试试卷
一、单选题
1.已知 A.B.C.D.
的三边长分别是6cm、8cm、10cm,则
的面积是( )
【答案】A
【考点】三角形的面积,勾股定理的逆定理
222
【解析】【解答】解:∵6+8=10,∴△ABC是直角三角形,∴△ABC的面积为:×6×8=24.故答案
为:A.
【分析】先利用勾股定理的逆定理判断出△ABC是直角三角形,然后根据直角三角形的面积计算方法即可算出答案。 2.如果 A.B.C.D.
,那么( )
【答案】C
【考点】不等式及其性质
【解析】【解答】解:A.∵b>a>0,∴B.∵b>a>0,∴C.∵b>a>0,∴故答案为:C. 【分析】由
,根据被除数一定除数越大商越小得出
,然后根据不等式的性质2,不等
,根据不等
,不符合题意;
,∴﹣<﹣,符合题意;
,∴﹣>﹣,不符合题意;
D.∵b>a,∴﹣b<﹣a,不符合题意.
式的两边都乘以同一个负数,不等号方向改变,即可判断出A,C的正确与否,由案。
3.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是( ) A. 7cm B. 9cm C. 12cm或者9cm D. 12cm 【答案】D
1
式的性质2,不等式的两边都乘以同一个负数,不等号方向改变,即可判断D,综上所述即可得出答
【考点】三角形三边关系,等腰三角形的性质
【解析】【解答】解:①5cm为腰,2cm为底,此时周长为12cm; ②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去. ∴其周长是12cm. 故选D.
【分析】题目给出等腰三角形有两条边长为4cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形. 4.面积相等的两个三角形( )
A. 必定全等 B. 必定不全等 C. 不一定全等 D. 以上答案都不对 【答案】C
【考点】全等三角形的判定与性质
【解析】【解答】因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等.故答案为:C.
点评:本题考查了全等三角形的判定.解答此题需要熟悉三角形的面积公式.【分析】因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等. 5.以下现象: A.B.C.D.
荡秋千;
呼啦圈;
跳绳;
转陀螺其中是旋转的有( )
【答案】D
【考点】生活中的旋转现象
【解析】【解答】解:①荡秋千是旋转;
②呼啦圈运动不是围绕某一点进行运动,不是旋转; ③跳绳时绳子在绕人转动,人在上下运动; ④转陀螺是旋转. 故答案为:D.
【分析】在平面内将一个图形绕着某点,按某个方向转动一定的角度,这样的图形变换叫做旋转,根据定义即可一一判断。 6.不等式组: A.B.C.D.
的解集是
,那么m的取值范围是( )
【答案】B
【考点】解一元一次不等式组
【解析】【解答】解:∵-x+2<x-6,解之得x>4.而x>m,并且不等式组解集为x>4,∴m≤4.故答案为:B.
【分析】解出第一个不等式的解集,然后根据不等式组的解集是x>4,由同大取大即可得出m≤4。
2
7.钟表上2时15分,时针与分针的夹角是( ) A.B.C.D.
【答案】C
【考点】钟面角、方位角
【解析】【解答】解:∵时钟指示2时15分时,分针指到3,时针指到2与3之间, 时针从2到这个位置经过了15分钟,时针每分钟转0.5°,因而转过7.5°, ∴时针和分针所成的锐角是30°-7.5°=22.5°. 故答案为:C.
【分析】此题只要弄清楚了 2时15分的时候,时针与分针所指的位置,以及时针每分钟所转过的角度,,钟面上两个大格之间的度数即可解决问题。 8.已知关于x的不等式组的 A.B.C.D.
解集为
,则的值为( )
【答案】A
【考点】解二元一次方程组,解一元一次不等式组 【解析】【解答】解:不等式组由①得,x≥a+b,由②得,x<
,∴
,
,解得:
,∴ =﹣2.故答案为:A.
【分析】把a,b作为常数,分别解出不等式组中每一个不等式的解集,然后根据大小小大中间找,及不等式组的解集,即可列出关于a,b的二元一次方程组,求解即可得出a,b的值,进而即可求出代数式的值。
二、填空题
9.如图,四边形ABCD为长方形,了多少度________ ;连结FC,则
旋转后能与
重合,旋转中心是点________ ;旋转
是________ 三角形.
