第二单元 图形的面积(一)
课题:比较图形的面积
教学内容:
运用多种方法比较图形面积的大小。(书P16)
教学目的:
1、能借助方格纸,直接判断图形面积的大小。
2、通过交流,知道比较图形面积大小的基本方法。
3、形成一些基本策略,体验解决问题策略的多样性。
教具准备:
实物投影仪等。
学具准备:
方格纸、直尺等。
教学过程:
一、创设情境,揭示课题。
师:你都认识哪些图形?你能画出这些图形吗?
1、看一看,画得对不对。
2、比较任意两个图形,说一说哪个图形面积大。
3、板书课题:比较图形的面积。
二、观察比较,探索新知。
1、呈现主题图。
2、提出问题。
师:这些图形的面积有什么关系?你是怎么知道的?请你与同学进行交流。
3、交流讨论。
4、全班反馈、交流。
(1)图①和图③面积相等。
(2)把图①平移到图③位置,两个图形重合。
(3)图⑨和图⑩合起来与图12的面积相等。
(4)图⑤和图⑥合起来与图⑧的面积相等。
(5)图11和图12的面积相等。
(6)图④和图⑦的面积相等,也都比图⑧小。
(7)板书配合说明:平面图形面积大小的比较方法;
①直接比较(两图面积大小相差明显);
②运用重叠的方法;
③借助参照物进行比较;
④借助方格,利用数方格的方法进行比较。
5、小结:
通过以上活动,学生对比较面积大小的几种方法有了一定的饿认识,这时,教师应重点揭示和说明数方格的方法。
三、练习。
1、书P17“练一练”的第1、2题。
2、书P17“练一练”的第3、4题。
课题:地毯上的图形面积
教学内容:
北师大版五年级上册第18-19页。
教学目的:
1、能直接在方格图上,数出相关图形的面积。
2、能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
3、在解决问题的过程中,体会策略、方法的多样性。
4、进一步培养学生观察能力和灵活思考问题的能力。
教学重点:
能利用分割的方法,将较复杂的图形转化为简单的图形,并用简单的方法计算出面积。
教具准备:
实物投影仪、课件等。
学具准备:
方格纸等。
教学过程:
一、创设情境,揭示课题。
1、呈现情境图。
2、引导问题。
3、揭示课题。
师:对了,这一节课老师要和同学们一起来学习如何计算地毯上的图形面积。
板书课题:地毯上的图形面积
二、提出问题,探索新知。
(一)活动一:地毯上的兰色部分的面积是多少?
1、观察书上的图,想一想怎样算比较简便?
2、自己观察图,先自己想出解决问题的办法,然后在小组内交流你的想法。
方法一:可以把地毯划分为4块边长是7米的小正方形,算出其中的一块兰色部分的面积就可以了。
(1)尝试计算:
(2)每小块正方形上兰色部分的面积:(方法非常多样)
整块地毯上兰色部分的面积:
(根据你的理解列出算式来。请生板演,说说你是怎样计算每小块正方形上兰色部分的面积的?集体订正。)
方法二:可以用地毯总面积减去白色部分的面积,就得到兰色部分的面积。
(1)地毯总面积;
(2)白色部分面积:(自己试计算,想一想白色部分的面积可以怎样计算?)
(3)兰色部分面积:
3、还有别的方法吗?(请生介绍自己想出的其他的方法。)
(二)活动二:练一练。
1、求下面图形的面积。
(先自己算。说说每个图形的计算思路,请同学到黑板上画图讲解。)
2、下列点子图上的图形面积是多少?
(完成,说说计算方法)
3、求下列每组图形的面积,你发现了什么?
(试完成,在小组内交流你的发现,然后全班交流。)
三、总结。
通过这节课,你学会了什么?
课题:动手做
教学内容:
书P20的例题及练习。
教学目的:
1、经历“动手做”课堂教学活动的过程,认识平行四边形、三角形和梯形的高。
2、能借助三角尺画出平行四边形的高、三角形的高和梯形的高。
3、通过动手操作、动眼观察、动脑思考等数学活动,自主探索新知。
4、对周围环境中与图形有关的某些事物具有好奇心,能主动参与教师组织的教学活动。
教学重点:
平行四边形的高。
教学准备:
平行四边形纸板、三角尺、剪刀等。
教学过程:
一、创设情境,提出问题。
1、实物投影呈现情境图。
2、提出问题:
(1)“长方形的桌面”,它的形状是什么样子的?
