您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页钢筋混凝土框架结构毕业设计论文.doc

钢筋混凝土框架结构毕业设计论文.doc

来源:爱go旅游网


国航办公楼 框架结构设计(7轴)

摘要:本设计为国航办公楼框架结构设计,该结构为钢筋混凝土框架结构体系。该建筑平面为规则矩形,有五层,建筑总面积约为3705.4平方米,结构总长58.5米,总宽14.35米,总高19.5米,占地约4326平方米。

该结构设计包括以下几部分:首先,根据功能和使用要求进行结构布置,确定梁、柱截面尺寸;其次,计算重力荷载代表值和结构侧移刚度以及在水平荷载和竖向荷载作用下的内力,其中水平力考虑了风荷载和地震水平作用力。第三步,考虑五种内力组合,选取最不利的组合进行梁、柱配筋计算。最后是配筋。

关键词:框架结构;抗震;刚度;配筋

1

Air China office Frame design (7 axis)

Abstract: The design framework for the design office of Air China, the structure of

reinforced concrete frame structure. The rectangular building plan for the rules, there arefive, the total construction area of approximately 3,705.4 square meters, the structurelength of 58.5 m, with a total width of 14.35 meters, total height of 19.5 meters, covering about 4326 square meters.

The structural design includes the following sections: First, according to structuralfeatures and layout requirements to determine the beam andcolumn section size;Secondly, the calculation of representative values of gravity load and structural stiffnessand the horizontal load and vertical load of the internal forces , Where the level of forceconsidered the level of wind and earthquake forces. The third step, consider the combination of the five internal forces to select the most unfavorable combination of beam and column reinforcement calculation. Finally, reinforcement.

Keywords: frame structure; seismic; stiffness; reinforcement

2

目录

前言…………………………………………………………………………………6 1工程概况…………………………………………………………………………7 2结构布置及计算简图……………………………………………………………8 3重力荷载计算…………………………………………………………………..11

3.1屋面及楼面的永久荷载标准值…………………………………………11 3.2屋面及楼面的可变荷载标准值…………………………………………11 3.3梁、柱、墙、窗、门重力荷载计算……………………………………12 3.4重力荷载代表值…………………………………………………………12 4框架侧移刚度计算……………………………………………………………16 4.1横向框架侧移刚度计算…………………………………………………16 4.1.1框架结构梁、柱线刚度计算………………………………………16 4.1.2框架结构柱的侧移刚度计算………………………………………17 4.2纵向框架侧移刚度计算…………………………………………………19 5横向水平荷载作用下框架结构的内力和侧移计算………………………….19 5.1横向水平地震作用下框架结构的内力和侧移计算……………………19 5.1.1横向自震周期计算…………………………………………………19 5.1.2水平地震作用及楼层地震剪力计算………………………………20 5.1.3水平地震作用下的位移验算………………………………………22 5.1.4水平地震作用下的框架内力计算…………………………………23 5.2横向水平风荷载作用下框架结构的内力和侧移计算…………………30 5.2.1风荷载标准值计算…………………………………………………30

3

5.2.2风荷载作用下的水平位移验算……………………………………32 5.2.3风荷载作用下框架结构内力计算…………………………………33 6竖向荷载作用下框架结构的内力计算………………………………………..36

6.1横向框架内力计算………………………………………………………36 6.1.1计算单元……………………………………………………………36 6.1.2竖向荷载作用下框架结构内力计算………………………………37

6.1.2.1荷载计算……………………………………………………37 6.1.3内力计算……………………………………………………………47

6.1.3.1固端弯矩计算………………………………………………47 6.1.3.2分配系数计算………………………………………………47 6.1.3.3传递系数……………………………………………………48 6.1.3.4弯矩分配……………………………………………………48 6.1.3.5梁端剪力及柱轴力计算……………………………………48

6.2横向框架内力组合………………………………………………………55 6.2.1结构抗震等级………………………………………………………55 6.2.2框架梁内力组合……………………………………………………55 6.2.3框架柱子内力组合…………………………………………………60 7截面设计………………………………………………………………………66 7.1框架梁……………………………………………………………………65 7.1.1梁的正截面设计……………………………………………………65 7.1.2梁的斜截面设计……………………………………………………67 7.2框架柱配筋………………………………………………………………69 7.2.1 柱正截面承载力计算………………………………………………69

4

7.2.2柱斜截面受剪承载力计算…………………………………………72 7.3 框架梁柱节点截面设计和抗震验算……………………………………75 8楼梯设计………………………………………………………………………76 8.1梯段设计…………………………………………………………………76 8.2平台设计…………………………………………………………………77 8.3平台梁设计………………………………………………………………78 9楼板设计………………………………………………………………………80 设计总结…………………………………………………………………………83 致 谢…………………………………………………………………………84 参考文献…………………………………………………………………………85 英文翻译…………………………………………………………………………86

5

前言

毕业设计是一门重要的实践课程,通过具体的设计能够将平时所学的理论知识系统的联系起来。毕业设计分结构、施工、专题等几大方面,本篇毕业设计论文是有关钢筋混凝土框架结构方面的设计。主要内容是乌鲁木齐市某中学教学楼的一榀框架的设计。

在工业和民用建筑中,框架结构是一种十分常见的结构形式,因此在实际工作中经常遇到。我选择此题的目的是要掌握和运用框架结构的设计方法,并为以后学习其它结构的设计打好基础。

采用钢筋混凝土框架结构,不仅能节省材料,而且可以改善结构功能,目前框架结构是一种强有力的结构型式。同时,要想做好这方面的设计,就必须要掌握混凝土的工作特性及设计原理,选择合理的框架结构形式,并运用基本概念及原理来解决设计当中复杂的技术问题。

本次设计的是国航的一个五层办公楼的框架结构,这不同于以往的楼盖、单层厂房等设计,因为这些都只限于单层,是结构的局部设计,而此次是多层框架结构,难点在于内力的计算分配合及内力的组合配筋,这都给我提出了新的挑战。所以,这次这个典型的钢筋混凝土框架结构给了设计者一次非常好的锻炼机会。

6

1工程概况

工程名称:国航办公楼。

五层钢筋混凝土框架结构,主要由办公楼及部分办公用房组成。

自然条件:

工程地点: 北京市

基本风压: 0.45 kN/m2

基本雪压: 0.40 kN/m2 冻土深度: 0.80m

稳定水位深度: 地表下5.8~8.4m 基本地震烈度: 八度 场地土类别: Ⅱ类 地震分组: 第一组 建筑类型: 二级

1. 填充墙:外墙及内墙采用加气混凝土砌块,卫生间墙体采用陶粒混凝土砌块(非承重)。外墙外挂玻璃幕墙。

2. 地基和基础:采用天然地基,钢筋混凝土基础,基础埋深2.8m,地基经过处理采用地基承载力 fk=200kPa。 3. 屋面和楼面做法自行设计。

4. 本工程的设计依据现行的国家规范,规程和规定进行设计。

5.建筑层数与层高:层数5层,层高:一层4.8m,二~四均为3.6m,五层高为3.9m。

7

2结构布置及计算简图

根据该房屋的使用功能及建筑设计的要求,进行建筑平面、立面及剖面设计,其标准层建筑平面、结构平面和剖面示意图分别见施工图。

整体结构为5层,一层高为4.8m,二~四层高为3.6m,五层高为3.9m。 高宽比=(4.8+3.6×3+3.9)/17.7=1.1﹤1.5 长宽比=58.5/17.7=3.3﹤5

外墙及内墙采用加气混凝土砌块,卫生间墙体采用陶粒混凝土砌块(非承重)。外墙外挂玻璃幕墙。门为木门,门洞尺寸为:0.9m×2.4m;窗为铝合金窗,洞口尺寸为:

1.8m×2.4m(纵向) 1.2m×1.5m(横向)

板厚:h>L/40=3000/40=75mm,故楼板厚度取100㎜。

梁截面高度按梁跨度的1/18~1/10估算,梁截面宽度取1/3~1/2梁高,同时不小于1/2柱宽,且不小于250㎜,由此估算的梁截面尺寸见下表2.1,表中还给出了各层梁、柱的混凝土等级,其设计强度:

C30(fc=14.3N/mm2, ft=1.43N/ mm2)

表2.1 梁截面尺寸(mm)及各层混凝土强度等级

层次 1—5 混凝土强度等级 C30 横梁(b×h) 300mm×750mm 次梁((b×h)) 250mm×600mm 柱截面尺寸可根据式AcN(1)估算,已知该框架结构的基本地震[μN]fc烈度为八度,其轴压比限值[ µN]=0.8,各层的重力荷载代表值近似取12kN/ m2。由式(1)得第一层柱截面面积为:

8

边柱:Ac≥1.3×4.5×4.5 ×12×5×103/(2×0.8×14.3)=69034mm2 中柱:Ac≥1.2×8.7×4.5×12×103×5(2×0.8×14.3)=123199 mm2 如取柱子截面为正方形,则边柱和中柱的边长分别是350mm和500mm。

根据上述计算结果并综合考虑其他因素,本设计框架结构柱子截面尺寸取如下数值:500mm×500mm

基础选用基础,基础埋深取2.8m,框架结构计算简图如图2.1所示,

9

取顶层柱的形心线作为框架柱的轴线,梁轴线取至板底,2~5层柱高度即为层高,取4.2m,底层柱高度从基础顶面取至一层板底,取h1=4.2+0.6=4.8m。

10

3重力荷载计算

3.1 屋面及楼面的永久荷载标准值 上人屋面:

40厚配筋C25细石混凝土保护层 22×0.04=0.88KN/ m2 二毡三油上铺小石子防水层 0.35KN/ m2 20厚1:3的水泥砂浆找平层 20×0.02 =0.40 KN/ m2 隔热层 0.25KN/ m2

100厚1:8的水泥陶粒找平层 0.1×14=1.4 KN/ m2

100厚的钢筋混凝土板 25×0.1=2. 5KN/ m2 V型轻钢龙骨吊顶 0.25 KN/ m2

合计 6.87KN/ m2

1~4层楼面:

瓷砖地面(包括水泥粗砂打底) 0.55 KN/ m2

20mm水泥砂浆面 0.02×20=0.4KN/m2 100厚钢筋混凝土板 25×0.1 = 2. 5KN/ m2 10mm混合砂浆 0.02×17=0.34KN/ m2 V型轻钢龙骨吊顶 0.25 KN/ m2

合计 3.47 kN/ m2

3.2 屋面及楼面的可变荷载标准值

上人屋面均布荷载标准值 2.0 KN/ m2 屋面雪荷载标准值 Sk= µr·0.40=0.40 KN/ m2 So =1.0×

11

楼面活荷载标准值 2.0KN/ m2 式中:µr为屋面积雪分布系数,取µr=1.0

3.3 梁、柱、墙、窗、门重力荷载计算 主梁自重:25× 0.3×0.75×1.05=5.906 KN/ m2 次梁自重:25×0.6×0.25×1.05=3.9375 KN/ m2 柱自重:25 ×0.5×0.5×1.05=6.5625KN/ m2

(上式中1.05为柱梁粉刷后的重力荷载增大系数)

墙体为400mm厚陶粒混凝土砌体墙,面挂玻璃幕墙(1.5KN/ m3 )墙面为20mm厚水泥砂浆抹灰,则外墙单位墙面重力荷载为

1.5+7.5×0.4+20×0.02=4.9KN/ m2

内墙为200mm厚陶粒混凝土砌块,两侧均为20mm厚抹灰,则内墙单位面积重力荷载为

7.5×0.2+20×0.02×2=2.3KN/ m2

木门单位面积重力荷载为0.2 KN/ m2;塑钢窗单位面积重力荷载取0.8 KN/ m2。

3.4 重力荷载代表值

五层:楼板自重=(24.4+12.2+45.67/2+17.85)×6.87=531KN 门自重=3×1×2.4×0.2=1.44KN

窗自重=(1.2×1.5×3+2.799×1.5+0.9×1.5)×0.8=5.84KN

外墙={(4.2+2.1×2+4.866)×3.9-(1.2×3+2.799+0.9)×1.57}×4.9=200KN 内墙={(6+3+4.2×2+2.1×2)×3.9-1×2.4}×2.3+6×3.9×(0.1×7.5+20×0.02)

