ChineseSocietyofAeronauticsandAstronautics&BeihangUniversityChineseJournalofAeronauticscja@buaa.edu.cnwww.sciencedirect.comDeterminationofthermalexpansioncoefficientsforunidirectionalfiber-reinforcedcomposites
RanZhiguo,YanYing*,LiJianfeng,QiZhongxing,YangLei
SchoolofAeronauticsScienceandEngineering,BeihangUniversity,Beijing100191,ChinaReceived3September2013;revised13November2013;accepted10February2014Availableonline19March2014
KEYWORDS
Analyticalsolution;Coefficientofthermalexpansion;
Thermo-elastic;
Transverselyisotropic;Unidirectionalcomposites
AbstractInthepresentwork,thecoefficientsofthermalexpansion(CTEs)ofunidirectional(UD)fiber-reinforcedcompositesarestudied.First,anattemptismadetoproposeamodeltopredictbothlongitudinalandtransverseCTEsofUDcompositesbymeansofthermo-elasticmechanicsanalysis.Theproposedmodelissupposedtobeaconcentriccylinderwithatransverselyisotropicfiberembeddedinanisotropicmatrix,anditissubjectedtoauniformtemperaturechange.ThenaconciseandexplicitformulaisofferedforeachCTE.Finally,somefiniteelement(FE)modelsarecreatedbyafiniteelementprogramMSC.Patranaccordingtodifferentmaterialsystemsandfibervolumefractions.Inaddition,theavailableexperimentaldataandresultsofotheranalyticalsolutionsofCTEsarepresented.Comparisonsaremadeamongtheresultsofthecylindermodel,thefiniteelementmethod(FEM),experiments,andothersolutions,whichshowthatthepredictedCTEsbythenewmodelareingoodagreementwiththeexperimentaldata.Inparticular,transverseCTEsgenerallyofferbetteragreementsthanthosepredictedbymostofothersolutions.
ª2014ProductionandhostingbyElsevierLtd.onbehalfofCSAA&BUAA.
Open access under CC BY-NC-ND license.1.Introduction
Asweknow,compositematerialshavebeenundergoingextraordinarytechnologicaladvancesandenjoyingwidespreadapplicationsindifferentfields.However,asaresultoftheircomplexproperties,suchaswettability,chemicalcompatibil-ity,anisotropicmechanics,heatabsorptionandconductivity
*Correspondingauthor.Tel.:+861082315947.
E-mailaddresses:mfdickl1@163.com(Z.Ran),yingyan@buaa.edu.cn(Y.Yan).
PeerreviewunderresponsibilityofEditorialCommitteeofCJA.Production and hosting by Elsevierabilities,theircompletecharacterizationhasnotbeenachievedsofar.
Coefficientofthermalexpansion(CTE)isdefinedasthefractionalchangeinlengthofabodyunderheatingorcoolingthroughagiventemperaturerange,1anditisusuallygivenasacoefficientperunittemperatureintervalatagiventempera-ture.Itisakeymaterialpropertyespeciallywhenacompositestructureworksinatemperature-changingenvironment.Here,thefocuswasplacedupononstudyingthelongitudinalandtransverseCTEsofcontinuousfiber-reinforcedunidirectional(UD)composites.
Theproblemofrelatingeffectivepropertiesofafiber-rein-forcedmaterialtoitsconstituentpropertieshasdrawngreatattention.Asaresult,manyanalyticalsolutionshavebeenmadetopredicttheupperandlowerboundsofCTEsofUDcomposites,whicharecomposedofisotropicoranisotropic
http://dx.doi.org/10.1016/j.cja.2014.03.010
1000-9361ª2014ProductionandhostingbyElsevierLtd.onbehalfofCSAA&BUAA.Open access under CC BY-NC-ND license.Determinationofthermalexpansioncoefficientsforunidirectionalfiber-reinforcedcomposites1181
fibersandmatrices.2–12InaseriesofstudiesbyvanFoFy,3–5analyticalsolutionswerepresentedtopredictbothaxialandtransverseCTEsofaUDcompositethroughitsconstituentproperties.However,theresultswereverysensitivetotheelas-ticmodulusandPoisson’sratiooftheUDmaterial.Levin6expandedHill’smethodandgavetheupperboundsofacer-tainglassfiber-reinforcedcomposite’sCTEs,andtheresultswereinmuchbetteragreementwiththedatainVanFoFy’sstudy3thanotherpredictionsinthatpaper.Schapery2hasderivedexpressionsforlongitudinalandtransverseCTEsofcompositeswithisotropicfibersembeddedinisotropicmatri-cesbyadoptingextremeenergyprinciples.Sideridis12andChamis9applieddifferentmethodsandobtainedthesamelon-gitudinalCTEexpression,whilethetransverseexpressionswerequitedifferent.Ingeneral,thepredictionsoflongitudinalCTEswerealwaysingoodagreementwithexperimentaldata,whilethoseoftransverseCTEsfailedtoagree.AnexceptionwasRosenandHashin’sprediction10asanextensionoftheworkofLevin.6However,itisinconvenienttoobtainresultsbyRosenandHashin’ssolution,becausetosolvetheCTEsofacomposite,themechanicalpropertiesofboththecompos-iteanditsconstituentsmustbedeterminedfirst.
