您好,欢迎来到爱go旅游网。
搜索
您的当前位置:首页植树问题教学反思四篇

植树问题教学反思四篇

来源:爱go旅游网
《植树问题》教学反思1

本单元通过现实生活中一些常见的实际问题,借助线段图等手段让学生从中发现一些规律,抽取其中的数学模型,然后再用发现的规律來解决生活中的简单实际问题。植树问题通常是指沿着一定的路线植树,这条线段的总长度被树平均分为若干段(间隔),由于路线的不同、植树的要求不同、路线被分成的段数(间隔数)和植树的棵树之间的关系也就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、锯木头、架设电线杆等。这些问题中都隐藏着总数与间隔数之间的关系。

在植树问题中,植树的路线可以是一条线段,也可以是一条首尾相接的封闭曲线如圆形。即使是关于最基本的一条线段上的植树问题,也可能有不同的情形。如两端都要载,一端栽另一端不栽,两端都不栽。而在封闭曲线上的植树问题可以转化为一条线段上的植树问题中的一端栽另一端不栽的情况。 成功之处:

分类教学,抓住教学重难点,避免出现知识的空档。在教学中,我通过教学例1的两端都栽的情况。这类问题,学生对于求棵树比较容易理解。但是对于在公路的两旁栽树,学生往往容易出错,因此在教学的过程中,多出一些在两旁栽树的情况,让学生能够注意。另外,在这个教学中还注意让学生逆向思考,如:在学校门前小路的两边,每隔5米放一盆菊花(两端都放),从起点到终点一共放了20盆。这条小路长多少米?提醒学生逆向思考问题,也就是要先求一旁小路

放多少盆,即20÷2=10(盆),然后再求间隔数,即10-1=9(个),最后求小路的全长,即9×5=45(米)。通过这样的训练,可以使学生不仅知其然,更知其所以然,还能培养学生逆向推理的能力。学生以后再见到难题,可以借助方程顺向思考问题,也可以逆向推理思考。经过这样的训练,学生就不至于感觉数学的困难了。这个单元容易出现的题目就是敲钟问题、锯木头问题、每个角都摆花的问题,这些问题可以一类一类地教学,把每个问题夯实,再进行综合训练,效果会更好。在这些问题中,尤其类似这样的问题要注意教学,如要在三角形花坛的边上种牡丹花,每边种10棵,可以怎样种?最少需要种多少棵牡丹花?这种类型题学生就要有多种考虑,一种是三个角都不种,每边种10棵,需要种10×3=30(棵);第二种是只种1个角,其他两个角不种,就需要种10×3-1=29(棵),第三种是种兩个角的情况,需要10×3-2=28(棵),第四种是种三个角的情况,需要10×3-3=27(棵),通过这样的教学可以避免直接教学课本习题中的棋子问题,学生就可以弄清楚为什么要用每边的数量乘边数候后还要减4。

在教学例1两端都栽的情况,也可以顺势教学其它情况特别是两端都不栽,除了画线段图理解之外,也可以让学生解释为什么要用间隔数减1,实际上中两都栽的情况中间隔数加1再减2,所以得到棵数等于间隔数减1。这样再教学只栽一端时,学生又可以在两端都不栽都情况下间隔数减1加1,就可以得到棵树等于间隔数,由此类推,学生更容易理解这三种情况之间的联系,不至于学一种记忆一种。

不足之处:

学生在学习例题时学得很好,一到接触到不同类型的植树问题就不知所措,还是存在搞不清哪种植树问题的情况。 再教设计:

在教学中,还是继续采取分类教学,既注重对分类教学的讲解,还要注意逆向思维的训练。 《植树问题》教学反思2

教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标): 知识技能目标:

1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔 数与植树棵数之间的关系;

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单 的植树问题。 过程目标:

1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律, 并应用规律来解决问题的能力;

2、渗透数形结合的思想,培养学生借助图形解决问题的意识; 3、培养学生的合作意识,养成良好的交流习惯。 情感目标:

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):

通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。

教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境): 一、创设情景,激发兴趣 1、猜谜导入揭题

师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)

师:对,我们都有一双灵巧的手,请你们伸出右手,五指张开,用数学的眼光看一看,你发现了什么?

数一数,5个手指之间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。(师伸出4根手指、3根手指、2根手指)现在有几个间隔?