=215.142KN

12

主梁自重=(4.5+3×3+4.866+4.2×4+2.1×5)=269.7KN 次梁自重=(4.2+2.1)×3.9375=24.8KN 柱自重=4×3.9×6.5625=102.4KN

五层重度=531+1.44+5.84+200+215.142+269.7+24.8+102.4+0.5×

(2+0.8)×77.285=1458.5KN

二—四层:楼板自重=(24.4+12.2+45.67/2+17.85)×3.47=268.2KN 门自重=(1.5+1+0.75) ×2.4×0.2=1.56KN

窗自重=(1.05+0.9+3.45+1.866+0.933)×0.8×1.5=9.84KN

={(4.2+4.2+4.866)×3.6-(1.05+0.9+3.45+1.866+0.933)

×1.5}×4.9=173.75KN

内墙={(6+4.2×2+2.1×2)×3.9-(1.5×2.4+0.75×2.4)}×2.3=1.422KN

主梁自重=(4.5+3×3+4.866+4.2×4+2.1×5)=269.7KN 次梁自重=(4.2+2.1)×3.9375=24.8KN 柱自重=4×3.9×6.5625=102.4KN

重度=286.2+1.56+9.84+173.75+1.422+296.7+24.8+102.4+77.285=1082KN 一层: 楼板自重={77.285-4.75×(4.2+2.1)} ×3.47=1.3392KN 窗自重= (0.9+1,。866+0.933)×0.8×1.5=4.4388KN

外墙={(4.2+4.2+4.866)×4.8-(1.05+0.9+3.45+1.866+0.933) ×1.5}×4.9=252KN

玻璃幕墙自重=1.5×(3.45+1.05)×3.6=24.3KN

栏杆自重=0.5×(2.95+1.5+2.4+3.05)×2=9.9KN 主梁自重=(4.5+3×3+4.866+4.2×4+2.1×5)=269.7KN 柱自重=4×3.9×6.5625=102.4KN

13

重度=(1.3392+4.4388+252+24.3+9.9)+(0.5×2×77.285)+269.7+102.4=904.4KN

荷载分层总汇:

顶层重力荷载代表值包括:屋面恒载,50%屋面雪荷载,纵、横梁自重,半层柱自重,半层墙体自重。

其它层重力荷载代表值包括:楼面恒载,50%楼面均布活荷载,纵、横梁自重,楼面上、下各半层的柱及纵、横墙体自重。

将前述各项荷载相加,得集中于各层楼面的重力荷载代表值如下:

14

重力荷载代表制

15

4框架侧移刚度计算

4.1横向框架侧移刚度计算 4.1.1框架结构梁、柱线刚度计算

梁的线刚度ibEcIb.其中Ec为混凝土的弹性模量;l为梁的计算跨度;Ibl为梁的截面惯性矩,对装配式楼面,Ib按梁的实际截面计算;对现浇楼面Ib可近似按

中框架梁 Ib=2.0Io 边框架梁 Ib=1.5Io

采用,其中Io为梁矩形部分的截面 惯性矩(如图)

柱的线刚度ic=EcIc/h,其中Ic柱 的截面惯性矩,h为框架柱的计算高度。

横梁线刚度ib计算过程见表4.1;柱线刚度ic计算过程见表4.2。

表4.1 横梁线刚度ib计算表

bh3IO= 12类别 边横梁 Ec b×h N/mm mm×mm 3.0×10 44(mm4) BC DF CD

L (mm) 6000 4500 3000 Kb (N.mm) 7.875×10 10.5×10 21×10 1010109300×750 10.5×10 910 300×750 10.5×中横梁 3.0×10

16

4.1.2 框架结构柱的侧移刚度计算

柱的侧移刚度按照公式(3)进行计算,式中系数αc为柱的侧移刚度修正系数,由表“柱侧移刚度修正系数”所列公式计算。ic为柱的线刚度,h为柱的计算高度。

表4.2 柱线刚度ic计算表

hc 层次 Ec (N/ mm2) b×h (mm×mm) Ic (mm4 E Ic/h (N• mm (mm) 3.0×10 1 4800 4 500×500 10 100.521×10 3.26×10 3.0×10 2~4 3600 410 4.34×10 0.521×10 500×500 10

D=c12ic (2) h2

根据梁、柱线刚度比K的不同,柱可分为中框架边柱和中柱、边框架边柱和中柱以及楼梯柱等若干种情况进行计算。计算过程如下所示,计算结果分别见表4.3~4.5。

各层框架结构柱的侧移刚度计算:

17

表4.3边框架柱侧移刚度D值(N/mm)

层数 柱 B C K 7.8752.416 3.267.875218.86 3.26k 2kD=c12ic(N/mm) h20.52.4160.66 22.4160.58.860.862 28.8611206 14636 D 一层 F B C D 二到四层 F B C D 五层 F 10.5210.59.6639.663 0.871 3.2629.66310.50.53.2213.221 0.713 3.2623.2217.8751.8151.815 0.476 4.3421.815217.8756.6536.653 0.769 4.3426.6532110.57.2587.258 0.784 4.3427.25810.52.4192.419 0.7 4.3422.4197.8751.9691.969 0.496 421.9697.875217.2197.219 0.783 427.21910.5217.8757.875 0.797 427.87510.52.6252.625 0.568 422.62514788 12106 19128 30902 31505 21981 15652 24710 25151 17925

18

4.2 纵向框架侧移刚度计算

纵向框架柱侧移刚度计算方法与横向框架柱相同,具体计算过程略。

5横向水平荷载作用下框架结构的内力和侧移计算

5.1横向水平地震作用下框架结构的内力和侧移计算 5.1.1横向自震周期计算

由于该结构的顶层无突出部分,故不用折算重力荷载代表值,所以结构顶点的假想侧移公式由式(3)~(5)计算,计算结构见表5.1。

VGi=Gk (3)

kinuiVGiDj1ns (4)

ijuTuk (5)

k1式中Gk为集中在k层楼面处的重力荷载代表值;VGi为把集中在各层楼面处的重力荷载代表值为水平荷载而得的第i层的层间剪力;Dij为第i层的层间侧

j1s移刚度;ui、uk分别为第i、k层的层间侧移;s同层内框架的总数。

19

表5.1 结构顶点的假想侧移计算

层数 1 2 3 4 5 Gi/kN 904.4 1082 1082 1082 1458.5 VGi/kN 5608.9 4704.5 3622.5 20.5 1458.5 Di/(N/mm) 52736 103516 103516 103516 83438 ui/mm 106 45 35 24.5 17.5 ui/mm 106 151 186 210.5 228 按式T11.7TuT(6)计算机本周期T1,其中uT的量纲为m ,取T0.7, 则

T1=1.70.70.2280.57s

5.1.2水平地震作用及楼层地震剪力计算

本设计中,由于结构高度不超过40米,质量和刚度沿高度分布比较平均,变形以剪切型为主,故可用底部剪力法进行水平地震作用计算。结构总水平地震作用标准值按公式(7)进行计算。

FEkα1Geq (7)

其中α1为相应于结构基本自震周期的水平地震影响系数值;Geq为结构等效总重力荷载。

Geq=0.85Gi0.855236.84451.28KN

Tgα1=T10.3max0.380.90.90.160.129

20

FEkα1Geq=0.12941735.4607=5383.87kN

因为1.4Tg=1.4×0.3=0.42s<T1=0.38s,所以应考虑顶部附加水平地震作用,顶部附加地震作用系数δn按表9计算,即

δn=0.08×0.38+0.07=0.1004

FnFEk

F4=0.1004×5383.87=0. KN

各质点的水平地震作用按式(8)计算

F(1δ)EknnGjHjj1 (8) ΔFnδnFEkFiViFkkinGiHi将上述δn和FEk代入可得Fi2134.14GiHiGj1n,具体计算过程见表5.2。各楼

jHj层地震剪力按式(9)ViFk计算,结果列入表5.2。

kin

21

表5.2 各质点横向水平地震作用及楼层地震剪力计算

GjHj层数 5 4 3 2 1 Hi/m 19.5 15.6 12 8.4 4.8 Gi/KN 1458.5 1082 1082 1082 904.4 (KN.m) GH jji1n(KN.m)Fi/KN Vi/KN 282.4 167.6 128.9 90.2 43.1 282.4 450 578.9 669.1 712.2 各质点水平地震作用及楼层地震剪力沿房屋高度的分布见图5.1

5.1.3水平地震作用下的位移验算

28440.75 16879.2 12984 9088.8 4341.12 71733.87 水平地震作用下框架结构的层间位移Δui和顶点位移ui分别按下面的公式计算。

(Δu)iVinDj1sij (10)

u(Δu)kk1计算结果列表得表5.3.

表5.3 横向水平地震作用下的位移验算

层 次 5 4 3 2 1 VikN 282.4 450 578.9 669.1 712.2 Di(N/mm) 52736 103516 103516 103516 83438 ui/mm 5.4 4.3 5.6 6.5 8.5 ui/mm 30.3 24.9 20.6 15 8.5 hi/mm 3900 3600 3600 3600 4800 θeΔuihi 1/722<1/450 1/873<1/450 1/3<1/450 1/5<1/450 1/565<1/450 由表5.3可见,顶点位移与总高之比 Δui/H1/4<1/550 ,满足要求。 22

5.1.4水平地震作用下的框架内力计算

以轴线③的横向框架计算为例,说明计算方法,其余框架内力计算从略。框架柱端的剪力及弯矩利用公式(11)和(12)计算,其中Dij取自表4.3,Dij取自表4.6,层间剪力取自表5.2,各柱反弯点高度比y按公式(13)确定,其中

yn由表2.4查得。

本设计中底层柱需考虑修正值y2,第2层柱需考虑修正值y1和y3,其余柱均无修正。具体计算过程及结果见表5.4。

VijDijDj1s (11)

ij u (12)

MijVij(1y)h yyny1y2y3 (13)

bMijVijyhF5F4F3F2F1V5V4V3V2V1(a) 水平地震作用分布(b) 层间剪力分布图5.1 横向水平地震作用及楼面地震剪力 23

梁端弯矩、剪力及柱的轴力分别利用公式(14),(15),(16)计算,其中梁的线刚度取自表4.1。具体计算过程见表5.5。

表5.4a 各层柱端弯矩及剪力计算

D层次 5 4 3 2 1 hi/m 3.9 3.6 3.6 3.6 4.8 Vi/kN 282.4 450 578.9 669.1 712.2 ij Di1 B 柱 Vi1 y Mib1 112.3 180.9 232.8 269 490.1 /(N/mm)52736 103516 103516 103516 83438 DijMiu1 137.3 180.9 232.8 269 401 15652 19128 19128 19128 11206 24710 30902 30902 30902 14636 0.45 100.5 0.5 129.3 0.5 149.5 0.5 185.6 0.55 C 柱 Vi1 y Mib1 177.8 292.3 376.1 434.6 0.1 层次 5 4 3 2 1 hi/m Vi/kN /(N/mm)3.9 282.4 52736 3.6 450 103516 3.6 578.9 103516 3.6 669.1 103516 4.8 712.2 83438 Dijhi/m 3.9 3.6 3.6 3.6 4.8 Vi/kN 282.4 450 578.9 669.1 712.2 Di1 Miu1 217.3 292.3 376.1 434.6 0.1 25151 31505 31505 31505 14788 101.3 0.45 162.4 0.5 208.9 0.5 241.5 0.5 242.5 0.55 D 柱 Vi1 y Mib1 180.9 298 383.4 443.1 6.8 层次 5 4 3 2 1 /(N/mm)52736 103516 103516 103516 83438 Dij/(N/mm)52736 103516 103516 Di1 Miu1 221.2 298 383.4 443.1 529.2 103.1 0.45 165.6 0.5 213 0.5 246.2 0.5 245 0.55 F 柱 Vi1 y Mib1 129 207.9 267.5 层次 5 4 3 hi/m 3.9 3.6 3.6 Vi/kN 282.4 450 578.9 Di1 Miu1 157.7 207.9 267.5 17925 73.5 0.45 21981 115.5 0.5 21981 148.6 0.5 24

