教学内容
第53~55页。
教学目的
1、使学生理解并掌握平行四边形面积的计算公式,能正确地计算平行四边形的面积。
2、通过操作,进一步发展学生思维能力,培养学生运用转化的方法解决实际问题的能力,发展学生的空间观念。
3、引导学生运用转化的思想探索规律。
教学重点
理解并掌握平行四边形面积的计算公式。
教学难点
理解平行四边形面积计算公式的推导过程。
教具准备
平行四边形教具或课件、实物投影仪。
1
学具准备
平行四边形纸板、剪刀等。
教学过程
一、激发
1、提问:怎样计算长方形面积?
板书:长方形面积=长×宽
2、口算出下面各长方形的面积。
(1)长1.2厘米,宽3厘米。
(2)长0.5米,宽0.4米。
3、出示方格纸上画的平行四边形,提问:这是什么图形?什么叫平行四边形?指出它的底和高。
4、揭题:我们已经学会了长方形面积的计算,平行四边形的面积该怎样计算呢?这节课我们就学习“平行四边形面积的计算”。(板书课题:平行四边形面积的计算)
二、尝试
2
1、用数方格的方法计算平行四边形面积。
(1)让学生打开书自学。
(2)指名到投影上数。边数边讲解:我先数……,它是……平方厘米;再数……,它是……平方厘米;两部分合起来是……平方厘米。
(3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。
(4)观察比较两个图形的关系,提问:你发现了什么?
引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
2、通过操作,将平行四边形转化成长方形。
(1)自由剪、拼,进一步感知。
①每个平行四边形只准剪一下,试一试被剪下的两部分能拼成已学过的什么图形?学生自己剪、拼。
②互相讨论。提问:你发现了什么规律?
通过操作讨论得出:只有沿着平行四边形的高剪开,才能拼成一个我们会计算的图形——长方形。这种剪法最简便。
3
(2)揭示转化规律
任何一个平行四边形都可以转化成一个长方形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述)
①沿着平行四边形的高剪下左边的直角三角形。(出示剪刀,闪动被剪掉的部分)
②左手按住右手的梯形,右手抽拉剪下的直角三角形,沿着底边慢慢向右移动,直到两斜边重合为止。这样就得到一个长方形。
③学生根据刚才的演示模仿操作,体会平移的过程。
3、归纳总结公式
(1)比较变化前的两个图形,提问:你发现了什么?互相讨论,汇报讨论结果。根据讨论结果完成填空。
引导学生明确:你发现了什么?互相讨论,汇报讨论结果。
①平行四边形转化为长方形后,面积没有改变。即长方形面积等于平行四边形面积。(同时板书)
②这个长方形的长、宽分别与平行四边形的底、高相等。(同时板书)
(2)根据这些关系,你认为平行四边形的面积计算公式怎样推导出来?强化理解推导过程。
4
板书:平行四边形的面积=底×高
4、教学字母公式
(1)介绍每个字母所表示的意义及读法。板书S=a×h
(2)说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,也可以省略不写。所以平行四边形面积的计算公式可以写成“S=a·h或“S=ah”。(同时板书)
(3)提问:计算平行四边形面积,需要知道哪些条件?
三、应用
1、一块平行四边形钢板,底4.8厘米,高3.5厘米,它的面积是多少?(得数保留整数)
①读题,理解题意。
②学生试做,指名板演。提醒学生注意得数保留整数。
③订正。提问:根据什么这样列式?
订正时提问:计算时注意哪些问题?
2、填空。
5
任意一个平行四边形都可以转化成一个( ),它的面积与原平行四边形的面积( )。这个长方形的长与原平行四边形的( )相等。这个长方形的( )与原平行四边形的( )相等。因为长方形的面积等于( ),所以平行四边形的面积等于( )。
3、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等( )
(2)平行四边形的底越长,它的面积就越大( )。
4、你能求出下列图形的面积吗?如果能,请计算出面积。(单位:厘米)
16、20、15、20
四、总结
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
《探索活动:三角形的面积》教案
教学内容
书第56至58页的内容。
教学目的
6
1、使学生理解并掌握三角形面积的计算公式,能正确地计算三角形的面积。
2、通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。
3、引导学生运用转化的方法探索规律。
教学重点
理解并掌握三角形面积的计算公式。
教学难点
理解三角形面积计算公式的推导过程。
教学过程
一、激发
1、出示平行四边形:底1.5厘米,高2厘米。
提问:(1)这是什么图形?计算平行四边形的面积我们学过哪些方法?(板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
7
(3)平行四边形面积的计算公式是怎样推导的?
2、出示三角形,三角形按角可以分为哪几种?
3、既然长方形、正方形、平行四边形都可以用数方格的方法或利用公式计算的方法,求它们的面积,三角形面积可以用哪些计算方法呢?(揭示课题:三角形面积的计算)
二、尝试
1、用数方格的方法求三角形的面积。
(1)看书。
(2)订正数的结果。
(3)如果不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?
(4)三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形?我们分别验证一下。
2、用直角三角形推导。
(1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。
(2)拼成的这些图形中,哪几个图形的面积我们不会计算?
8
(3)利用拼成的长方形和平行四边形,怎样求三角形面积?
(4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?
引导学生得出:每个直角三角形的面积等于拼成的平行四边形面积的的一半。
3、用锐角三角形推导。
(1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。
提问:你发现了什么?
引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。
(2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述边提问)
①把两个锐角三角形重叠放置。
提问:怎样操作才能拼成一个平行四边形?直接把一个三角形向左或向右平移,能拼成一个平行四边形吗?
