您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页矩阵的秩与运算

矩阵的秩与运算

来源:爱go旅游网


矩阵的秩与运算

一·矩阵秩的求法

求矩阵的秩主要有三种方法;(1)定义

法,利用定义寻找矩阵中非零子式的最高

阶数。(2)初等变换法,对矩阵实施初等行变

换,将其变成为行阶梯形矩阵,行阶梯形矩

阵中非零行的行数就是矩阵的秩;(3)标准

形法,求矩阵的标准形,l的个数即为矩阵

的秩。

二·矩阵的秩与行列式

对于一个方阵A,如何判断它是

否可逆,除了根据它的行列式是否为零,还

可以根据方阵秩的大小来判断。比如方阵A(nn)

其秩R, ,若R < n,则显然矩阵行列式为零,不可逆;

若R = n ,则矩阵行列式不为零,矩阵可逆。

三·矩阵的秩与线性方程组

1齐次的

齐次线性方程组

 系数矩阵R = n ,则有且仅有一个0解

 系数矩阵R < n, 则有无数个解。

2非齐次的

费齐次线性方程组,设系数矩阵A ,增广矩阵B

 若R(A) = R(B) = n ,则有且仅有一个解;

 若R(A) = R(B) <n,则有无数个解;

 若R(A) ≠R(B) ,则方程组无解。

四·矩阵的秩与二次曲面

说二次曲面,其实就是与二次型的关系。 有定义知道,

二次型的秩定义为其矩阵的秩,这就为解决二次曲面问题找到了一个可转移的办法。

正所谓遇难则变,变则通。道家之言,诚哉大哉!!

下面将具体举例阐述,二次型总可以经线性变换成CY化为标准形(比如合同变换),而且,同的非退化线性变换化为不同的标准形,但这些标准形中所含平方项的个数是相同的,所含平方项的个数就等于二次型的秩,也就是矩阵的秩。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务