2 3.6 669.1 103516 21981 171.8 0.5 1 4.8 712.2 83438 12106 200.5 0.55 注:表中M量纲为kNm, V量纲为kN。 lb309.2 529.5 309.2 433.2 libMlrMib1,jMiu,jibib (14) riMbrlbrMib1,jMiu,jibib1MbMb2Vb (15)

lNi(VblVbr)k (16)

kin表5.5梁端弯矩、剪力及柱轴力计算

B C 跨 Mbr层次 5 4 3 2 1 柱端弯矩 217.3 470.1 668.4 810.7 958.3 1ibM 137.3 293.2 413.7 501.8 670 lb 59.3 128.3 182.3 221.3 261.6 Vb i1bibr 32.8 70.3 99.4 120.5 155.3 C D 跨 0.273 0.273 0.273 0.273 0.273 ibr层次 5 4 3 2 1 柱端弯矩 217.3 470.1 668.4 810.7 958.3 ib1ibr0.727 0.727 0.727 0.727 0.727 MbrlMb 73.7 159.5 205.9 275.2 323.8 Vb 77.2 167.1 230.6 288.2 340.2 158 341.8 485.9 5.4 696.7

25

D F 跨 1ib Vb 柱端弯矩 67.8 221.2 145.8 478.9 211.3 681.4 250.7 826.5 309.1 972.3 层次 5 4 3 2 1 柱端弯矩 217.3 470.1 668.4 810.7 958.3 ib1ibr0.667 0.667 0.667 0.667 0.667 ibrib1ibr0.333 0.333 0.333 0.333 0.333

lMb Mbr 147.5 319.4 475.5 551.3 8.5 157.7 336.9 475.4 576.7 742.4 层次 5 4 3 2 1 B柱轴力 -32.8 -103.1 -202.5 -323 -478.3 C柱轴力 -44.4 -141.2 -272.4 -440.1 -625 D柱轴力 9.4 30.7 50 87.5 118.6 F柱轴力 67.8 213.6 424.9 675.6 984.7 注:1)柱轴力中的负号表示拉力。当左地震作用时,左侧两根柱为拉力,对应的右侧两

根柱为压力。

2)表中M单位为kNm,V单位为kN,N单位为kN,l单位为m。

水平地震作用下的框架的弯矩图,梁端剪力图以及柱轴力图如图5.2。

26

弯矩图(KN.m)

27

剪力图(KN)

28

轴力图(KN)

29

5.2横向水平风荷载作用下框架结构的内力和侧移计算 5.2.1风荷载标准值计算

风荷载标准值按照公式(1.2)ωkβzμsμzωo计算。

基本风压o0.45kN/m2,由《荷载规范》查得风载体型系数s=0.8(迎风面)和s=-0.5(背风面),综合为s=0.8-(-0.5)=1.3,风压高度系数μz按C类地面粗糙度确定,查的μz=0.84,风振系数按公式1uzdz.确定,由

WOT12=0.62×0.45×0.6112=0.16查得=1.23(脉动增大系数),由H/B=1.1,粗糙度类别为C类,可查的u=0.43. 则有:

表5.6 沿房屋高度分布风荷载标准值

层次 5 4 3 2 1 Hi ∕m 19.5 15.6 12 8.4 4.8 Hi ∕H 1 0.74 0.494 0.303 0.125 0.84 0.84 0.84 0.84 0.8 Z 1.23 1.23 1.23 1.23 1.23 u 0.43 0.43 0.43 0.43 0.43  1.63 1.467 1.311 1.191 1.08 作用于各楼层处的集中风荷载标准值Fwkzsz0Bh,计算结果如下: 5层:F5=1.63×1.3×0.84×0.45×(4.1+2.1)=19.68KN 4层:F4=1.467×1.3×0.84×0.45×(4.2+2.1)=16.35KN 3层:F3=1.311×1.3×0.84×0.45×(4.2+2.1)=14.61 KN 2层:F2=1.191×1.3×0.84×0.45×(4.2+2.1)=13.27 KN 1层:F1=1.08×1.3×0.84×0.45×(4.1+2.1)=16.05KN

30

等效节点集中风荷载示意见图

31

《荷载规范》规定,对于高度大于30米且高宽比大于1.5的房屋结构,应采用风阵系数βz来考虑风压脉动的影响,本设计房屋高度:H=15.72≤30,

H/B15.72/16.80.9361.5,因此,该房屋应考虑风压脉动的影响。

框架结构分析时,应该按照静力等效原理将图5.3a的分布荷载转化为节点集中荷载,

5.2.2风荷载作用下的水平位移验算

根据图5.3所示的水平荷载,由公式(9)ViDij计算层间剪力Vi,然后

kin依据前面求出的③轴线层间侧移刚度,再按照公式(10)计算各层的相对侧移和绝对侧移。计算过程见表5.7。

表5.7风荷载作用下框架层间剪力及侧移计算

层次 1 16.05 79.96 83438 0.96 0.96 1/4105 2 13.27 63.91 103516 0.62 1.58 1/5806 3 14.61 50. 103516 0.50 2.08 1/7200 4 16.35 36.03 103516 0.35 2.43 1/10285 5 19.68 19.69 52736 0.38 2.81 1/12631 FikN VikN DN/mm uimm uimm uihi 由表5.7可见,风荷载作用下框架的最大层间位移角为1/4105,远小于1/550,满足规范要求。

32

5.2.3风荷载作用下框架结构内力计算

风荷载作用下框架结构内力计算过程与水平地震作用下的相同

横向框架在水平风荷载作用下的弯矩图

33

横向框架在水平风荷载作用下的剪力图

34

横向框架在水平风荷载作用下的轴力图

35

6竖向荷载作用下框架结构的内力计算

6.1横向框架内力计算 6.1.1计算单元

36

6.1.2竖向荷载作用下框架结构的内力计算 6.1.2.1荷载计算

取(22)轴的横向中框架为计算单元。 5层:

1.恒荷载计算 (1)BC跨 1)板传给次梁

中间次梁 g1=6.87x3=20.61 KN/m 边框架梁 g2=6.87x1.5=10.305KN/m 2)次梁传给主梁

次梁自重 G1=3.937x4.2=16.5375KN 板—次梁—主梁 G2=20.61x4.2=86.562KN 合计: G=G1+G2=102.1KN (2)柱子 1)B柱

边框架梁传递 G1=6.87x1.5x6.3=.9215KN 边框架梁自重 G2=5.906 x(6.3-0.5)=34.28KN 合计 G=G1+G2=.9215+34.28+99.2KN 2)C柱

纵向中框架梁传递 G1=6.87 x3 x(6.3-0.5)=129.843KN 纵向中框架梁自重 G2=5.906x(6.3-0.5)=34.255KN

37

合计 G=G1+G2=129.843+34.255=1.1KN 3)D柱

纵向中框架梁传递 G1=6.87x3.75x6.3=162.304KN 纵向中框架梁自重 G2=5.906x(6.3-0.5)=34.255KN 合计 G= G1+G2=162.304+34.255=196.6KN 4)F柱

边框架梁传递 G1=6.87x2.25x6.3=97.382KN 边框架梁自重 G2=5.906x(6.3-0.5)=34.255KN 合计 G=G1+G2=97.382+34.255=131.6KN

2.活荷载计算 (1)BC跨梁 1)板传给次梁

中间次梁 q=2.4x3=7.2 KN/m 2)次梁传给主梁 Q=7.2x6.3=37.8KN (2)柱子

1)B柱 Q=2.4x1.5x4.2=15.1KN 2)C柱 Q=2.4x3x4.2=30.4KN 3)D柱 Q=2.4x3.75x4.2=37.8KN 4)F柱 Q=2.4x2.25x4.2=22.7KN

38

标准层(2—3层): 1.恒荷载计算 (1)BC跨梁 次梁传给主梁 :

次梁自重 G1=3.9375x(6.3-0.5)=24.019KN 次梁传递 G2=3.47x3x6.3=65.583KN 合计 G=G1+G2=.6KN (2)柱子

1)B柱

边框架梁传递 G1=(3.47x1.5+4.9x3.6)x6.3=143.9KN 边框架梁自重 G2=5.906x(6.3-0.5)=34.255KN 柱自重 G3=6.5625x3.6=23.625KN 小计 G=G1+G2+G3=201.8KN 2)C柱

中框架梁传递 G1=3.47 x3x6.3=65.583KN 中框架梁自重 G2=5.906x(6.3-0.5)=34.255KN 柱自重 G3=6.5625x3.6=23.625KN 小计 G=G1+G2+G3=123.5KN 3)D柱

中框架梁传递 G1=3.47x(2.25+1.5)x6.3=81.99KN

39

中框架梁自重 G2=5.906x(6.3-0.5)=34.255KN 柱自重 G3=6.5625x3.6=23.625KN 小计 G=G1+G2+G3=139.9KN 4)F柱

边框架梁传递 G1=(3.47x2.25+4.9x3.6)x6.3=160.3KN 边框架梁自重 G2=5.906x(6.3-0.5)=34.255KN 柱自重 G3=6.5625x3.6=23.625KN 小计 G=G1+G2+G3=218.2KN

2.活荷载计算 (1)BC跨梁 1)板传给次梁

中间次梁 q=2.0x3=6.0 KN/m 2)次梁传给主梁 Q=6.0x6.3=37.8KN (2)柱子

1)B柱 Q=2.0x1.5x4.2=12.6KN 2)C柱 Q=2.0x3x4.2=25.2KN 3)D柱 Q=2.0x3.75x4.2=31.5KN 4)F柱 Q=2.0x2.25x4.2=18.9KN 四层: 1.恒荷载计算

40

(1)BC跨梁 次梁传给主梁 :

次梁自重 G1=3.9375x(6.3-0.5)=24.019KN 次梁传递 G2=3.47x3x6.3=65.583KN 合计 G=G1+G2=.6KN (2)柱子

1)B柱

边框架梁传递 G1=边框架梁自重 G2=5.906x(6.3-0.5)=34.255KN 柱自重 G3=6.5625x3.9=25.5937KN 小计 G=G1+G2+G3=213.0KN 2)C柱

中框架梁传递 G1=3.47 x3x6.3=65.583KN 中框架梁自重 G2=5.906x(6.3-0.5)=34.255KN 柱自重 G3=6.5625x3.9=25.5937KN 小计 G=G1+G2+G3=125.4KN 3)D柱

中框架梁传递 G1=3.47x(2.25+1.5)x6.3=81.99KN 中框架梁自重 柱自重 G3=6.5625x3.6=23.625KN 小计 G=G1+G2+G3=141.8KN

(3.47x1.5+4.9x3.9)x6.3=152.2KN 41

G2=5.906x(6.3-0.5)=34.255KN 4)F柱

边框架梁传递 G1=(3.47x2.25+4.9x3.9)x6.3=169.6KN 边框架梁自重 G2=5.906x(6.3-0.5)=34.255KN 柱自重 G3=6.5625x3.9=25.5937N 小计 G=G1+G2+G3=22.9KN

2.活荷载计算 (1)BC跨梁 1)板传给次梁

中间次梁 q=2.0x3=6.0 KN/m 2)次梁传给主梁 Q=6.0x6.3=37.8KN (2)柱子

1)B柱 Q=2.0x1.5x4.2=12.6KN 2)C柱 Q=2.0x3x4.2=25.2KN 3)D柱 Q=2.0x3.75x4.2=31.5KN 4)F柱 Q=2.0x2.25x4.2=18.9KN 首层: 1.恒荷载计算 柱子:

1)B柱

边框架梁传递 G1=(4.9x4.8)x6.3=148.176KN

42

边框架梁自重 G2=5.906x(6.3-0.5)=34.255KN 柱自重 G3=6.5625x4.8=31.5KN 小计 G=G1+G2+G3=213.9KN 2)C柱

中框架梁传递 G1=3.47 x1.5x6.3=32.7915KN 中框架梁自重 G2=5.906x(6.3-0.5)=34.255KN 柱自重 G3=6.5625x4.8=31.57KN 小计 G=G1+G2+G3=98.5KN 3)D柱

中框架梁传递 G1=3.47x(2.25+1.5)x6.3=81.99KN 中框架梁自重 柱自重 G3=6.5625x4.8=31.5KN 小计 G=G1+G2+G3=147.7KN 4)F柱

边框架梁传递 G1=边框架梁自重 G2=5.906x(6.3-0.5)=34.255KN 柱自重 G3=6.5625x4.8=31.5N 小计 G=G1+G2+G3=114.9KN

2.活荷载计算

(3.47x2.25)x6.3=49.1873KN 43

G2=5.906x(6.3-0.5)=34.255KN (1)BC跨梁 1)板传给次梁

中间次梁 q=2.0x3=6.0 KN/m 2)次梁传给主梁 Q=6.0x6.3=37.8KN (2)柱子

1)B柱 Q=2.0x1.5x4.2=12.6KN 2)C柱 Q=2.0x3x4.2=25.2KN 3)D柱 Q=2.0x3.75x4.2=31.5KN 4)F柱 Q=2.0x2.25x4.2=18.9KN

其荷载分布图如下所示:

44

框架竖向恒荷载图

45

框架竖向活荷载图

46

6.1.3内力计算

梁端、柱端弯矩采用弯矩二次分配法进行计算。由于结构和荷载均对称;故计算时可用半框架。弯矩计算过程如图6.4,所得弯矩图见图6.5。梁端剪 力可根据梁上竖向荷载引起的剪力与梁端弯矩引起的剪力相叠加而得。柱轴力可由梁端剪力和节点集中力叠加得到。计算柱底轴力还需考虑柱的自重,如表6.3和6.4所列。 6.1.3.1固端弯矩计算

将框架梁视为两端固端梁计算固端弯矩,计算结果见图6.4。 6.1.3.2分配系数计算

考虑框架对称性,去半框架计算,半框架的梁柱线刚度如图6.6所示。切断的横梁线刚度为原来的一倍,分配系数按与节点连接的各杆的转动刚度比值计算。

例:A柱顶层节点:

下柱ic40.337 icib7.8754梁ib7.8750.663 icib7.8754其它节点的分配系数见图6.6。

远端固定,转动刚度s=4i 远端简支,转动刚度s=4i 远端滑动,转动刚度s=4i 远端自由,转动刚度s=4i

47

AjSAjSA

6.1.3.3传递系数

Aj1

远端固定,传递系数C=1/2 远端滑动,传递系数C=-1 远端铰支,传递系数C=0

6.1.3.4弯矩分配

本框架的弯矩分配计算采用分层法进行,即先对各层进行分配,最后再合为整体重新分配以达到平衡。力矩分配从略。 6.1.3.5梁端剪力及柱轴力计算

梁端剪力 VVqVm 式中Vq——梁上荷载引起的剪力

M左M右Vm——梁端弯矩引起的剪力 Vm=

l柱轴力 N=V+P 式中V——梁端剪力

P——节点集中力及柱自重

计算从略。

因此恒,活载作用下框架内力图如下:

48

竖向恒荷载作用下框架弯矩图

49

竖向恒荷载作用下框架剪力图

50

竖向恒恒荷载作用下框架轴力图

51

竖向活荷载作用下框架弯矩图

52

竖向活荷载作用下框架剪力图

53

竖向活荷载作用下框架轴力图

6.2横向框架内力组合 6.2.1结构抗震等级

结构的抗震等级可根据结构类型、地震烈度、房屋高度等因素,由规范可确定本工程的框架结构为二级抗震等级。

6.2.2框架梁内力组合

本框架考虑五种内力组合,即1.2恒+1.4活,1.2恒+1.4风,1.2恒+09*1.4(活+风),1.35恒+0.7*1.4活,1.2风+1.3水平地震

框架梁内力组合如下表所示:

55

BC梁内力组合值 内1.35恒+1.2恒+控制力恒荷活荷地震作风荷1.2恒1.2恒1.2风层数 (1.4*0.7)(0.9*1.4) 截面 组载 载 用 载 +1.4活 +1.4风 +1.3地震 活 (活+风) 合 左端 五层 跨中 M -45.5 -16.8 93.3 6.3 -78.12 -77. V 58.8 20.8 -25.5 -1.7 99.68 99.76 M 104.3 37.5 0 0 177.66 177.56 -45.78 68.18 125.16 -67.83 94.63 172.41 128.85 -35.19 0 0 -82.79 -35.19 249.83 -70.47 0 0 -172.5 -70.47 336.15 -94.99 0 0.00 V M -105.4 -37.9 -59.9 -4.1 -179. 右端 V -78.7 -27.8 -25.5 -1.7 -133.36 M -62.9 -25.2 179.9 13.3 -110.76 左端 V 58.2 22.6 -50.7 -3.8 101.48 M 85.2 34.5 0 0 150. 四层 跨中 0.00 V M -88.7 -35.5 -124.2 -9.2 -156.14 右端 V -66.8 -26 -50.7 -3.8 -116.56 M -61.9 -24.8 240.3 19.8 -109.00 左端 V 58 22.5 -67.9 -5.6 101.10 M 85.6 34.6 0 0 151.16 三层 跨中 0.00 V M - -35.6 -167.3 -13.8 -156. 右端 V -67 -26.1 -67.9 -5.6 -116.94 M -59.2 -25.3 285.1 25.4 -106.46 左端 V 57.4 22.6 -81.2 -7.2 100.52 M 86.7 34.4 0 0 152.20 二层 跨中 0.00 V M -.4 -35.5 -201.8 -18.1 -156.98 右端 V -67.6 -26 -81.2 -7.2 -117.52 M -14.7 -21.8 417.2 42.9 -48.16 左端 V 17.1 21.9 -115.1 -11.8 51.18 M 10.1 35.7 0 0 62.10 一层 跨中 0.00 V 0 M -18.3 -36.3 -273.3 -28 -72.78 右端 V -18.3 -26.7 -115.1 -11.8 -59.34 56

0.00 0.00 0.00 -179.43 -132.22 -179.40 -133.49 -96.82 -131.61 -109.61 -56.86 -90.47 100.72 .52 93.53 148.83 102.24 145.71 0.00 0.00 0.00 -1. -119.32 -162.76 -115.66 -85.48 -117.71 -107.87 -46.56 -80.58 100.35 61.76 90. 149.47 102.72 146.32 0.00 0.00 0.00 0 -155.04 -126.12 -169.04 -234.05 -116.03 -88.24 -120.34 -94.99 -104.71 -35.48 -70.91 401.11 99. 58.80 88.28 -114.2 150.76 104.04 147.38 0 0.00 0.00 0.00 0 -155.48 -132.62 -174.82 -284.06 -116.74 -91.20 -122.95 -114.2 -41.21 42.42 8.95 593.84 44.55 4.00 33.25 -163.79 48.62 12.12 57.10 0 0.00 -60.28 -50.87 0.00 -61.16 -38.48 0.00 0 -102.98 -388. -70.47 -163.79

CD梁内力组合值 内1.35恒+ 1.2恒+控制截力恒荷活荷地震 风荷1.2恒+ 1.2恒+ 1.2风+ 层数 (1.4*0.7)(0.9*1.4) 面 组载 载 作用 载 1.4活 1.4风 1.3地震 活 (活+风) 合 左端 五层 跨中 M -77.7 -27.6 129.3 9 -131.88 -131.94 V 34.7 11.3 -82.3 -5.7 57.46 57.92 M -35.5 -14 0 0 -62.20 -61.65 -80. 33.66 -42.60 0.00 -11.59 12.42 -15.94 3.24 -25.68 0.00 -38.14 -18.00 0.40 -7.58 -27.60 0.00 -. -28.82 13.92 -17.78 -30.60 0.00 -71.20 -39.14 81.98 -47.66 -2.52 0.00 -93.18 -116.68 178. 48.70 -113.83 -60.24 0 0.00 -12.71 20.65 -41.53 15.21 -36.39 0.00 -38.03 -12.83 -27.81 5.96 -39.07 0.00 -52.44 -22.09 -15.35 -3.28 -41.94 0.00 -67.31 -31.44 44.63 -29.84 -17. 0.00 -87.26 0 -162.72 -113.83 470.15 -300. 0 0 -432.65 -300. 655.37 -420.42 0 0 -606.13 -420.42 828.61 -531.65 0 0 -766.09 -531.65 900.71 -573.37 0 0 -819.65 0.00 V 0.00 M -0.09 -1.8 -117.6 -8.2 -2.63 -1. 右端 V 17 5.9 -82.3 -5.7 28.66 28.73 M -42.8 -17.5 338.3 25.3 -75.86 -74.93 左端 V 21.6 7.7 -216.5 -16.2 36.70 36.71 M -21.4 -8.5 0 0 -37.58 -37.22 四层 跨中 0.00 V 0.00 M -4.6 -2.5 -311.3 -23.3 -9.02 -8.66 右端 V 3.9 2.3 -216.5 -16.2 7.90 7.52 M -44.7 -18.1 468.5 38.6 -78.98 -78.08 左端 V 22.5 8 -300.6 -24.7 38.20 38.22 M -23 -9.1 0 0 -40.34 -39.97 三层 跨中 0.00 V 0.00 M -3.8 -2.3 -433.3 -35.7 -7.78 -7.38 右端 V 4.8 2.6 -300.6 -24.7 9.40 9.03 M -50.7 -17.3 588.1 53.4 -85.06 -85.40 左端 V 25.2 7.7 -377.3 -34.3 41.02 41.57 M -25.5 -9 0 0 -43.20 -43.25 二层 跨中 0.00 V 0.00 M -1.7 -2.4 -3.7 -49.4 -5.40 -4.65 右端 V 7.4 2.3 -377.3 -34.3 12.10 12.24 M -6.7 -22.5 633.5 .3 -39. -31.10 左端 V 8 9.6 -403.3 -40.9 23.04 20.21 一层 M -2.1 -12 0 0 -19.32 -14.60 跨中 0.00 V 0.00 右端 M -9.4 -1.8 -576.5 -58.5 -13.80 -14.45 57