②怎样才能使上面的三角形倒过来,使它原来的底在上面,底所对的顶点在下面?我们用旋转的方法,按住三角形右边的顶点不动,使三角形向逆时针方向转动180度,(也可以左边顶点不动,顺时针转动180度)直到两个三角形的底成一条直线为止。
9
③再把右边的三角形向上沿着第一个三角形的右边平移,直到拼成一个平行四边形为止。
(3)教师带着学生规范地操作。
重点指导:哪点不动?哪点动?旋转多少度?怎样平移?转化的过程中旋转和平移有什么不同?(平移时各个点沿着直线移动,旋转时一个点不动,其它点都绕着不动点转动。)
(4)对照拼成的图形,你发现了什么?
引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。
板书:
三角形的面积=平行四边形面积的一半
(5)练习
①两个完全一样的钝角三角形能用刚才的方法来拼吗?学生实验,教师巡回指导。
②通过刚才的操作,你又发现了什么?
引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的一半。
三角形的面积=平行四边形面积的一半
10
4、归纳、总结公式。
(1)通过以上三个实验,同学们互相讨论一下,你发现了什么规律?
(2)汇报结果。
引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2
(4)完成书空。
5、教学字母公式。
(1)学生看书。
11
(2)提问:通过看书,你知道了什么?
引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:S=ah÷2。(板书)
三、应用
1、教学例题:一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?
①读题,理解题意。
②学生试做,指名板演。
③订正,提问:计算三角形面积为什么要“除以2”?
2、做一做。
订正时提问:计算时应注意哪些问题?
3、填空。
两个完全一样的三角形可以拼成一个( ),这个平行四边形的底等于( ),这个平行四边形的高等于( )。因为每个三角形的面积等于拼成的平行四边形的面积的( ),所以( )。
12
4、练习。
5、利用公式求方格上的三角形的面积。
四、体验
今天有何收获?怎样求三角形的面积?三角形面积的计算公式是怎样推导的?
《探索活动:梯形的面积》教案
教学内容
书第59、60页的内容。
教学目的
1、使学生理解并掌握梯形面积的计算公式,能正确地应用公式进行计算。
2、通过操作,培养学生的迁移类推能力和抽象概括能力。
3、培养学生应用所学知识解决实际问题的能力,发展空间观念,引导学生运用转化的思想探索规律。
教学重点
理解并掌握梯形的面积计算公式。
13
教学难点
理解梯形面积计算公式的推导过程。
教学准备
1、两个完全一样的梯形纸板和剪刀。
2、20根同样的铅笔和渠道模型。
教学过程
一、激发
1、计算下面图形的面积。
平行四边形:底1.8厘米,高2.1厘米。
三角形:底2.5米,高3.2米。
2、三角形面积的计算公式是怎样推导出来的?为什么要“除以2”?
3、导入:我们已经掌握了平行四边形、三角形的面积计算公式,有了这两方面的基础,我相信大家一定也能把梯形转化成已经学过的图形,计算出梯形面积。大家有信心吗?
二、尝试
14
1、你能仿照求三角形面积的方法,用两个完全一样的梯形推导出梯形面积的计算公式吗?拼拼看。
2、学生操作,互相讨论。
3、根据讨论结果,完成书空,并计算出面积。
4、汇报结果。提问:通过刚才的学习,你知道了什么?
引导学生明确:
①操作过程。先按住梯形右下角的顶点,再使一个梯形向逆时针方向旋转180度,使梯形的上下底成一条直线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成一个平行四边形为止。
②两个完全一样的梯形能拼成一个平行四边形。
③这个平行四边形的底等于梯形的上、下底之和,高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半。
因为:平行四边形的面积=底×高
所以:梯形面积=(上底+下底)×高÷2(板书)
强化理解推导过程。
15
④计算过程中“3+5”表示上、下底之和,它等于拼成的平行四边形的底,所以计算时要加上小括号。
每个梯形的面积等于拼成的平行四边形面积的一半,所以计算中要加上“除以2”?
⑤想一想:如果是两个完全一样的直角梯形,能拼成什么图形?
学生口述,教师点拨:两个完全一样的直角梯形能拼成一个长方形,而长方形是平行四边形的特殊形式。
5、字母公式。
(1)学生看书。
(2)提问:通过看书,你知道了什么?
引导学生知道:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式可以表示为:S=(a+b)h÷2(板书)
(3)要求梯形的面积必须知道哪些条件?为什么要“除以2”?
6、小结:梯形面积的计算公式是怎样推导的?用字母怎样表示梯形的面积公式?
三、应用
1、出示例题:一条新挖的渠道,横截面是梯形(如图),渠口宽2.8米,渠底宽1.4
16
米,渠深1.2米。它的横截面的面积是多少平方米?
①拿出渠道模型,认识横截面。使学生明白横截面是一个平面。
②生试做。
③订正。提问:你是怎样想的?为什么要“除以2”。
2、做一做。
①学生试做。
②订正。提问:计算时应注意哪些问题?
3、判断。
(1)平行四边形面积是梯形面积的2倍。
(2)两个面积相等的梯形能拼成一个平行四边形。
4、练习。
(1)让学生用铅笔代替圆木或钢管摆成图中的形状。
(2)根据公式求出总根数,说一说是什么道理。
17
使学生体会到:把另外一堆同样形状的钢管倒过来,同原来的一堆摆在一起,每层的根数就变成同样多,即都等于上、下底根数之和,这个和乘以层数得到的根数正好是原来一堆根数的2倍。
5、练习。
四、体验
今天学会了什么?怎样计算梯形的面积?梯形面积的计算公式是怎样推导出来的?
18
因篇幅问题不能全部显示,请点此查看更多更全内容