Atthesametime,ascomputationcapabilityhasgrowndra-maticallyoverthelastthreedecades,numericalsolutionssuchasthefiniteelementmethod(FEM)arebeingextensivelyappliedtodeterminetheCTEsofcompositematerials.Islam13andRupnowskietal.14investigatedthelinearCTEsofUDcompositessystematicallybytheFEM.Karadenizetal.15exploredtheCTEsofdifferentmaterialsystemsbymicrome-chanicalmodelingusingtheFEM,andcomparisonswerecar-riedoutamongtheirresults,analyticalsolutions,andexperimentaldata.However,discrepanciesstillexistbetweenFEMresultsandexperimentaldata.Generally,thetransverseCTEpredictionofaUDcompos-itewasnotasgoodasthatofthelongitudinalCTE.However,anexacttransverseCTEofaUDcompositeisratherimportantindesigninghigh-dimensionalstablestructures.Therefore,wetriedtoachieveapracticalsolutionofCTEsbydoingthermo-elasticanalysisinthispaper,especiallythetransverseCTEwaspaidmuchattentionto.Inaddition,resultsofanalyticalsolutions,theFEM,andexperimentsavailableinliteratureswerecomparedforjustifications.2.Theoreticalanalysis2.1.ProposedmodelThecross-sectionofaUDfiber-reinforcedcompositeisshowninFig.1,andatypicalrepresentativevolumeelement(RVE)Fig.1Cross-sectionofUDfiber-reinforcedcomposite.couldbeacylinderfiberembeddedinacube,inwhichthecylinderstandsforthefiber,whilethecubesymbolizesthematrix.
Tomakethisthermo-elasticanalysiseasier,thecubicRVEistransformedintoaconcentriccylindermodel(seeFig.2)accordingtothefollowingassumptions:(1)boththecubicmodelandthecylindermodelhavethesamefiberradius;(2)twomodelswiththesamefibervolumefraction;(3)twomod-elswiththesamelengthinthelongitudinaldirection.
Considerthattheradiusofthefiberr1,thefibervolumefractionVf,andthelengthoftheRVEhareallknown.
Thecross-sectionofthecubicmodelisdefinedbyacirclewitharadiusofr1surroundedbya2l·2lsquare(seeFig.2(c)),whilethenewmodeliscomposedoftwoconcentriccylinderswithradiiofr1andr2respectively(seeFig.2(d)).ThefibercontentsinthetwomodelsareVpr2fðaÞ¼
1hð2lÞ2h
¼pr21ð2lÞ2ð1Þ
V¼pr21hr2fðbÞ
r2¼1p2hr2ð2Þ
2
Accordingtotheassumption,bothmodelshavethesame
fibervolumefractionVf,thatisVpfðaÞ¼VfðbÞ)2l¼ffiffiffipr2ð3ÞWhenthereisachangeofr2byDr2,thestraininthetransversedirectionofthecubicmodel(seeFig.2(a))iseDð2lÞpffiffiffipðrp2þDffiffiffitðaÞ¼2l¼pffiffiffir2ÞÀpr2pr¼Dr2¼etðbÞð42rÞ2Fig.2Transformationofcubicmodelintocylindermodel.1182
Obviously,bothofthetwomodelshavethesametransversestrain.Foraxialstrains,theyareprovedtobethesameaswellinthefollowingsection.2.2.EffectiveCTEanalysis
ThetheoreticalanalysisofeffectiveCTEsforaUDcompositeisbaseduponthefollowingassumptions:
(1)Thecylindermodeliscomposedoftwophases(fiberand
matrix),ignoringtheeffectoftheirinterface.
(2)Thefiberisregardedastransverselyisotropicwhilethe
matrixisisotropic.