V -9.8 4.2 -403.3 -40.9 -5.88

DF梁内力组合值 -9.11 -69.02 -58.00 -573.37 内1.35恒+ 1.2恒+控制力恒荷地震 风荷1.2恒1.2恒+ 1.2风+1.3层数 活荷载 (1.4*0.7)(0.9*1.4)截面 组载 作用 载 +1.4活 1.4风 地震 活 (活+风) 合 M 1.7 左端 V 10.3 M 10.7 五层 跨中 V M -11.8 右端 V -16.3 M -0.2 左端 V 9.6 M 7.6 四层 跨中 V M -16.7 右端 V -17 M -0.9 左端 V 10.1 M 7.8 三层 跨中 V M -15.1 右端 V -16.4 M -1.1 左端 V 10.4 M 8.1 二层 跨中 V M -14.1 右端 V -16.2 M -9 一层 左端 V 13.6 -1.6 78.9 5.4 -0.20 5.3 -44.7 -3.1 19.78 5.7 0 0 20.82 0.73 19.10 20.03 9.60 6.83 8.02 15.13 12.84 20.02 109.05 -61.83 0 0 -169.08 -61.83 244.78 -133.96 0 0 -357.8 -133.96 334.34 -181.58 0 0 -482.97 -181.58 412.32 -222.7 0 0 -590.21 -222.7 524.42 -294.93 -5.1 -6.9 -1.8 4.8 4.5 -122.4 -44.7 176.2 -96.4 0 -8.3 -3.1 13.1 -7.2 0 0.00 -21.30 -29.22 -2.76 18.24 15.42 0.00 -30.68 -30.76 -4.02 19.12 15.80 0.00 -27.92 -29.62 -4.26 19.48 16.02 0.00 -27.28 -29.66 -13.60 23.60 0.00 0.00 0.00 -20.93 -25.78 -31.04 -28.77 -23.90 -32.16 -2.03 18.10 14.00 17.66 1.44 8.50 14.67 9.12 14.79 0.00 0.00 0.00 -29.99 -46.78 -53.68 -30.20 -30.48 -38.80 -3.27 26.50 21.10 18. -2.86 4.94 15.04 9.36 15.16 0.00 0.00 0.00 -27.25 -57.88 -62.72 -29.10 -34.66 -42.11 -3. 35. 29.30 18.94 -7.40 0. 15.35 9.72 15.39 0.00 0.00 0.00 -26.29 -69.56 -73.62 -29.02 -39.32 -46.53 -14.11 41.98 34.18 23.46 -13.36 -3.84 -7.6 -257.6 -19.1 -7.4 -96.4 -7.2 -2.1 239 19.7 5 -129.8 -10.7 4.6 0 0 -7 -7.1 -2.1 5 4.5 -7.4 -7.3 -2 5.2 -345.3 -28.4 -129.8 -10.7 292.8 26.4 -158.2 -14.2 0 0 -419.3 -37.6 -158.2 -14.2 368.6 37.7 -207.3 -21.2 58

M 6.5 5.1 0 0 跨中 V M -7.8 -6.1 -5.1 -57.8 右端 V -13 -7 -207.3 -21.2 14.94 0.00 -17.90 -25.40 13.77 7.80 14.23 0 0 -802.69 -294.93 0.00 0.00 0.00 -16.51 -90.28 -.87 -24.41 -45.28 -51.13 注:①表中弯矩单位为KNm,剪力单位为KN。

59

6.2.3框架柱子内力组合

取每层的柱顶和柱底两个控制截面,按照梁的内力组合方法进行计算,组合结果及柱端弯矩设计值的调整见表6.6~ 6.11。

在框架柱内力组合中考虑了:1.2恒+1.4活,1.2恒+1.4风,1.2恒+0.9*1.4(活+风),1.35恒+0.7*1.4活,1.2恒+0.9活+地震等五种组合。 组合表如下:

B柱内力组合值 内1.35恒+ 1.2恒+ 1.2恒控制力恒荷活荷地震 1.2恒1.2恒+ 层数 风荷载 (1.4*0.7)(0.9*1.4)+0.9活+截面 组载 载 作用 +1.4活 1.4风 活 (活+风) 地震 合 M 37.4 16.8 137.3 柱顶 V 20.3 7.6 -40.6 N 158 35.8 -32.8 五层 M 18.7 13 112.3 柱底 V 20.3 7.6 -40.6 N 158 35.8 -32.8 M 35.8 12.2 180.9 柱顶 V 16.5 6.8 -57.3 N 429.2 71.1 -103.1 四层 M 17.8 12.4 180.9 柱底 V 16.5 6.8 -57.3 N 429.2 71.1 -103.1 M 35.8 12.4 232.8 柱顶 V 18.1 6.8 -78.1 N 6 106.1 -202.5 三层 M 17.8 12.1 232.8 柱底 V 18.1 6.8 -78.1 N 6 106.1 -202.5 二层 柱顶 M 35.8 13.3 269 -6.3 68.40 -2.7 35.00 -1.7 239.72 -6.3 40. -2.7 35.00 -1.7 239.72 -6.7 60.04 -4.4 29.32 -5.5 614.58 -9.3 38.72 -4.4 29.32 -5.5 614.58 -10.9 60.32 -6.7 31.24 -11.1 975.34 -13.1 38.30 -6.7 31.24 -11.1 975.34 -6.7 61.58 44.32 24.76 211.63 19.07 24.76 211.63 41.76 17.96 574.03 14.92 17.96 574.03 37.65 17.87 919.27 11.19 17.87 919.27 41.76 36.06 20.58 187.22 13.62 20.58 187.22 33.58 13. 507.34 8.34 13. 507.34 27.70 12.34 811.26 3.02 12.34 811.26 33.58 58.11 30.53 232.57 30.88 30.53 232.57 49. 22.82 597.70 25.27 22.82 597.70 44.85 21.85 946.50 20.10 21.85 946.50 51.28 197.3 -9.4 1.02 146.44 -9.4 1.02 234.84 -31.38 475.93 213.42 -31.38 475.93 286.92 -50.26 719.79 265.05 -50.26 719.79 323.93 60

V 10.8 7.9 -68.6 N 948.3 141.4 -323 M 17.8 5.22 269 柱底 V 10.8 7.9 -68.6 N 948.3 141.4 -323 M 5.9 6.6 401 柱顶 V 8.4 6 -1.9 N 1179.3 175.8 478.3 一层 M 3 3 490.1 柱底 V 8.4 6 -1.9 N 1179.3 0 -478.3 -5.9 24.02 -18.3 1335.92 -14.5 28.67 -5.9 24.02 -18.3 1335.92 -46.1 16.32 -17.1 18.48 -30.2 1661.28 -36.1 7.80 -17.1 18.48 -30.2 1415.16

8.80 1262.27 9.82 8.80 1262.27 -37.21 -5.42 1562.46 -31.33 -5.42 1562.46 4.70 1112.34 1.06 4.70 1112.34 -57.46 -13.86 1372.88 -46.94 -13.86 1372.88 15.48 1293.07 9.67 15.48 1293.07 -42.69 -3.91 1598.62 -38.11 -3.91 1377.11 -48.53 942.22 295.058 -48.53 942.22 414.02 -139.42 2051.68 496.4 -139.42 936.86 C柱内力组合值 内1.35恒+1.2恒+1.2恒控制力恒荷活荷地震作1.2恒1.2恒层数 风荷载 (1.4*0.7)(0.9*1.4)+0.9活+截面 组载 载 用 +1.4活 +1.4风 活 (活+风) 地震 合 M 17.3 9.3 178.2 柱顶 V 13.4 5 -94.2 N 227.5 69.5 -56.7 五层 M 8.68 10.2 1.1 柱底 V 13.4 5 -94.2 N 227.5 69.5 -56.7 M 15.7 8.7 276.4 柱顶 V 12 4.9 -155.7 N 491.4 128.4 -222.6 四层 M 8.5 8.8 284.3 柱底 V 12 4.9 -155.7 N 491.4 128.4 -284.3 M 15.7 8.7 352.1 三层 柱顶 V 12.7 4.8 -197.6 N 704.4 187.7 -355 -12.2 33.78 -6.5 23.08 -4 370.30 -13.1 24.70 -6.5 23.08 -4 370.30 -21.5 31.02 -12.2 21.26 -16.4 769.44 -22.3 22.52 -12.2 21.26 -16.4 769.44 -30 31.02 -16.9 21.96 -35.6 1108.06 32.47 22.99 375.24 21.71 22.99 375.24 29.72 21.00 7.22 20.10 21.00 7.22 29.72 21.85 1134. 3.68 6.98 267.40 -7.92 6.98 267.40 -11.26 -2.68 566.72 -21.02 -2.68 566.72 -23.16 -8.42 795.44 17.11 14.19 355.53 6.76 14.19 355.53 2.71 5.20 730.80 -6.81 5.20 730.80 -8.00 -0.01 1036.93 207.33 -73.62 278.85 208.696 -73.62 278.85 303.07 -136. 482. 302.42 -136. 420.94 378.77 -178.04 659.21 61

M 8.5 8.7 359.5 柱底 V 12.7 4.8 -197.6 N 704.4 187.7 -355 M 15.7 10.1 434.6 柱顶 V 7.3 5.4 -242.4 N 920.6 246.5 -651.4 二层 M 8.5 9.5 437.9 柱底 V 7.3 5.4 -242.4 N 920.6 246.5 -651.4 M 2.5 3.8 472.2 柱顶 V 7 5.4 -201.4 N 1045.4 270 -751 一层 M 1.3 3.8 494.5 柱底 V 7 5.4 -201.4 N 1045.4 207 -751 -30.8 22.38 -16.9 21.96 -35.6 1108.06 -40.8 32.98 -22.9 16.32 -62.6 1449.82 -41.6 23.50 -22.9 16.32 -62.6 1449.82 -51.5 8.32 -21.9 15.96 -91.7 1632.48 -53.8 6.88 -21.9 15.96 -91.7 14.28

20.00 21.85 1134. 31.09 15.15 1484.38 20.79 15.15 1484.38 7.10 14.74 1675. 5.48 14.74 1614.15 -32.92 -8.42 795.44 -38.28 -23.30 1017.08 -48.04 -23.30 1017.08 -69.10 -22.26 1126.10 -73.76 -22.26 1126.10 -17.65 -0.01 1036.93 -19.84 -13.29 1336.43 -30.25 -13.29 1336.43 -57.10 -12.39 1479.14 -61.44 -12.39 1399.76 377.53 -178.04 659.21 462.53 -228.78 675.17 456.65 -228.78 675.17 478.62 -188.14 746.48 499.48 -188.14 6.78 D柱内力组合值 内1.35恒+1.2恒+控制力恒荷活荷地震作1.2恒1.2恒1.2恒+0.9层数 风荷载 (1.4*0.7)(0.9*1.4)截面 组载 载 用 +1.4活 +1.4风 活+地震 活 (活+风) 合 M 8.21 9.3 187.8 柱顶 V 9.8 5 -98.5 N 1.9 37.2 -37.6 五层 M 3.2 10.2 196.5 柱底 V 9.8 5 -98.5 N 1.9 37.2 -37.5 M 6.1 8.7 293.1 四层 柱顶 V 8.2 4.9 -1.7 -12.9 22.87 20.20 -6.8 18.76 18.13 -2.7 279.96 292.82 -13.6 18.12 14.32 -6.8 18.76 18.13 -2.7 279.96 292.82 -22.8 19.50 16.76 -12.9 16.70 15.87 -8.21 5.32 206.022 2.24 9.49 -82.24 224.10 271.35 223.76 -15.20 -0.44 209.52 2.24 9.49 -82.24 224.10 271.35 223.86 -24.60 -10.45 308.25 -8.22 -0.24 -150.45 62

N 337.4 71.2 -157.7 M 3.1 8.8 299.6 柱底 V 8.2 4.9 -1.7 N 337.4 71.2 -157.7 M 6.1 8.7 373.4 柱顶 V 7.9 4.8 -209.1 N 482.7 105.1 -328.4 三层 M 3.1 8.7 379.2 柱底 V 7.9 4.8 -209.1 N 482.7 105.1 -328.4 M 6.1 10.1 461.9 柱顶 V 7 5.4 -256.9 N 625.5 139.3 -7.4 二层 M 3.1 9.5 463.1 柱底 V 7 5.4 -256.9 N 625.5 139.3 -7.4 M 1.2 3.8 483.2 柱顶 V 6.5 5.4 -204.8 N 796.5 171.8 -743.5 一层 M 0.6 3.8 500 柱底 V 6.5 5.4 -204.8 N 796.5 171.8 -500 -11.7 504.56 -22.5 16.04 -12.9 16.70 -11.7 504.56 -31.8 19.50 -17.9 16.20 -25.8 726.38 -32.5 15.90 -17.9 16.20 -25.8 726.38 -43.5 21.46 -24.3 15.96 -45.8 945.62 -44 17.02 -24.3 15.96 -45.8 945.62 -52.6 6.76 -22.3 15.36 -65.5 1196.32 -.3 6.04 -22.3 15.36 -.3 1196.32