师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)

【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。 二、经历探究,发现规律 1、激趣引入,启发探究积极性

(课件出示)出示江口小学为绿化环境的招聘启事及设计要求 招聘启示

学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。 江口小学 20xx.6 设计要求:

在一条长20米的小路一边等距离植树,两端要栽。

【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。

《植树问题》教学反思3

《植树问题》是四年级数学广角的内容,对于孩子们来说属于拓展提升类知识,对于三年级孩子来说理解起来更会有困难。下面就几方面谈一谈我的设计意图:

1、课堂中主要渗透了一一对应、化繁为简以及数形结合的数学思想,单纯的套用数量关系学习的知识则失去了它的持久性,要让学生在活动中深化数量关系,设计了数一数、画一画教学活动,这些活动都能帮助学生积累活动经验。

2、一一对应思想的渗透。在一一对应的思想上的,让学生体会并说出谁和谁为一组就是一一对应的体现,可以为学生接下来理解为什么多1、少1或相等打下良好的基础。

3、在追问中感知数量关系。数量关系的生成要经历一定的数学活动经验,让学生摆一摆、数一数只能观察比较出两种物体的个数的大小,继续追问:为什么+1,为什么—1?这样的追问是深化数量关系的有效前提。

4、重视不同情况的联系与区别。无论是植树问题还是间隔排列的两种物体,他们都有多种情况,而每一种情况都不是孤立存在的,规律之间的练习可以帮助我们教学过程中有效进行延展,而他们之间的区别则可以帮助学生加深每种情况本质的理解。

5、体现应用意识。数学知识来源于生活也应用于生活,对于植树问题的理解要拓展到平常生活中,这样能引导学生运用规律或者获

得的策略以及感悟的数学思想来解决与植树问题有着共同数学知识结构的实际问题。

本节课的不足以及应改进的地方:

1、把100米简单化到20米,仍然不够简单,对学生的理解题意造成了一定的困难。如果改成总长5米,间隔1米,会更好理解。 2、讲解三类情况时,应以“只在一端”这种简单情况为例,重点讲解,降低学生学习难度。

3、教态不够自然,语言表情亲和力不够,在平时教学中应加强锻炼,注意培养。

每一次讲课对自己来说都是一次锻炼,都是一次进步的机会。备课、讲课、反思,每一步都需要用心去思考,思考的过程就是进步的过程,相信经过这样的一次次历练,自己会做的更好。 《植树问题》教学反思4

《植树问题》内容包括两头植、两头都不植、封闭情况下的植树问题(一头植和一头不植)这三种情况。在解决植树问题的过程中,要向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想.模型思想,同时使学生感悟到应用数学模型解题所带来的便利。

一、自主探索,培养学生数学思维能力。

课前创设情境让学生欣赏美丽的风景,引导学生明确要学习的内容,紧接着引出例题,探讨植树问题,不规定间距,同时改小数据,将长度改成20米。

让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。

通过“以小见大”数形结合来找规律加以验证,然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。 二、拓展应用,反映数学与生活的密切联系。

“植树问题”通常是指沿着一定的路线,这条路线的总长度被“树”平均分成若干间隔,由于路线不同、植树要求不同,路线被分成的间隔数和植树棵数之间的关系就不同。

在现实中有着广泛的应用价值。在学生已经自主地寻找到植树中前两种的规律后,我适时的提出在我们的生活中有没有类似植树的情况呢?

通过学生的举例,让他们进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。我并没有就此罢手,而是让学生找找生活中的类似现象,如栽电线杆,排座位,安路灯,插彩旗等,再一次让学生运用规律解决形式各异的生活问题,使数学知识运用于生活。

三、数形结合,培养学生借助图形解决问题的意识。

我让学生根据示意图用算式来表示出植树的棵数,学生在列式计算的过程中,通过直观的观察初步感知三种情况:两端都栽“棵树=

间隔数+1”,只栽一端“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。

之后,再引导学生用“一一对应”的思想,举起左手,看指头有五个,间隔就是四个,明白植树问题的道理与此相似,再举起右手比划比划,分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,从而真正理解这三种情况下,棵数与间隔数的关系。初步理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的能力。 本节课的不足之处:一是学生没有完全放开,思维还不够活跃;二是对课堂的生成问题处理还不够灵活,不能进行很好的利用。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务