsofComputerScience,534-538,1996.

A.FriezeandR.Kannan.Log-Sobolevinequalitiesandsamplingfromlog-concavedistri-butions.AnnalsofAppliedProbability,9:14-26,1999.

D.P.FosterandR.V.Vohra.RegretintheOn-lineDecisionProblem.GamesandEconomicBehavior,29(1/2):7-35,1999.

439

KalaiandVempala

D.Helmbold,R.Schapire,Y.Singer,andM.Warmuth.On-lineportfolioselectionusingmultiplicativeupdates.MathematicalFinance,8(4):325-347,1998.

D.Helmbold,R.Schapire,Y.Singer,M.Warmuth.AcomparisonofnewandoldalgorithmsforamixtureestimationProblem.MachineLearning27(1):97-119,1997.

A.Kalai,S.Chen,A.Blum,andR.Rosenfeld.On-lineAlgorithmsforCombiningLanguageModels.ProceedingsoftheInternationalConferenceonAccoustics,Speech,andSignalProcessing,2:745-748,1999.

R.Kannan,L.LovaszandM.Simonovits.RandomwalksandanO∗(n5)volumealgorithmforconvexbodies.RandomStructuresandAlgorithms,11(1):1-50,1997.

A.KalaiandS.Vempala.Efficientalgorithmsforuniversalportfolios.Proceedingsofthe41stAnnualSymposiumontheFoundationsofComputerScience,486-491,2000.L.LovaszandM.Simonovits.Ontherandomizedcomplexityofvolumeanddiameter.ProceedingsoftheIEEESymp.onFoundationofComputerScience,482-491,1992.N.Metropolis,Rosenberg,Rosenbluth,TellerandTeller.Equationofstatecalculationbyfastcomputingmachines.InJournalofChemicalPhysics,21:1087-1092,1953.

V.VovkandC.J.H.C.Watkins.UniversalPortfolioSelection.Proceedingsofthe11thAnnualConferenceonComputationalLearningTheory,12-23,1998.

440

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务