525.27 12.81 15.87 525.27 16.76 15.37 7. 12.71 15.37 7. 18.13 14.74 980.94 13.50 14.74 980.94 5.34 14.07 1243. 4.53 14.07 1243. 388.50 -27.78 -8.22 388.50 -37.20 -15.58 3.12 -41.78 -15.58 3.12 -53.58 -25.62 686.48 -57.88 -25.62 686.48 -72.20 -23.42 8.10 -75.30 -23.42 879.78 479.85 -13. -0.24 479.85 -21.79 -7.03 679.16 -26.27 -7.03 679.16 -34.76 -15.41 868.41 -39.75 -15.41 868.41 -60.05 -13.49 10.74 -62.91 -13.49 1103.85 311.26 311.24 -150.45 311.26 388.55 -195.3 345.43 390.75 -195.3 345.43 478.31 -243. 328.57 475.37 -243. 328.57 488.06 -192.14 366.92 504.14 -192.14 610.42 F柱内力组合值 内1.35恒+1.2恒1.2恒+1.2恒控制力恒荷活荷地震1.2恒层数 风荷载 (1.4*0.7)+1.4 (0.9*1.4)+0.9活+截面 组载 载 作用 +1.4活 风 (活+风) 地震 活 合 五层 柱顶 M -10.1 -4.3 -97.1 -6.3 -18.14 -17.85 -20.94 -25.48 -113.09 63

V 5.6 2.4 56.3 3.8 10.08 9.91 N -147.9 -29.6 -44.7 -3.1 -218.92 -228.67 M 11.8 5.1 122.4 8.3 21.30 20.93 柱底 V 5.6 2.4 56.3 3.8 10.08 9.91 N -147.9 -29.6 -44.7 -3.1 -218.92 -228.67 M -7 -3.5 -141.2 -10.7 -13.30 -12.88 柱顶 V 3.9 1.9 83.8 6.5 7.34 7.13 N -394.3 -55.8 -141.1 -10.2 -551.28 -586.99 四层 M 6.7 3.3 160.6 12.8 12.66 12.28 柱底 V 3.9 1.9 83.8 6.5 7.34 7.13 N -394.3 -55.8 -141.1 -10.2 -551.28 -586.99 M -8.3 -3.4 -187.9 -15.7 -14.72 -14. 柱顶 V 4.6 1.9 108.9 9.3 8.18 8.07 N -628.9 -81.9 -271 -20.9 -869.34 -929.28 三层 M 8 3.5 204.1 17.7 14.50 14.23 柱底 V 4.6 1.9 108.9 9.3 8.18 8.07 N -628.9 -81.9 -271 -20.9 -869.34 -929.28 M -6.7 -4.5 -194.6 -16.9 -14.34 -13.46 柱顶 V 3.4 2.4 118.3 10.8 7.44 6.94 N -863.3 -108.1 -429.2 -35.1 -1187.30 -1271.39 二层 M 5.8 4.1 231.4 21.9 12.70 11.85 柱底 V 3.4 2.4 118.3 10.8 7.44 6.94 N -863.3 -108.1 -429.2 -35.1 -1187.30 -1271.39 M -1.2 -1.6 -369.5 -40.9 -3.68 -3.19 柱顶 V 6.5 0.6 169.3 18.6 8. 9.36 N -991.2 -134 -636.5 -56.3 -1377.04 -1469.44 一层 M 0.7 1.4 443.1 48.5 2.80 2.32 柱底 V 6.5 0.6 169.3 18.6 8. 9.36 N -991.2 -134 -636.5 -56.3 -1377.04 -1469.44 12.04 14.53 65.18 -181.82 -218.68 -248.82 25.78 31.04 141.15 12.04 14.53 65.18 -181.82 -218.68 -248.82 -23.38 -26.29 -152.75 13.78 15.26 90.19 -487.44 -556.32 -6.48 25.96 28.33 171.61 13.78 15.26 90.19 -487.44 -556.32 -6.48 -31.94 -34.03 -200.92 18. 19.63 116.13 -783.94 -884.21 -1099.39 34.38 36.31 216.85 18. 19.63 116.13 -783.94 -884.21 -1099.39 -31.70 -35.00 -206.69 19.20 20.71 124. -1085.10 -1216.39 -1562.45 37.62 39.72 242.05 19.20 20.71 124. -1085.10 -1216.39 -1562.45 -58.70 -.99 -372.38 33.84 31.99 177. -1268.26 -1429.22 -1946. 68.74 63.71 445.2 33.84 31.99 177. -1268.26 -1429.22 -1946.

7截面设计

7.1 框架梁

由上可知,一层、五层单独配筋,二到四层可取相同配筋,如下: 混凝土强度等级为C30(fc14.3N/mm2,ft1.43N/mm2),纵筋为Ⅱ级

(fy300N/mm2),箍筋为Ⅰ级(fy210N/mm2)。 7.1.1梁的正截面设计

从框架梁内力组合表中分别选出梁跨间截面及支座截面的最不利内力,并将支座中心处的弯矩换算为支座边缘控制截面的弯矩进行配筋计算。

表7.1 框架梁纵向钢筋计算表

层次 截面 M(KN.M) 128.85 179. 177.66 178. 162.72 61.65 109.05 169.08 62 ξ 0.06 0.0 0.0 0.0 0.08 0.03 0.0 0.083 0.03 As/㎜2 实配钢筋As/㎜2 633 5 1 4 807 298 534 839 298 4φ14(615) 6φ14(923) 6φ14(923) 6φ14(923) 4φ16(804) 4φ14(615) 4φ14(615) 4φ16(804) 4φ14(615) ρ/% 0.29 0.44 0.44 0.44 0.383 0.29 0.29 0.383 0.29 B支座 Cr支座 BC跨中 Cl支座 5层 Dr支座 CD跨中 Dl支座 F支座 DF跨中 401.1 0.213 2173 6φ22(2281) 1.09 2至4层 B支座 65

Cr支座 BC跨中 Cl支座 Dr支座 CD跨中 Dl支座 F支座 DF跨中 284.06 152.2 420.15 350 2.2 304 420 270.5 0.146 0.075 0.225 0.184 0.149 0.157 0.225 0.104 1459 753 2256 1836 14 1572 2296 1409 4φ22(1520) 4φ16(804) 6φ22(2281) 6φ20(1884) 4φ22(1520) 4φ22(1520) 6φ22(2281) 6φ18(1526) 0.724 0.383 1.09 0.7 0.724 0.724 1.09 0.727 420 302.98 155 435 370.5 305 355.5 412 295.5 0.225 0.156 0.08 0.235 0.188 0.157 0.186 0.22 0.153 2255 1565 1463 2300 1884 1577 1866 2204 1523 6φ22(2281) 6φ18(1526) 4φ22(1520) 6φ22(2281) 6φ20(1884) 4φ22(1520) 6φ20(1884) 6φ22(2281) 4φ22(1520) 1.09 0.727 0.724 1.09 0.7 0.724 0.7 1.09 0.724 B支座 Cr支座 BC跨中 Cl支座 1层 Dr支座 CD跨中 Dl支座 F支座 DF跨中

66

7.1.2梁的斜截面设计

表 7.2 框架梁箍筋数量计算表

0.25βcfcbho(KN) 750.75 750.75 750.75 750.75 750.75 750.75 750.75 750.75 750.75 750.75 750.75 750.75 750.75 是否可以构造配0.7ftbho (KN) 筋 210.21 210.21 210.21 210.21 210.21 210.21 210.21 210.21 210.21 210.21 210.21 210.21 210.21 是 是 是 否 是 是 是 是 是 是 是 是 是 加密区配筋(mm2) 双肢φ8@100 双肢φ8@100 双肢φ8@100 双肢φ8@100 双肢φ8@100 双肢φ8@100 双肢φ8@100 双肢φ8@100 双肢φ8@100 非加密区配筋 (mm2) 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ10@150 层次 截面 V(KN) B支座 99.76 Cr支座 133.49 BC跨中 0 Cl支座 113.83 5层 Dr支座 CD跨中 113.83 0 Dl支座 61.83 F支座 61.83 DF跨中 0 B支座 114.2 Cr支座 114.2 2至4层 BC跨中 0 双肢φ8@100 双肢φ8@100 双肢φ8@100 双肢φ10@100 Cl支座 431.65 67

Dr支座 CD跨中 431.65 0 750.75 750.75 750.75 750.75 750.75 750.75 750.75 750.75 750.75 750.75 750.75 750.75 750.75 750.75 210.21 210.21 210.21 210.21 210.21 210.21 210.21 210.21 210.21 210.21 210.21 210.21 210.21 210.21 否 是 是 是 是 是 是 是 否 否 是 否 否 是 双肢φ10@100 双肢φ8@100 双肢φ8@100 双肢φ8@100 双肢φ8@100 双肢φ10@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ10@150 双肢φ10@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 双肢φ8@150 Dl支座 181.58 F支座 181.58 DF跨中 0 B支座 163.79 Cr支座 163.79 BC跨中 Cl支座 1层 Dr支座 CD跨中 Dl支座 F支座 DF跨中 0 473 473 0 295 295 0 双肢φ8@100 双肢φ8@100 双肢φ8@100 双肢φ10@100 双肢φ10@100 双肢φ8@100 双肢φ8@100 双肢φ8@100 双肢φ8@100

68

7.2框架柱截面设计

7.2.1柱正截面承载力计算

以五层B柱为例。根据内力组合表,将支座中心的弯矩换算至支座边缘,并与柱端组合弯矩的调整值比较后,选出最不利内力,进行配筋计算。 B柱: (1)五层

M197.3106eo1043.8mm 3N1.0210ea取20mm和偏心方向截面尺寸的1/30两者中的较大值,即ea=20mm。

故ea=20mm

eieoea1043.8201063.8mm

10.5fcA0.514.35005009.51 取11 3N1.0210lo3.91.259.7515 取21 h0.512l1o1219.75111.03

e1063.814001400ih475h012ei1.031063.81085.10.3h00.3x475142.5

可先按大偏心受压情况计算

heeias1085.1250251310.1mm

2Ne1fcbh02b10.5bAs'0

fy'h0as 69

故按构造配筋

AsAs'minbh0.002500500500mm2

选414(AsAs'615mm) 总配筋率s226150.5%5% 可以。

500500一侧配筋率s0.25%. 可以

其余计算结果如下所示:

B柱正截面承载力计算 层次 M N (KN.m) (KN) 197.3 5 2至4 1 As' ei 0.3h0 e (mm) 2(mm) (mm) (mm) 1.02 1085.1 142.5 1310.1 <0 142.5 142.5 617.9 578.76 <0 2032 minbh (mm2) 500 500 500 323.93 942.22 392.9 414.02 1372.88 353.76 实配As'(mm) 4φ14(615) 4φ14(615) 6φ22(2281) 2实配As(mm) 4φ14(615) 4φ14(615) 6φ22(2281) 2s 0.50% 0.50% 1.80%

一侧配筋率s 0.25% 0.25% 0.90% 

70

C柱正截面承载力计算

M N (KN.m) (KN) 层次 5 2至4 1 ei (mm) 0.3h0 (mm) 142.5 142.5 142.5 2e (mm) 601 728.3 600 As' (mm) 416 2445 2503.9 2207.33 370.3 375.8 462.53 1017.08 503.3 478.62 1479.14 375 minbh (mm2) 500 500 500 一侧配筋率s 0.25% 0.90% 0.90% 实配As'(mm) 4φ14(615) 6φ22(2281) 6φ22(2281) 2实配As(mm) 4φ14(615) 6φ22(2281) 6φ22(2281)

s 0.50% 1.80% 1.80% D柱正截面承载力计算

层次 M(KN.m) 5 2至4 206.022 478.31 ei N (KN) (mm) 223.76 980.94 968.9 533 0.3h0 (mm) (mm) 142.5 1193.9 142.5 758 e minbhAs'(mm2) (mm2) <0 500 2555 500 实配As'(mm) 4φ14(615) 6φ22(2281) 6φ22(2281) 2实配As(mm) 4φ14(615) 6φ22(2281) 6φ22(2281)