【答案】A;;等腰直角
【考点】旋转的性质
3
【解析】【解答】解:∵△ABC旋转后能与△AEF重合.而四边形ABCD是长方形,∴∠BAD=90°,∴旋转中心是点A,旋转角为90°,∴AF=AC,且∠FAC=∠BAD=90°,∴△AFC是等腰直角三角形.故答案为:A,90°,等腰直角. 【分析】由四边形ABCD为长方形,10.已知【答案】
中,
旋转后能与
重合即可得出其旋转角度及旋转中
________ .
心,根据旋转的性质,AF=AC,且∠FAC=∠BAD=90°,进而判断出△AFC是等腰直角三角形。
,角平分线BE、CF交于点O,则
【考点】三角形的角平分线、中线和高,三角形内角和定理 【解析】【解答】解:如图,
∵∠A=90°,∴∠ABC+∠ACB=90°, ∵角平分线BE、CF交于点O, ∴∠OBC+∠OCB=45°, ∴∠BOC=180°﹣45°=135°. 故答案为:135°.
【分析】根据觊的内角和得出∠ABC+∠ACB=90°,根据角平分线的定义,得出∠OBC+∠OCB=BOC的度数。 11.若【答案】
或
,则x的取值范围是________.
=45°,然后根据三角形的内角和即可算出∠
【考点】解一元一次不等式组 【解析】【解答】解:原式可化为①故答案为:x>3或x<﹣2.
【分析】根据有理数的乘法法则,两数相乘同号得出,即可列出不等式组①分别求解即可得出答案。
12.等腰三角形一腰上的高与另一腰的夹角为【答案】3或
,腰长为6,则其底边上的高是________.
和②
,
和②
,解①得x>3,解②得x<﹣2.
【考点】等腰三角形的性质,含30度角的直角三角形 【解析】【解答】解:①三角形是钝角三角形时,如图1,
4
∵∠ABD=30°,∴AD= AB= ×6=3,∵AB=AC,∴∠ABC=∠ACB= ∠BAD= (90°﹣30°)=30°,
∴∠ABD=∠ABC,∴底边BC上的高AE=AD=3;
②三角形是锐角三角形时,如图2,由于此题没有告知三角形是什么三角形,故需要分类讨论:
∵∠ABD=30°,∴∠A=90°﹣30°=60°,∴△ABC是等边三角形,∴底边上的高为综上所述,底边上的高是3或
.故答案为:3或
.
×6= .
【分析】①三角形是钝角三角形时,如图1,根据含30°直角三角形的边之间的关系得出AD的长,根据等边对等角及三角形的外角定理得出∠ABC=∠ACB=
∠BAD=30°,从而根据角平分线上的点到角两
边的距离相等得出底边BC上的高AE=AD=3;②三角形是锐角三角形时,如图2,根据三角形的内角和得出∠A=60°,根据有一个角是60°的等腰三角形是等边三角形得出△ABC是等边三角形,根据含30°直角三角形的边之间的关系即可算出底边上的高,综上所述即可得出答案。 13.【答案】
中,
,则AC与AB两边的关系是________ .
【考点】含30度角的直角三角形 【解析】【解答】解:如图所示,
在Rt△ABC中,∠C=90°,∠B=30°,则AB=2AC.故答案为:AB=2AC.
【分析】根据含30°直角三角形中,30°的角所对的直角边等于斜边的一半即可得出结论。 14.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于有3人得4分,则得5分的有________ 人 【答案】22
【考点】一元一次不等式组的应用
【解析】【解答】解:设得5分的人数为x人,得3分的人数为y人. 则可得
,解得:x>21.9.
分,最低的得3分,至少
∵一共26人,最低的得3分,至少有3人得4分,∴得5分最多22人,即x≤22. ∴21.9<x≤22且x为整数,所以x=22. 故得5分的人数应为22人.故答案为:22.