(3)Thecylindermodelundergoesauniformtemperature
changefromT0(stress-freetemperature)toT0+DT.(4)ComparedtotheheightoftheRVEh,thelengthofthe
UDcompositeisinfinitelylong.Therefore,anycross-sectionoftheRVEremainsplanarwhentemperaturechanges,whichmeansthatthecylindermodelisinanequalstrainstatusinthelongitudinaldirection.Thetransverselyisotropicfiberischaracterizedbythefol-lowingsevenindependentthermo-elasticconstants:Ef1(theaxialelasticmodulus(ZdirectioninFig.2(b))),Ef2(thetrans-verseelasticmodulus(RTplane)),Gf12(theaxialshearmodu-lus),t12(theaxialPoisson’sratio),t23(thetransversePoisson’sratio),af1(theaxialCTE),andaf2(thetransverseCTE).
Fortheisotropicmatrix,itischaracterizedbythefollowingconstants:Em(theelasticmodulus),tm(thePoisson’sratio),andam(theCTE).
Thesubscripts‘‘f’’and‘‘m’’denotefiberandmatrix,while1,2,3refertoaxesZ,R,T,respectively.Meanwhile,axialandradialCTEsoftheconcentricmodelaredesignatedasa1anda2.
Accordingtotheassumptionthatthetransversesectionoftheconcentriccylindermodelkeepsplanarwhenthetemper-aturechangesbyDT,togetherwiththataf1andamarealwaysdifferentinvalue,thusthereexiststressesbetweenthefiberandthematrixintheaxialdirection,whicharedenotedbyrf1andrm1,andthefollowingequationsareobtained:
Axial(Z)directionbalanceequationis
rf1pr222
1þrm1pðr2Àr1Þ¼0
ð5Þ
Physicsequationsare
8
>>>e1¼a1DT<
erf1f1¼þaf1D>>ET
f1
ð6Þ
>:erm1m1¼EþamDT
m
Tosimplifythiswork,physicsequationsignorethePoisson’seffectthatiscausedbythetransversestressesofboththefiberandthematrix.
Geometricsequationsise1¼ef1¼em1
ð7Þ
8
>>¼r2> >:V1ÀVr2Àr2m¼f¼21 r22 Z.Ranetal. Eq.(7)istheformulizationofAssumption4thatboththe fiberandthematrixhavethesamestrainintheaxialdirection,whileEq.(8)representsaconcisemethodofcalculatingthevolumefractionsofthefiberandthematrix. SolvingEqs.(5)–(8),theaxialCTEoftheUDcompositeisaf1Vfaf1þEmVmam 1¼ EEf1VfþEmVð9Þ m ExplicitanalyticalformulaEq.(9)presentedhereenablestheaxialCTEoftheconcentriccylindermodeltobepredictedintermsofthepropertiesofitsconstituentsandthefibervol-umefraction.Wecanalsofindthatthisformulabehavessim-ilarlyasSchapery’sequation.7ForthetransverseCTEofthecylindermodel,itwillbeanalyzedbythree-dimensionalthermo-elasticmechanics. AccordingtoAssumption(3),thespatialaxialsymmetrymodel(seeFig.2(b))undergoesauniformtemperaturechange,andthematerialsaretransverselyisotropic.Asaresult,thereisnodisplace-mentintheTdirectionforboththefiberandthematrix,supposeanglehisanarbitrarilyangleinTdirection,theradialdisplacementfunctionsufandumareindependentofanglehandonlyrelatedtoradiusr,andsrh=0forboththefiberandthematrix. FromAssumption(4),wecanseethatthefiberandthematrixsharethesameaxialdisplacementfunctionx.BecauseofspatialaxialsymmetryandAssumption(4),wehaveszr=0andshz=0forboththefiberandthematrix. 2The3physics2 equationforthistransverselyisotropicfiber6rfr c11c12323is 4rfh75¼6 c134c12c11c13756efrÀaf2DT4efhÀaf2DT75 ð10Þrfzc13c13c11efzÀaf1DTwherecij(i,j=1,2,3)isthefiberdegradationstiffness. 