(2)“尽可能大的长方形桌面”是什么意思?
(3)应该怎样制作最大的长方形桌面?
二、组织活动,探索新知。
1、活动(一):平行四边形的底和高。
(1)学生自行实践活动。
(2)反馈实验结果。(图略)
(3)认识高、低。
(4)学会画高。
师:刚才你是怎么画这条线段的?(指着锯开的高)
让学生交流,尝试后,教师示范画出平行四边形的高,边画边说明画的方法。
从平行四边形一条边上的任意一点,向它的对边画垂线,这条垂线(从点到垂点)就是平行四边形一条边上的高。
(5)尝试练习。
学生练习过程中,教师要关注学习有困难的学生。帮助他掌握画高的方法、步骤。
2、活动(二):三角形的底和高。
(1)尝试画高。
让学生随意画一个三角形,然后画出它的高,并标明“高”和“底”。
(2)展示作品。(图略)
(3)画指定边上的高。
①教师画一个三角形,并指定一条底。
②学生画指定边上的高。
③说一说,是怎么画的。
(4)提出问题。
师:三角形有几条不同的高?
3、活动(三):练一练。
(1)完成书P、21的“练一练”的第1题。
(2)完成书P、21的“练一练”的第2—4题。
三、总结。
谁能谈谈通过这节课的学习,你有什么感受?你还有什么要问的?
板书设计:
动手做
课题:探索活动(一)平行四边形的面积
教学内容:
北师大版数学五年级上册第20-21页。
教学目的:
1、使学生理解并掌握平行四边形面积的计算公式,能正确地计算平行四边形的面积。
2、通过操作,进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力发展学生的空间观念。
3、引导学生运用转化的思想探索规律。
教学重点:
理解并掌握平行四边形面积的计算公式。
教学难点:
理解平行四边形面积计算公式的推导过程。
教具准备:
平行四边形教具或课件、实物投影仪。
学具准备:
平行四边形纸板、剪刀等。
教学过程:
一、激发
1.提问:怎样计算长方形面积?
板书:长方形面积=长×宽
2.口算出下面各长方形的面积。
(1)长1.2厘米,宽3厘米。
(2)长0.5米,宽0.4米。
3.出示方格纸上画的平行四边形,提问:这是什么图形?什么叫平行四边形?指出它的底和高。
4.揭题:我们已经学会了长方形面积的计算,平行四边形的面积该怎样计算呢?这节课我们就学习“平行四边形面积的计算(板书课题:平行四边形面积的计算)
二、尝试
1.用数方格的方法计算平行四边形面积。
(1)让学生打开书自学
(2)指名到投影上数。边数边讲解:我先数……,它是……平方厘米;再数……,它是……平方厘米;两部分合起来是……平方厘米。
(3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。
(4)观察比较两个图形的关系,提问:你发现了什么?
引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
2.通过操作,将平行四边形转化成长方形。
(1)自由剪、拼,进一步感知。
①每个平行四边形只准剪一下,试一试被剪下的两部分能拼成已学过的什么图形?学生自己剪、拼。
②互相讨论。提问:你发现了什么规律?
通过操作讨论得出:只有沿着平行四边形的高剪开,才能拼成一个我们会计算的图形——长方形。这种剪法最简便。
(2)揭示转化规律
任何一个平行四边形都可以转化成一个长方形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述)
①沿着平行四边形的高剪下左边的直角三角形。(出示剪刀,闪动被剪掉的部分)。
②左手按住右手的梯形,右手抽拉剪下的直角三角形,沿着底边慢慢向右移动,直到两斜边重合为止。这样就得到一个长方形。
③学生根据刚才的演示模仿操作,体会平移的过程。
3.归纳总结公式
(1)比较变化前的两个图形,提问:你发现了什么?互相讨论,汇报讨论结果。根据讨论结果完成填空。
引导学生明确:你发现了什么?互相讨论,汇报讨论结果。
①平行四边形转化为长方形后,面积没有改变。即长方形面积等于平行四边形面积。(同时板书)
②这个长方形的长、宽分别与平行四边形的底、高相等。(同时板书)
(2)根据这些关系,你认为平行四边形的面积计算公式怎样推导出来?强化理解推导过程。
板书: 平行四边形的面积=底×高
4.教学字母公式
(1)介绍每个字母所表示的意义及读法。板书S=a×h
(2)说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,也可以省略不写。所以平行四边形面积的计算公式可以写成“S=a·h或“S=ah”。(同时板书)
(3)提问:计算平行四边形面积,需要知道哪些条件?