【分析】设得5分的人数为x人,得3分的人数为y人.利用得三分的人数+得4分的人数+得5分的人数=26人,得三分的人数的总分数+得4分的人数的总分数+得5分的人数的总分数不小于26×4.8,这两个关系列出混合组,求解即可。
5
三、解答题
15.解下列不等式组: (1)(2)
;
.
【答案】(1)解:去分母得:3(3x-2)≥5(2x+1)-15,去括号得:9x-6≥10x+5-15,移项得:9x-10x≥5-15+6,合并同类项得:-x≥-4,解得:x≤4 (2)解:
2.
【考点】解一元一次不等式,解一元一次不等式组 【解析】【解析】解:(2)由①得 7x-35+2x+2>-15 移项得 7x+2x>-15+35-2, 合并同类项得 9x>18, 系数化为1得 x>2;
由②得2 (2x+1)-3(3x-1)<0, 去括号得 4x+2-9x+3<0, 移项,合并同类项得 -5x <-5, 系数化为1得 x>1; ∴该不等式组的解集为 x>2;
【分析】(1)不等式两边都乘以15,约去分母,然后去括号,移项合并同类项,再根据不等式性质2系数化为1,求出不等式的解集;
(2)分别解出不等式组中的每一个不等式的解集,然后根据同大取大即可得出不等式组的解集。 16.如图,在
和
中,已知
,求证:AD是
的平分线.
【答案】证明:连接BC,∵AB=AC,∴∠ABC=∠ACB.∵∠ABD=∠ACD,
∴∠DBC=∠DCB,∴BD=CD.在△ADB和△ADC中, BD=CD,AB=AC,AD=AD,∴△ADB≌△ADC(SSS),∴∠BAD=∠CAD,即AD是∠BAC的平分线. 【考点】全等三角形的判定与性质,等腰三角形的性质
6
【解析】【分析】连接BC ,根据等边对等角得出∠ABC=∠ACB ,然后根据等量减去等量差相等得出∠DBC=∠DCB ,根据对角对等边得出 BD=CD ,然后根据SSS判断出△ADB≌△ADC ,根据全等三角形的对应角相等得出∠BAD=∠CAD,即AD是∠BAC的平分线. 17.如图,将图中的平行四边形ABCD先绕D按顺时针方向旋转作出旋转及平移后的图形保留作图痕迹
【答案】解:如图所示,四边形A′B′C′D是旋转后的四边形,四边形A″B″C″E是平移后的四
后,再平移,使点D平移至E点,
边形.
【考点】作图﹣平移,作图﹣旋转
【解析】【分析】以点D为顶点DA为一边沿顺时针方向作∠A'DA=90°,然后在∠A'DA的另一条边上截取以点A'使A'D=AD,点A'就是A点的对应边,同理做出B,C的对应边B',C',并顺次连接A'B'C'D,四边形A′B′C′D是旋转后的四边形,;连接DE,过A'点作A'A\"∥DE,在A'A\"上截取A'A\"=DE,点A\"就是A'的对应点,同理作出B\然后顺次连接 A″,B″,C″,E ,四边形A″B″C″E是平移后的四边形. 18.如图,
,求证:
.
【答案】证明:连接AC,CD⊥AD,CB⊥AB,∴∠D=∠B=90°.在Rt△
ADC和Rt△ABC中,∵AD=AB,AC=AC,∴Rt△ADC≌Rt△ABC(HL),∴CD=CB. 【考点】全等三角形的性质,直角三角形全等的判定
【解析】【分析】连接AC,根据垂直的定义,得出∠D=∠B=90° ,然后利用HL判断出 Rt△ADC≌Rt△ABC ,根据全等三角形的对应边相等得出 CD=CB. 19.如图,以等腰直角三角形ABC的斜边AB为边作等边
、E在C、D的同侧,若
,求BE的长.
,连接DC,以DC当边作等边
7
【答案】解:∵△ABC等腰直角三角形,∴AC=BC.∵△ABD是等边三角形,∴BD=AD,∴△ADC≌△BDC,∴∠BCD=÷2=135°.又∵∠CBD=60°﹣45°=15°,∴∠CDB=180°﹣135°﹣15°=30°,∠(360°﹣90°)BDE=60°﹣30°=30°,∴∠CDB=∠BDE.∵CD=ED,∠CDB=∠BDE,BD=BD,∴△BCD≌△BED,∴BE=CB=
×sin45°=1,∴BE=1.