2 The3physics2equationfortheisotropicmatrix6 rmr q11q12q1232emrÀamDT3is4rmh75¼64q12q11q127564emhÀamDT75 ð11Þrmzq12q12q11emzÀamDTwhereqij(i,j=1,2,3)isthematrixdegradationstiffness. Meanwhile,bysubstitutingthepropertiesofthefiberandthematrix,theresultsare 2c11 32 1Àt12t213666c1276ttþt2374c77¼k61221 71356 4t12ð1þt23Þ75ð12Þc33 t12ð1Àt223Þ=t21 wherek¼ Ef2 ð1þt23Þð1Àt23À2t12t21Þ q11!Em 1Àtm!q¼ 1þtð13Þ 12mtm Thegeometricequationforthisspatialaxialsymmetrymodelis 2@u i 32 eir 3 6@r 7666eih766u i 74e776 775¼66r6@x 7iz 77ði¼f;mÞð14Þ s6 i izr64 @z7@x7i@ui 5@rþ@zDeterminationofthermalexpansioncoefficientsforunidirectionalfiber-reinforcedcomposites1183 Forthisspecialmodel,becauseoflowdensitiesofbothconstituents,thevolumeforcecanbeignored,sotheequiva-lentequationsare @rir@sizrrirÀrih @rþ@zþ r¼0ði¼f;mÞð15Þ@riz@rþ@sizrsirz @zþ r ¼0ði¼f;mÞð16Þ FromEqs.(10),(14)and(15),weobtain@rfr@sfzrrfrÀrfh @rþ@zþr¼0) @rfr@rþrfrÀrfh r¼0ð17Þ)c@2ufc1111@r2þ r:@uf@rÀc11 r 2uf¼0Sincec11=k(1Àt12t21)„0andufisindependentofh andz,thefollowingresultcanbeobtained:d2ufdr2þ1r:dufdrÀuf r2 ¼0ð18Þ )urþ A2 f¼A1r HereandthefollowingAj(j=1,2,...,8)areconstantstobespecified. FromEqs.(10),(14)and(16),weget@rfz@sfzrsfrz @rþ@zþ r ¼0ð19Þ )xf¼A3zþA4 Likewise,fromEqs.(11),(14),(15)and(16),wehave@rmr@smzrrmrÀr@rþ@zþmh r ¼0ð20Þ )uAA6 m¼5rþ r@rmz@rþ@smzr@zþsmrz r¼0ð21Þ )xm¼A7zþA8 Asdiscussedabove,thefiberandthematrixsharethesameaxialdisplacementfunctionx,andthusxm¼xf¼A3zþA4 ð22Þ Boundaryconditions: Atr=0,forthisspatialaxialsymmetrymodel,ufmustbezero.ThusA2=0anduf=A1r. Atr=r1,hereistheinterfacebetweenthefiberandthematrix.Firstly,theirradiusdisplacementsmustbecontinuous,thatis,ufðr¼r1Þ¼umðr¼r1Þ.AA61r1¼A5r1þ r1 ð23Þ )A6¼ðA1ÀA5Þr21 Secondly,intheinterface,thepressurebetweenthefiber andthematrixmustbeequivalent,thatis,rfrðr¼r1Þ¼rmrðr¼r1Þ.BysubstitutingEqs.(10)and(11),theresultis 232 T2323TAA6 3 5À2ÀamDT6c11A1Àaf2DT4c127564A1Àaf2 DT75¼6q114q1276566r1 76A777c13A3Àaf1DTq1264 A65þr2ÀamDT17 5A3ÀamDT )ðc11þc12þq11Àq12ÞA1þðc13Àq12ÞA3À2q11A5 ¼ðc11þc12Þaf2DTþc13af1DTÀðq11þ2q12ÞamDT ð24Þ Atr=r2,theoutercylindersurfaceofthematrixisafreeface,anditsuffers3nothing,sothat 22 q3Trmrðr¼r6 AA65Àr2ÀamDT 1162772Þ¼4q7q12561264AA65þr2ÀamDT75.AÀa2 3mDT BysubstitutingEqs.(8)and(23),theresultisðq12Àq11ÞVfA1þq12A3þðq11þq11Vfþq12Àq12VfÞA5 ¼ðq11þ2q12ÞamDT ð25Þ Intheaxialdirection,theforcesthatareperpendiculartothecross-sectionoftheconcentricmodelmustbeequivalent,thatXisFfzþX Fmz¼0ð26ÞX r1 p FZ 2fz¼ Z rfzrdrdh 00 22p c133T2A1Àaf2DT3ð27Þ ¼ Z r1 r Z 60 0 4c13756 4A1Àaf2DT75drdhc33 A3Àaf1DT X Z r2 Z 2pFmz¼ rmzrdrdh r1 0 ð28Þ ¼Z2 3T2 3rAÀA6ÀamDT2rZ2p6q1265r74q127562 6q64AA75þ6r2ÀamDT77drdh r1011 5A3ÀamDT XThusFfzþX Fmz¼0 )2c13VfA1þ½c33Vfþð1ÀVfÞq11A3þ2q12ð1ÀVfÞA5¼2c13Vfaf2DTþc33Vfaf1DTþð1ÀVfÞð2q12þq11ÞamDT ð29Þ Eqs.(24),(25)and(29)canbecombinedintothefollowingform:BA¼Dð30Þ Therein,B¼½B1 B2 B3 A¼½2 A1A3A5T c11þc12þq11Àq12 3B1¼6 4ðq12Àq11ÞVf75 2c13Vf 11842c13Àq123B2¼64q1275c33Vfþq11ð1ÀVfÞ2À2q113B3¼64q11ð1þVfÞþq12ð1ÀVfÞ752q12ð1ÀVfÞ2ðc11þc12Þaf2þc13af1Àðq11þ2q12Þam3D¼DT64ðq11þ2q12Þam752c13Vfaf2þc33Vfaf1þð2q12þq11Þð1ÀVfÞam So;A¼BÀ1D: Atr=r2,theradiusdisplacementofthisconcentricmodel is uA6ðA1ÀA5Þr2mðr¼r2Þ¼A5r2þr¼A5r2þ 1 2r2 ð31Þ¼r2½A5þðA1ÀA5ÞVf¼r2½A1VfþA5Vm TheCTEisdefinedasa¼Dl foradimensionoftransverseCTEofthisRVEislDT l,sothe aDr2 umðr¼r2¼ 2ÞA1VfþA5Vmr¼T¼2DTr2DDTð32Þ ¼ad1þd2 mþ n1þn2þn38Therein, >>>>d1¼Ef1Ef2Vft12Âðt2 mþtmVmÞðamÀaf1Þ>>>>>þ2V>fðaf2ÀamÞþt2mVfðamþaf1À2af2ÞÃ>>>>d2¼Ef1EmVf½2t21Vmð1Àtmt12ÞðamÀa n2¼E22mVmt12ð1ÀtmÀ2t12t21Þn3¼Ef1Ef2Vft12ð1þVfÀ2t2mVfþtmVmÞ AccordingtoEq.