三、应用
1.一块平行四边形钢板(如下图),它的面积是多少? (得数保留整数)
3.5厘米
4.8厘米
①读题,理解题意。
②学生试做,指名板演。提醒学生注意得数保留整数。
③订正。提问:根据什么这样列式?
订正时提问:计算时注意哪些问题?
3.填空
任意一个平行四边形都可以转化成一个( ),它的面积与原平行四边形的面积( )。这个长方形的长与原平行四边形的( )相等。这个长方形的( )与原平行四边形的( )相等。因为长方形的面积等于( ),所以平行四边形的面积等于( )。
4.判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等( )
(2)平行四边形底越长,它的面积就越大( )
5.你能求出下列图形的面积吗?如果能,请计算出面积。 (单位:厘米)
16、20、15、20
四、总结。
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
板书设计:
课题:探索活动(一)平行四边形的面积
平行四边形的面积=底×高
S=ah
平行四边形面积计算的练习
教学内容:
平行四边形面积计算的练习(第74~75页练习十七第4~9题。)
教学目的:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:
运用所学知识解答有关平行四边形面积的应用题。
教学准备:
实物投影仪等。
教学过程:
一、基本练习
1.口算。
4.9÷0.7 5.4+2.6 4×0.25 0.87-0.49
530+270 3.5×0.2 2-98 6÷12
2.平行四边形的面积是什么?它是怎样推导出来的?
3.口算下面各平行四边形的面积。
⑴底12米,高7米;
⑵高13分米,第6分米;
⑶底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
⑴生列式解答,集体订正。
⑵如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?
②生列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
⑶如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.练习:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?
1.6厘米
2.5厘米
⑴你能找出图中的两个平行四边形吗?
⑵他们的面积相等吗?为什么?
⑶生计算每个平行四边形的面积。
⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
3.已知一个平行四边形的面积是28平方米和底是7米,求高。
分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习(略)
练习课
练习内容:
平行四边形面积的计算。
练习目的:
1、进一步掌握平行四边形的面积计算方法,并能运用所学知识解决一些实际问题。
2、进一步探索平行四边形的面积与底和高的关系。
3、体验数学和日常生活密切相关。
教具准备:
实物投影仪等。
学具准备:
直尺、方格纸。
练习过程:
一、基本练习。
1、画高,找出平行四边形的底和高。
(1)让学生利用方格纸,画几个平行四边形,然后标出每个平行四边形的底和高。
(2)教师用实物投影展示学生的作品。
2、平行四边形面积计算。
(1)说一说平行四边形面积计算方法。
(2)用字母表示平行四边形面积计算公式。
板书:S = ah
(3)计算下列图形面积。(略)
二、专项练习。
完成书P24“练一练”。
课题:探索活动(二)三角形的面积
教学内容:
书第25至26页的内容
教学目的:
1、使学生理解并掌握三角形面积的计算公式。能正确地计算三角形的面积。
2、通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念 。
3、引导学生运用转化的方法探索规律。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积计算公式的推导过程。
教学准备:
实物投影仪等。
教学过程:
一、激发
1.出示平行四边形
底1.5厘米
高2厘米
提问:
(1)这是什么图形?计算平行四边形的面积我们学过哪些方法? (板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然长方形、正方形、平行四边形都可以用数方格的方法或利用公式计算的方法,求它们的面积,三角形面积可以用哪些计算方法呢?(揭示课题:三角形面积的计算)
二、尝试
1.用数方格的方法求三角形的面积。
(1)看书
(2)订正数的结果。
(3)如果不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?
(4)三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。我们分别验证一下。
2.用直角三角形推导。
(1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。
(2)拼成的这些图形中,哪几个图形的面积我们不会计算?
(3)利用拼成的长方形和平行四边形,怎样求三角形面积?
(4)小结:通过刚才的实验,想一想,每个直角三角形
Copyright © 2019- igat.cn 版权所有 赣ICP备2024042791号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务