2s 0.50% 1.80% 1.80% 一侧配筋率s 0.25% 0.90% 0.90% 

71

F柱正截面计算

ei 层次 M(KN.m) N(KN) (mm) 5 2至4 1 113.09 206.69 372.38 248.82 507.7 1085.1 237.8 1377.04 322.3 0.3h0 (mm) 142.5 142.5 142.5

e (mm) 732.7 462.8 7.3 As'(mm2) <0 511 1718 minbh (mm2) 500 500 500 实配As'(mm) 4φ14(615) 4φ14(615) 6φ20(1884) 2实配As(mm) 4φ14(615) 4φ14(615) 6φ20(1884) 2s 0.50% 0.50% 1.50% 一侧配筋率s 0.25% 0.25% 0.75% 

7.2.2柱斜截面受剪承载力计算(抗震) 五层A柱:

l上柱柱端弯距设计值Mc197.3KNm

b对二级抗震等级,柱底弯距设计值Mc1.25146.44183.05KNm

则框架柱的剪力设计值

MclMcb197.3183.05V1.21.297.5KN

H3.9Mc>3 Vcho 72

REV0.8597.51030.0240.2

cfcbho1.014.3500475 满足要求

Mc3 取3 Vcho1.051.05ftbho0.056N0.8597.51031.435004750.0561.021310fyuho300475N1.02KN

Asvs

REV故该柱按构造配筋配置箍筋

轴压比N/fcA1.021000/(14.3500500)0.05<0.8,满足要求。 查表得v0.08

v,minvfc/fyv0.0814.3/2100.4%<0.8%,取v,min=0.8%。

AsvvAcor sli取取井字复合箍,根据构造要求,取加密区箍筋为4肢10@100

Asv=314mm2,

加密区位置及长度按规范要求确定。非加密区还应满足s〈10d,故箍筋取4肢

φ10@150。

各柱计算结果见表7.2

73

7.2框架柱箍筋数量表

0.3fcA Asv 非加密区 柱号 层次 V/KN N/KN /KN sλcfc/fyv 加密区 4肢φ10@150 5 97.5 679.25 1.02 1072.5 <0 0.08 4肢φ10@100 2至4 114.2 679.25 942.22 1072.5 <0 0.08 4肢φ10@100 4肢φ10@150 B柱 1 163.79 679.25 1372.88 4肢φ10@150 1072.5 <0 0.09 4肢φ10@100 0.2cfcbho /KN 实配箍筋 5 113.83 2至4 431.65 C柱 1 473 5 61.83 2至4 181.58 D柱 1 295 5 61.83 2至4 181.58 F柱 1 295

679.25 679.25 679.25 679.25 679.25 679.25 679.25 679.25 679.25 370.3 1072.5 <0 1017.08 1072.5 <0 1479.14 1072.5 <0 223.76 1072.5 <0 980.94 1072.5 <0 10.74 1072.5 <0 248.82 1072.5 <0 1085.1 1072.5 <0 1377.04 1072.5 <0 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.09 4肢φ10@100 4肢φ10@150 4肢φ10@100 4肢φ10@150 4肢φ10@100 4肢φ10@150 4肢φ10@100 4肢φ10@150 4肢φ10@100 4肢φ10@150 4肢φ10@100 4肢φ10@150 4肢φ10@100 4肢φ10@150 4肢φ10@100 4肢φ10@150 4肢φ10@100 4肢φ10@150 74

7.3 框架梁柱节点核芯区截面抗震验算 (1)强节点弱构件设计,以一层C节点为例:

VjjbMbhb0'hb0as Mb900.71388.511.82 1'asHchb511.8210370050(1)694.1KN =1.05700-504800750取核心区j1.5,RE0.85,bjbc500mm,hjhc500mm,则:

(0.3jfcbjhj)/RE(0.31.514.3500500)/0.8512.6KN>Vj=694.1

KN ,

故节点核心区剪力设计值符合要求。 (2)节点和新区受剪承载力验算: 取节点核心区箍筋为4肢8@100,则

1RE(0.1jfcbjhj0.1jNfyvAs)Vj(0.11.514.35005000.11.51675.1000210314)/0.85

853.6KN

故此节点核心区受剪承载力满足结构要求。

75

8楼梯设计

8.1梯段设计

该建筑标准层层高为3.6m,楼梯活荷载标准值q=2.5kN/m2,踏步面采用30mm厚水磨石面层(自重0.65kN/m2),底层为20mm厚混凝土砂浆,(自重为17kN/m2抹灰)采用C30混凝土,梁纵筋采用HRB335级钢筋,其余钢筋采用HPB234级钢筋。取板厚h=140,约为板斜长的1/30。板倾斜角tanα=150/300=0.5,cosα=0.4.取1m宽板带计算。 1) 荷载计算

恒载标准值:

水磨石面层 (0.3+0.15)×0.65/0.3=0.98 KN/m 三角形踏步 0.5×0.3×0.15×25/0.3=1.88 KN/m 混凝土斜板 0.12×25/0.4=3.36KN/m 板底抹灰 0.02×17/0.4=0.38KN/m 恒荷载标准值 6.60 KN/m 恒荷载设计值 g=1.26.60=7.92KN/m 活荷载设计值 q=1.42.5=3.5KN/m 总荷载设计值:

p=7.92+3.5=11.42KN/m

2) 截面设计 板水平投影计算跨度

ln=4.2m,

l0=ln+b=4.2+0.2=4.5m

76

弯距设计值:

M12pl0=0.1×11.42×4.52=13.99KN•m。 10斜板的有效高度

ho=120-20=100mm,

sM=0.098<0.55,s0.5(112s)0.948 21fcbhoM=702mm2 sfyho则 As选配10@110,As707mm2

8.2平台板设计

H=l/35=3000/35=85.71mm

故设平台板厚h=100mm,取1米宽板带计算。板的有效高度ho=70-20=50mm。 1) 荷载计算

水面石面层 0.65 KN/m 100mm厚混凝土板 0.1×25=2.5KN/m 板底抹灰 0.02×17=0.34KN/m 恒荷载标准值 3.49KN/m 恒荷载设计值 g=1.23.49=4.19KN/m 活荷载设计值 q=1.42.5=3.5KN/m 总荷载设计值 p=g+q=7.69KN/m 2) 截面设计

77

平台板水平计算跨度:

lo=ln弯距设计值:

M12plo=10.15KN•m 8hb0.10.2=33.25 2222平台板有效高度:h0=100-20=80

sM=0.1109, 21fcbhos0.5(112s)=0.941,

AsM=2mm2 sfyho选配12@160,As678mm2

8.3平台梁设计

设平台梁尺寸为200mm×350mm,计算跨度

lo=1.05ln=1.05×(3.3-0.24)=3.21m.

1) 荷载计算

梁自重 1.2×0.2×(0.35-0.1)×25=1.5KN/m 梁侧粉刷 1.2×0.02×(0.35-0.1)×2×17=0.204KN/m 平台板传来 7.69×(3/2+0.2)=13.07KN/m 梯段传来 11.42×3.3/2=18.84KN/m 合计 33.62KN/m

78

2)截面设计

lo=1.05ln=1.05×(3.3-0.24)=3.21m.

弯距设计值

MV12plo=(1/8)×33.62×3.532=52.37KN•m。 81pln=56.48KN 2截面按倒L形计算:

11b'fl03210535mm

66梁有效高度:

ho=350-30=320mm。

′1fcb′fhf(hoh′f2)=1.0×14.3×535×100×(320-100/2)

=206.6KN/m > M=52.37KN•m

故属于第一类T形截面。

sM=0.0608,

1fcbho2s0.5(112s)=0.969,则,AsM=563mm2 sfyho选配3根直径为16mm的HRB335钢筋,As603mm2. 斜截面受剪承载力计算为

0.25cfcbh00.25114.3200320228.8KN>V

79

故截面尺寸满足要求

又因0.7ftbh00.71.43200320.06KN>V,所以仅需按构造要求配置箍筋选配双肢φ8@200。

9.楼板设计

1)屋面板计算:以双向板为例计算如下:

Lx22=3000/4200=0.71,板面荷载标准值 gk=6.87KN/m,qk=2.4KN/m,则有: Lyg+q=1.26.87+1.42.4=11.60 KN/m

2q/2=0.72.4=1.68 KN/m

2g+q/2=11.06-1.68=9.38 KN/m

2由查表可得:

''在对称荷载下(四边固定):mx=0.030,my=0.012 ; mx=-0.073,my=-0.057;

vmxmxvmy0.030.20.0120.033

mvymyvmx0.0120.20.030.018

在反对称荷载下(四边简支):

mx=0.068 , my=0.030 ;

vmxmxvmy0.0680.20.030.074

mvymyvmx0.030.20.0680.044

(注:考虑泊松比v对跨中弯矩系数修正时,去v=0.2),则:

Mx(0.0339.380.0741.68)323.9KN.m

80

My(0.0189.380.0441.68)322.2KN.m

'Mx0.07311.6327.6KN.m

'My0.05711.6325.95KN.m

双向板配筋计算,可按下列公式计算:

MyMxAsx Asy

0.9fyh00.9fy(h010)双向板配筋如下表所示:

跨中ly方向 支座ly方向 位置 跨中lx方向 支座lx方向 弯矩设计值(KN.m) As(mm2) 实配钢筋 3.9 258 2.2 166 -7.6 503 -5.96 450 8@200 6/8@200 12@200 10/12@200 (As=251mm2) (As=196mm2) (As=505mm2) (As=479mm2)

2)楼面板计算:以双向板为例计算如下:

Lx22=3000/4200=0.71,板面荷载标准值 gk=3.47KN/m,qk=2.0KN/m,则有: Lyg+q=1.23.47+1.42.0=6.9KN/m

2q/2=0.72.0=1.4 KN/m

2g+q/2=6.9-1.4=5.5KN/m

2由查表可得:

81

'在对称荷载下(四边固定):mx=0.030,my=0.012 ; mx=-0.073,m'y=-0.057;

vmxmxvmy0.030.20.0120.033

mvymyvmx0.0120.20.030.018

在反对称荷载下(四边简支):

mx=0.068 , my=0.030 ;

vmxmxvmy0.0680.20.030.074

mvymyvmx0.030.20.0680.044

(注:考虑泊松比v对跨中弯矩系数修正时,去v=0.2),则:

Mx(0.0335.50.0741.4)322.6KN.m

My(0.0185.50.0441.4)321.5KN.m

'Mx0.0736.9324.6KN.m

'My0.0576.9323.6KN.m

双向板配筋计算,可按下列公式计算:

MyMxAsx Asy

0.9fyh00.9fy(h010)双向板配筋如下表所示:

位置 跨中lx方向 跨中ly方向 支座lx方向 支座ly方向 弯矩设计值(KN.m) As(mm2) 实配钢筋 2.6 172 1.5 114 -4.6 304 -3.6 272 6/8@200 6@200 8/10@200 8@200 (As=196mm2) (As=141mm2) (As=322mm2) (As=251mm2)

82

设计总结

至此我的毕业设计已接近尾声,这将是我在北方工业大学里最后的一次作业。我设计的题目是《国航办公楼框架结构设计》,内容是一座五层的框架结构的办公楼。这次我专门选择了席根喜老师的毕设课题是源于我对框架结构和钢混材料的极大兴趣,因为我觉得钢混框架结构既经济,承载能力又好,构造比较合理,因此会有较大的发展和研究空间,在我国的发展亦是光明一片。