(4)andthedefinitionofCTE,boththecubicmodelandtheconcentricmodelhavethesamestrainandCTEinthetransversedirection.Eq.(9)showsthattheaxialCTEisindependentoftheshapeofthecross-sectionofthisRVE.Therefore,theaxialandtransverseCTEsforFig.2(a)area1anda2whichareshowninEqs.(9)and(32)thatarederivedbythemodelinFig.2(b).3.MaterialandFEmodel HeretheFEMisadoptedtodeterminebothaxialandtransverseCTEsoftheUDfiber-reinforcedcompositethroughthecubicmodel(seeFig.2(a))andtheconcentricmodel(seeFig.2(b)).Fortheadvantagesofsymmetry,onlyaquarterofeachRVEismodeled.Asshown,Fig.3(a)and(b)correspondtothecubicandconcentricmodels,respectively.CTEpredictionsbytheanalyticalmethodandtheFEMarecomparedwithexperimentaldatatojustifythesimplificationofcubictocylindermodelandanalyticalresults. TheFEmodelsarecreatedbyMSC.Patran2010withan8-nodehexahedralelement,andthensubmittedtoMD.Nastranforcomputation.Eachmodeliscreatedaccording Z.Ranetal.Fig.3FEmodels.todifferentfiber–matrixcombinationsandfibervolumefractions.ThedimensionofeachFEmodelinZdirectionhasaunitlength,whileXandYdimensionsmaychangewithdifferentmaterialsystems.However,foragivenfiber–matrixcombination,Fig.3(a)and(b)sharethesamefiberradiusandfibervolumefraction. BoundaryconditionsfortheFEmodelsareasfollows:(1)nodesthatintheplaneXOYandZ=0arerestrictedtomoveinXandYdirections;(2)nodeatX=Y=Z=0isfixed,andallowsnodisplacement;(3)theplanesthatareparalleltoX,Y,andZ=0keepplanarandremainparalleltotheiroriginalpositionswhenindeformation;(4)theinitialtemperatureisassumedtoberoomtemperatureandDTis1°C. MaterialpropertiesfortheFEmodelsareshowninTables1and2.ThedataareextractedfromthestudybyBowlesandTompkins.16Intheirinvestigation,allmatricesareisotropicwhilefibersaretransverselyisotropic.Meanwhile,alldataareusedinanalyticalsolutionsEqs.(9)and(32).4.Resultsanddiscussion FromthepropertiesofconstituentslistedinTables1and2,itcanbefoundthattheUDfiber-reinforcedcompositematerialsystemshaveanaxialfibertomatrixstiffnessratio(Ef1/Em)rangingfrom6to140,andanaxialfibertomatrixCTEratio(af1/am)rangingfromÀ0.01toÀ0.30.Asaresult,thepresentstudycoversawiderangeoffiber/matrixcombinations. ComparisonsamongpredictedCTEsoftheconcentriccylin-dermodel,experiments,andsomeotheranalyticalsolutions,includingmodifiedSchapery’sequation,2Chamberlain’sequa-tion,1ChamisandScheider’sequation,1arecarriedout.Fig.4showsacomparisonofpredictedlongitudinalCTEsofeightfiber–matrixcombinations,whicharepredictedbytheconcen-triccylindermodel.Experimentaldata,theFEM,andsomeana-lyticalmethodspredictedresultsareshowninTable3.Theconcentriccylindermodel(CM),Schapery(SH),Chamberlain(CB),andChamis&Scheider(CH)solutionsallsharethesameEq.