【考点】全等三角形的判定与性质,等边三角形的性质,直角三角形的性质
【解析】【分析】根据等腰三角形的性质得出 AC=BC ,根据等边三角形的性质得出 BD=AD ,然后利用SSS判断出△ADC≌△BDC ,根据全等三角形的对应边相等得出∠BCD = ∠ACD = 135° ,根据角的和差得出∠CBD ,跟进好觊的内角和得出∠CDB 的度数,进而再根据角的和差得出∠BDE 的度数,从而得出∠CDB=∠BDE ,然后利用SAS判断出△BCD≌△BED,根据全等三角形的对应边相等及等腰直角三角形的性质,和特殊锐角三角函数值即可得出BE=CB=
.
×sin45° =1.
的位置上若
20.如图,把长方形纸片ABCD沿EF折叠后点D与点B重合,点C落在点
(1)求、的度数;
(2)求长方形纸片ABCD的面积S.
【答案】(1)解:∵AD∥BC,∴∠2=∠1=60°.又∵∠4=∠2=60°,∴∠3=180°﹣60°﹣60°=60°
(2)解:如图,在直角△ABE中,由(1)知∠3=60°,∴∠5=90°
﹣60°=30°,∴BE=2AE=2,∴AB= 面积S为:AB•AD=
×3=
.
= ,∴AD=AE+DE=AE+BE=1+2=3,∴长方形纸片ABCD的
【考点】含30度角的直角三角形,勾股定理,翻折变换(折叠问题)
【解析】【分析】(1)根据二直线平行内错角相等得出∠2=∠1=60° ,根据折叠的性质得出∠4=∠2=60° ,然后滚局平角的定义即可得出∠3 的度数;
8
(2)根据三角形的内角和得出∠5= 30° ,根据含30°直角三角形的边之间的关系得出BE=2AE=2,根据勾股定理即可算出AB的长,然后根据 AD=AE+DE=AE+BE 算出AD的长,最后根据矩形的面积公式即可算出答案。
21.甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条
元的价格把鱼全部卖给了乙,请问甲会赚钱还是赔钱?并说明原因.
,利润=售价﹣进价=5× >0,此时赚钱.当a=b时,
﹣(3a+2b) =0,此
3a+2b,5× 【答案】解:甲买鱼的钱数为:甲卖鱼的钱数为:=
.当a>b时,
<0,此时赔钱当a<b时,
时不赚钱也不赔钱. 【考点】整式的加减运算
【解析】【分析】分别找出甲买鱼的总钱数,和卖鱼的总钱数,根据利润=售价﹣进价,列出算式,利用整式的加减法法则算出结果,然后分类讨论结果即可得出答案。
22.某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:
方案一:若直接给本厂设在银川的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元;
方案二:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为xkg. (1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?
(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量与实际有不符之处,请找出不符之处,并计算第一季度的实际销售总量. 一月 二月 三月 销售量(kg) 550 600 1400 利润(元) 2000 2400 5600 【答案】(1)解:设利润为y元.方案1:
.当时,
时,选择方案2.
(2)解:由(1)可知当故三月份不符.二月份【考点】一次函数的实际应用
【解析】【分析】(1)选择方案(1)的月利润=(每千克售价-每千克成本)×每月的销售量-每月上缴费用,选择方案(2)的月利润=(每千克出厂价-每千克成本)×每月的销售量,列出函数关系式,然后分类讨论即可得出结论;
(2)根据(1)中求出的利润与销售量的关系,把销售量分别为500,600,1400时的利润求出来,再分别与2000,2400,5600比较,求出答案。
时,利润为2400元.一月份利润2000<2400,则
,由
,由4x=2000,,得 x=1000,
得 x=500,故一月份不符.三月份利润5600>2400,则
.即当
时,
;当
时,
时,选择方案1;当
,方案2:
;当
时,任选一个方案均可;当
符合实际.故第一季度的实际销售量=500+600+1000=2100(kg).
9
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务