毕业设计,是毕业前的最后学习和综合训练阶段,它使我们把所学的理论知识得到深化,进一步开拓了自己的视野。本次毕业设计我选择的是混凝土框架结构设计,通过这次毕业设计使我对框架型结构的设计过程,结构特点等都有了一个比较深入的了解,培养了我思考,工作,运用自己所学理论知识来解决实际问题的能力以及查阅资料和文献的能力;与此同时通过设计我也发现了自己在知识上的许多漏洞和不足。

这次设计不仅对框架梁、柱内力组合方面的知识有了近一步的掌握,而且对结构力学、钢筋混凝土等方面的相关内容又重新的进行了复习。为我以后在专业道路上的发展起到了铺垫作用。

83

致 谢

在此,我的毕业设计暂告收尾了,这也意味着我在北方工业大学四年的学习生活既将结束。回首既往,自己一生最宝贵的时光能于这样的校园之中,能在众多学富五车、才华横溢的老师们的熏陶下度过,实是荣幸之至。在这四年的时间里,我在学习上和思想上都受益非浅。这除了自身努力外,与各位老师、同学和朋友的关心、支持和鼓励是分不开的

论文的写作是枯燥艰辛而又富有挑战的。混凝土框架结构设计是建筑施工的关键,也是施工的依据,是把抽象设计转变为具体施工指导的重要环节。老师的谆谆教导、同学的出谋划策及家长的大力支持,是我坚持完成论文的动力源泉。在此,我特别要感谢我的导师席根喜老师。从论文的选题、文献的采集、框架的设计、结构的布局到最终的论文定稿,从内容到格式,从标题到标点,他都费尽心血。在本次的结构设计中,我感觉有许多地方都非常陌生,遇到了不少的困难。但是由于席根喜老师的耐心指导,还有时刻的督促与鼓励,使我每次都能化险为夷,十分顺利的克服设计中的各种问题,完成既定的目标。而席老师广博的知识面和认真严谨的工作作风也给我留下了极其深刻的印象。因为这不仅使我能很好的解决遇到的问题,同时还使我对结构的内部构造,受力情况和复杂的公式有了更为深入的理解,做到了知其然并知其所然的境界。

本次设计中我还得到了各位同学的无私帮助,在此对那些无私奉献,共享自己设计经验的同学表示由衷的敬意。最后我要感谢北方工业大学建筑学院老师这四年来对我的辛勤培养,以及我的家人和朋友们对我的理解、支持、鼓励和帮助,正是因为有了他们,我所做的一切才更有意义;也正是因为有了他们,我才有了追求进步的勇气和信心。并再次感谢我的指导教师席根喜老师! 时间的仓促及自身专业水平的不足,整篇论文肯定存在尚未发现的缺点和错误。恳请阅读此篇论文的老师、同学,多予指正,不胜感激!

84

参考文献:

1. 《工民建专业毕业设计指南》(第二版) 2. 《建筑抗震设计规范》(GB50011-2002)

3. 《建筑结构制图标准》 (GBJ105-2000)

4. 《建筑结构荷载设计规范》GB50011-2002)

5. 《钢筋混凝土结构设计规范》(GB50010-2002)

6. 《网架设计规范与施工规程》(JGJ7-91)

7. 《钢结构设计规范》(GBJ17-88)

8.《建筑结构制图标准》(GBJ105-2000)

85

外文资料翻译

高层建筑设计与城市空间

简介: 随着高层建筑技术的迅速发展,高层建筑已经成为城市空间中不可缺

少的元素,成为城市的一道亮丽风景,然而高层建筑与城市空间的融合依然存在一些缺陷。

关键字:建筑设计 城市规划 广场 架空

高层建筑形式在古代就已有了,早在公元前五百多年的古巴比伦曾经建造了现在号称世界七大奇迹之一的“空中花园”,根据记载,其形式非常之华丽壮观,放置在任何空间之中都可以说是一道绝美的风景。近代随着科学技术的发展,尤其是钢铁、电梯的出现以及后来钢筋混凝土的应用,为高层建筑发展创造了前所未有的机遇,高层建筑也成为城市空间中一道独特的风景,其中以美国的高层建筑发展最为活跃,如1885年的芝加哥家庭保险大楼被公认为第一幢摩天建筑,而纽约的曼哈顿区更是高楼云集;近年来我国的高层建筑也发展迅速,如上海的金茂大厦88层,高420.5米。随着结构理论和技术的发展,高层建筑结构形式趋于多样化,高层建筑的表现形式也多种多样,但随之所带来的弊端也越来越多的表现出来,在成为城市风景的同时如何恰当的融入城市空间成为高层建筑设计的一个重要任务,也是使高层建筑设计趋于完善所追求的一种理念。

城市空间是人类生活和生产所需要的重要因素,它为居民提供各种活动的

86

可能。这个可以说是城市空间比较科学性的定义,而本文提到的城市空间则更具体更形象,主要指城市内的建筑物、道路、绿地、广场、公共服务设施等实体以及由这些实体所构成的立体空间,也是人处在其中能真实、直观感受到的空间。高层建筑是否与所处的城市空间融洽,其评价标准相当一部分取决于公众的感受,简单的说就是人处在所创造空间中的感受;所以一位建筑设计者在进行高层建筑设计时要充分考虑所创造出来的空间(无论是内部还是外部)给予使用者的感受。这些是理论上要求一位建筑设计师要考虑的因素也是作为一名建筑师应该承担的责任,而且还可以据此评价一位建筑师的设计能力和水平及其职业道德。事实上在进行一项高层建筑设计时,开发商受利益的驱使往往不会考虑建筑与环境的关系,此时,规划部门所出台的各种条文及规范将扮演着重要角色,它强制性的要求必须顾及城市环境,营造舒适的城市空间。可以看出,高层建筑设计与城市空间的协调以及城市空间的营造是通过两方面的共同作用来完成的,即建筑设计和规划。下面就从建筑设计和城市规划两方面谈谈高层建筑设计与城市空间的关系。

一 建筑设计

1、充分发挥广场的作用

高层建筑由于其体量的巨大,往往给街道空间一种突然的压迫感,使人感觉好像从一个大空间突然进入一个小空间,这是由于高层建筑的体量所造成的对比。因此凡是处在街道两旁体量巨大的高层建筑在设计时应该对其进行后退处理,并在其退出的用地上设计一广场空间,这个广场空间将起到空间的缓冲作用;而且由于高层建筑的建筑面积远远超出其用地面积,容纳的人员较多,出入口人流密度相对较大,后退出的广场空间也起到缓解交通压力的作用;从另外一方面讲,广场空间往往在街道空间以及城市空间中起到非常重要作用,

87

能够给公众留下较深的印象,也往往能成为城市的节点,这就是共享空间的好处。有的建筑大师甚至直接设计成下沉式的广场,如日本建筑大师叽崎新设计的日本筑波中心的下沉式广场,独特的广场空间造型,以人和环境为设计重点,不仅为公众提供了一个舒适的安静的休闲场所,而且使建筑塔楼的形象特征更加突出。这种下沉式的广场往往更容易给人留下印象,就空间形式而言它是一种非常富有情趣的空间。因此在进行高层建筑设计时广场和建筑应该作为一体来考虑。

2、高层建筑主体设计

对于一个城市而言,高层建筑往往具有一定的代表性和象征性,可以反映一个城市经济水平和发展程度,选择合理的造型就显的尤为重要。高层建筑由于其结构形式的以及使用功能的要求,在造型上往往追随于建筑的结构形式,而不能有太多的变化,有的高层建筑甚至直接将结构形式外露不加修饰。高层建筑的主体部分是它的塔楼,塔楼的表现形式对高层建筑的造型起着决定性的作用,现今国外和国内的许多高层建筑都有着独特的外形和明显的识别性,对一个城市具有一定的代表性,这可以说是高层建筑存在的一个原因。随着近年来资源短缺问题的出现,全球提出了可持续发展,而高层建筑就环保节能方面来说是很浪费的,随之就出现了“生态型”建筑的概念,如生态建筑师――诺曼·福斯特设计的法兰克福商业银行总部大厦在强调象征意义和功能的同时,就引入生态的概念,是世界上第一座“生态型”超高层建筑。其建筑平面呈三角形,宛如三叶花瓣夹着一支花茎:花瓣部分是办公空间,花茎部分为中空大厅。中空大厅起自然通风作用,同时还为建筑内部创造了丰富的景观。而气候设计大师――杨设计的马来西亚吉隆坡梅纳拉大厦则体现了利用空中开放空间连通建筑内外,贯彻“生物气候大楼”思想,引入了大量的植物,

88

立面上螺旋上升的垂直绿化和底部斜坡的绿化都有助于调节气候,尽可能地拉近了人与自然的距离,较好地完成了室内外空间的过渡与衔接。同时对形成良好的城市空间环境也是一种深化。可以看出目前高层建筑设计的一个新要求就是要实现“生态节能型”。

高层建筑主体的下部分――裙房虽然对整个城市影响较小,但它对于街道的尺度和人情化空间的创造等方面却有着重要的影响。建筑的裙楼立面设计一般不同于上部立面,需要进行细致的设计,从而使下部空间丰富多彩而不至于感到苍白;并要体现人的尺度,因为裙房部分跟公众视觉接触较密切,对街道空间感影响也较大。而高层建筑的最上部分――屋顶对整个建筑形象起到强化个性的作用,虽然它较少影响到生态环境,但对塑造建筑的标志性、丰富城市天际线具有重要的作用,因此应根据建筑的基座、楼身等因素加以塑造。 3、巧妙的运用一些处理手法

高层建筑的塔楼部分虽然变化的余地不大,但是底层部分却可以进行一些巧妙的处理来丰富空间形式。一般可以采用底层架空和入口缩进的手法。底层架空的处理手法是现代建筑的特征之一,它可以在高密度的环境中争取到宝贵的用地,把城市的道路、广场和建筑有机地结合在一起,形成通透的、公共的开放空间,给市民以小憩之地;同时还可以改善人流、视觉拥挤的状况,连通几个主要的公共场所,以增加城市空间的层次。高层建筑临近城市道路布置时,入口空间凹入建筑下部可以避免主体的被迫后退(用地非常紧张的情况下),争取基地面积的有效使用,缓解入口处各种矛盾冲突;并有可能在建筑的形体设计、空间组织等方面形成新颖的构思,这种入口后退架开的处理不仅空间层次丰富而且给人的印象也深刻。

二 规划设计

1、避免高层建筑密集

高层建筑的密集虽然对于城市办公等条件方便有利,却给城市空间带来很多压力,造成城市空间和城市交通的拥挤,甚至是一些史料不及的污染和危害,比如一些高层建筑玻璃幕墙的大面积使用造成以前未出现过的光污染;还有就是形成高压风带和风口,这些会造成意想不到的后果。因此在规划设计中要对区域内的高层建筑密度进行,避免高层建筑的集中分布。 2、高层建筑与城市街道

高层建筑一般分布在城市中商业发达的地段,这些地段的街道本身交通荷载就较大,高层建筑将大大增加这些街道的交通压力,分布在这些街道两侧的高层建筑要尽量控制其层数和高度,同时在规划设计时要对这些街道进行扩展,加大其通行能力。 3、控制超高层建筑数量

超高层建筑往往以其象征性和代表性而存在,实际上这类建筑既不经济又不合理,一些已建成的超高层建筑投入使用后表明收益并不乐观,可以说仅仅是体现城市形象,提高城市知名度。

结束语

高层建筑已走过百年历史,从其出现之日起就成为城市的焦点,其形式和风格也不断的发展变化着,我国的高层建筑虽然相对发达国家起步较晚,但已经取得了很大的成就,像北京、上海、深圳等城市的高层建筑可以说代表了中国高层建筑的发展史,高层建筑设计与城市空间的融合也正不断的完善发展。

90

参考文献:

[1]R·里尔 城市空间 同济大学出版社,1991 [2]刘顺校 周湘津[3]夏祖华 黄伟康

高层建筑设计 城市空间设计

91

天津科学技术出版社,1997 东南大学出版社,1992

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务