(9)topredictlongitudinalCTEs,andtheirpredicteddataarelistedinthesamecolumninTable3.Inthelasttwocolumns,FEM-cubicandFEM-cylinderstandfortwodifferentFEmod-elswhichareshowninFig.3.ThedifferencebetweenFEM-cubicandFEM-cylinderresultsofeachmaterialcombinationisalmostnegligibleexceptT300/5208,giventheaccuracyofnumericalcomputation,whichmeansthattheFEmodelsinFig.3(a)and(b)areequivalentinpredictingtheaxialCTE.Themeansquareerrorofcylindermodelpredictionsrelativetoexperimentalresultsis8.55·10À8/°C,whichismuchsmallercomparedtothepredictedCTEs.Thatmeansallthepredictions Determinationofthermalexpansioncoefficientsforunidirectionalfiber-reinforcedcomposites Table1FiberT300C6000HMSP75P1001185 Propertiesoffibersatroomtemperature.16E1(GPa)233.04233.04379.21550.20796.34E2(GPa)23.1023.106.219.517.24G12(GPa)8.968.967.586.896.89G23(GPa)8.278.272.213.382.62m120.200.200.200.200.20m230.400.400.400.400.40a(10À6/°C)a1À0.54À0.54À0.99À1.35À1.404a210.0810.086.846.846.84Table2MatrixPropertiesofmatricesatroomtemperature.16E(GPa)4.344.344.344.343.4573.0862.74G(GPa)1.591.591.591.591.3127.5826.20m0.370.370.370.370.350.330.20a(10À6/°C)43.9243.9243.9263.3636.0023.223.24934epoxy5208epoxy930epoxyCE339epoxyPMR15polyimide2024aluminumBorosilicateglassareingoodagreementwithexperimentalresults.Althougherrorsexist,thegeneralresponsebehavessimilarly(decreasinglongitudinalCTEswithincreasingfibervolumefraction).Itindicatesthattherelativemagnitudesoffiber/matrixstiffnessratioandCTEratiodonotsignificantlyaffectthegeneraltrendinlongitudinalCTEs.Furthermore,wecanfindthatforthesamematerialsystem,suchasT300/5208,T300/934,andC6000-Pi,thelargerCTEofthematrix,themoredramaticallytheCTEofcompositedecreaseuntilVfexceeds0.6.Forthesamematrix,thelargermodulusandabsolutevalueoftheaxialCTEofthefiber,themoredramaticdecreaseinthelongitudinalCTEofsuchamaterialcombination(e.g.,T300/934,P75/934).ItcanbeseenfromEq.(9)thatthelongitudinalCTEisdeterminedbyboththefiberandthematrix.Usually,theCTEofthematrixismuchlargerthanthatofthefiber,sotheupperandlowerboundsofa1aretheCTEofthematrixandthelongitudinalCTEofthefiber,respectively.Whenthefibercontentislow,e.g.,Vf60.15,a1isdominatedbytheCTEofthematrix,becausethevolumefractionandCTEofthematrixaremuchlargerthanthoseofthefiber;whilethefibercontentissomewhathigher,e.g.,VfP0.5,a1ismostlydeterminedbythethermalpropertyofthefiber,becausethestiffnessofthefiberinthelongitudinaldirectionisquitelargerthanthatofthematrix.SuchaphenomenoncouldbefoundinFig.4directlyaswell. Table3 Fig.4PredictedlongitudinalCTEvsfibervolumefraction.Fig.5showstheresponseoftransverseCTEsasafunctionoffibervolumefractionfordifferentfiber–matrixcombina-tions.ExperimentaldataandFEMresultsarealsoshowninthefiguresmentionedaboveaswellasinTable4.InTable4,itcanbefoundthattheFEM-cubicandFEM-cylinderresultsfordifferentmaterialcombinationsarealmostthesame,themaximumerrorbetweentheFEM-cubicandFEM-cylinderpredictionsis0.489·10À6/°CforC6000-Pimaterial,andthemaximumrelativeerrorislessthan2.5%.Suchgoodagree-mentsmeanthattheequivalentprocessofFig.2(a)to(b)inthetransversedirectionisreasonable. ErrorsbetweentheFEMresultsandtheconcentriccylindermodelpredictionsstillexist.Apossiblereasonliesintheassumptionsandsimplificationsoftheconcentriccylindermodel.However,thepredictionsbytheconcentricmodelareinmuchbetteragreementwithexperimentaldatathanthosebyothersolutions.Themaximumerrorbetweentheconcentriccylindermodelandexperimentalresultsis5.672·10À6/°C,whilethemaximumerrorbetweentheFEM-cubicandexperi-mentalresultsis6.748·10À6/°C.Theminimalerrorsofthecon-centriccylindermodelandFEMpredictionsare0.079·10À6/ ComparisonofexperimentalandanalyticaldataforthelongitudinalCTE. LongitudinalCTE(10À6/°C)Experiment CH,CM,SH,CBÀ0.1530.076À0.965À1.157À0.916À0.225À0.3241.575 FEM-cubicÀ0.0680.171À0.920À1.125À0.857À0.175À0.3241.634 FEM-cylinderÀ0.0920.166À0.922À1.129À0.859À0.1870.3241.634 À0.113À0.002À1.051À1.076À1.021À0.212À0.4141.440 MaterialsystemsT300/5208T300/934P75/934P75/930P75/CE339C6000/PiHMS/GlassP100/Al 1186Z.Ranetal.Fig.5Table4 TransverseCTEofdifferentcompositematerials.ComparisonofexperimentalandanalyticaldataoftransverseCTE. TransverseCTE(10À6/°C)Experiment CM25.31530.74935.35026.04444.51823.8545.01128.492 SH27.51832.74735.50726.69644.61725.6615.98321.375 CH18.84122.29823.18017.16128.19018.0045.88115.336 CB-Hex16.43219.90820.91814.76924.84716.0515.46314.549 CB-Sq13.36017.09818.13111.48920.30413.8085.72813.448 FEM-cubic23.96729.45734.04224.96842.70922.0394.48626.865 FEM-cylinder24.43329.58334.04725.02542.70322.5294.47727.002 25.23629.03434.52431.71647.41222.4283.78026.118 MaterialsystemsT300/5208T300/934P75/934P75/930P75/CE339C6000/PiHMS/GlassP100/Al Determinationofthermalexpansioncoefficientsforunidirectionalfiber-reinforcedcomposites1187 °Cand0.101·10À6/°C.Thereareeightmaterialcombinationsintotalinthisresearch,andthecomparedresultsinTable4showthatsixoutofeightpredictionsbytheconcentriccylindermodelareinbetteragreementwithexperimentaldatathanthosebyothersolutions;fortheothertwomaterialcombinations(P75/934andP75/930),theresultspredictedbyconcentriccylindermodelandSchaperymodelarealmostthesame,andthepredictionsarequiteclosetotheexperimentaldataaswell. AsseeninFig.5,unliketheaxialCTE,theresponseofthetransverseCTEasafunctionoffibervolumefractionisaffectedbyboththefibertomatrixstiffnessratio(Ef2/Em)andthetransverseCTEratio(af2/am).P100-AlhasasimilartransverseCTEratio(af2/am<1)withT300-5208/934,P75-934/930,P75-CE339,andC6000-Pi,sotheresponseofa2decreaseswithincreasingfibervolumefraction.Meanwhile,P100-Alhasafibertomatrixstiffnessratio(Ef2/Em<1)whichiscontrarytotheotherfiber–matrixcombinations,andthusthedifferencebetweenthecylindermodelandothersolutionsinFig.5(e)ismoreapparentthanthoseinFig.5(a)–(d).ThesamephenomenoncanbefoundinFig.5(f).FormaterialHMS-glass,thetransverseCTEofthefiberislargerthanthatofthematrix(af2/am>1),whichiscontrarytotheothermaterialcombinations.Asaresult,theresponseofa2increaseswithincreasingfibervolumefraction. Generally,thetransverseCTEofaUDfiber-reinforcedcompositeisdeterminedbyboththematrixandthefiber,withtheCTEofthematrixasabase,ascanbeseeninEq.(32).ThetransverseCTEisalmostlinearasthefibercontentincreases,forwhichmaybethereasonliesinthatEf2af2%Emam,andtheproductoftheCTEandstiffnessofthefiberinthetransversedirectionisofthesamemagnitudeorderasthatofthematrix,whichmeansthecontributionstothetransverseCTEoftheUDcompositebythefiberandthematrixareatthesamelevel.Therefore,thetransverseCTEexhibitsquitelinearity.5.Conclusions (1)Theequivalentprocessoftransformingthemodelin Fig.2(a)totheoneinFig.2(b)isreasonable. (2)ExplicitformulaEqs.(9)and(32)forCTEpredictions areeasytouseandresultsareingoodagreementwithexperimentaldata. (3)ThelongitudinalCTEofaUDfiber-reinforcedcompos-itecanbemoreaccuratelypredictedthanthetransverseCTE. (4)Aswouldbeexpected,bothlongitudinalandtransverse CTEsaremostlyaffectedbythefibertomatrixstiff-nessratio(Ef2/Em)andthefibertomatrixCTEratio(af2/am). Acknowledgement ThankMissYIXiyuanforherkindhelpinrevisingthispaper. References 1.KaradenizZH,KumlutasD.Anumericalstudyonthecoefficientsofthermalexpansionoffiberreinforcedcompositematerials.JComposStruct2007;78(1):1–10. 2.SchaperyRA.Thermalexpansioncoefficientsofcompositematerialsbasedonenergyprinciples.JComposMater1968;2(3):380–404. 3.VanFoFyGA.Thermalstrainsandstressesinglassfiber-reinforcedmedia.PriklMekhTeorFiz1965;8:17[Russian]. 4.VanFoFyGA.Elasticconstantsandthermalexpansionofcertainbodieswithinhomogeneousregularstructure.SovietPhysDokla-dy1966;11:176[Russian]. 5.VanFoFyGA.Basicrelationsofthetheoryoforientedglassreinforcedplasticswithhollowfibers.MekhanikaPolimerov1966;2:763[Russian]. 6.LevinVM.Thermalexpansioncoefficientsofheterogeneousmaterials.MechSolids1967;2(1):88–94. 7.SchaperyRA.Onapplicationofathermodynamicconstitutiveequationtovariousnonlinearmaterials[dissertation].WestLafayette:PurdueUniversity;1968. 8.RogersKF,PhillipsLN,Kingston-LeeDM,YatesB,OveryMJ,SargentJP,etal.Thethermalexpansionofcarbonfibre-reinforcedplastics.Part1:Theinfluenceoffibertypeandorientation.JMaterSci1977;12(4):718–34. 9.ChamisCC.Simplifiedcompositemicromechanicsequationsforhygrothermalandmechanicalproperties.SAMPEQuart1984;15(3):14–23. 10.RosenBW,HashinZ.Effectivethermalexpansioncoefficientsand specificheatsofcompositematerials.IntJEngSci1970;8(2):157–73. 11.HashinZ.Analysisofpropertiesoffibercompositeswith anisotropicconstituents.JApplMech1979;46(3):543–50. 12.SideridisE.Thermalexpansioncoefficientoffibercomposites definedbytheconceptoftheinterphase.ComposSciTech1994;51(3):301–17. 13.IslamMDR,SjolindSG,PramilaA.Finiteelementanalysisof linearthermalexpansioncoefficientsofunidirectionalcrackedcomposites.JComposMater2001;35(19),1762-76. 14.RupnowskiP,GentzaM,SutterbJK,KumosaM.Anevaluation ontheelasticpropertiesandthermalexpansioncoefficientsofmediumandhighmodulusgraphitefibers.ComposA2005;36(3):327–38. 15.MiledH,SilvaL,AgassantJF,CoupeaT.Numericalsimulation offiberorientationandresultingthermo-elasticbehaviorinreinforcedthermo-plastics.MechResponseCompos2008;10(978):293–313. 16.BowlesDE,TompkinsSS.Predictionofcoefficientofthermal expansionforunidirectionalcomposite.JComposMater1989;23(4):370–88.RanZhiguoisaPh.D.studentinSchoolofAeronauticScienceandEngineeringatBeihangUniversity,andismajoringinflyingvehicledesign.Hismainresearchareasincludeflyingvehiclestructuredesign,compositestructuredesignandoptimization. YanYingisaprofessorandPh.D.advisorinSchoolofAeronauticScienceandEngineeringatBeihangUniversity.ShereceivedherPh.D.degreefromUniversityofSouthamptonin1994.Hercurrentresearchinterestsareflyingvehiclecompositestructuredesign&optimization,aircraftvibrationmodeling,helicoptercrashless,andcompositestructurerepairtechnology. 因篇幅问题不能全部显示,请点此查看更多更全内容